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Summary. Coding theorem and weak converse of the coding theorem are proved for 
averaged semicontinuous stationary channels and for almost periodic discrete channels, 
whose phases are statistically known. Explicit formulas for the capacities are given. The 
strong converses of the coding theorems do not hold. 

1. Introduction 

Averaged channels were introduced by JACoBs [5]. In  this class of channels he 
found the first example of a channel for which the strong converse of the coding 
theorem does not hold, but the coding theorem and the weak converse of the 
coding theorem hold (unpublished). The proof uses STI~ASSEN'S version of 
S~A~CNON'S method of random codes. The disadvantage of this method is that  the 
channel capacity cannot be computed. In  [9] WOLFOWITZ gave simpler examples 
of channels without strong capacity and he gave the reason for which the strong 
converse of the coding theorem fails to hold, but he does not show ff these channels 
have a weak capacity. In  3. we give a simple example of a channel without strong 
capacity, but with weak capacity. The proof of the coding theorem and its weak 
converse uses classical results for simultaneous channels [8], [3]. The main idea 
consists in a comparison of codes for an averaged channel with its corresponding 
simultaneous channel. This leads to a method which is representative for the more 
complicated proofs in par. 3-par. 6, where we deal with coding theorem and weak 
converse for averaged channels under different assumptions on the time struc- 
ture (stationary, almost periodic, nonstationary) and the output alphabet (finite, 
nonfinite) of the channel. I t  is remarkable that  we need the strong converse for 
simultaneous channels for the proof of weak converses for averaged channels. 
This demonstrates the importance of the concept of a strong converse --  which is 
due to WOLFOWITZ [10], [8] --  even to coding theorists who are only interested in 
weak converses. The results can be formulated roughly as follows: 

The weak capacity of the averaged discrete stationary channel equals the 
strong capacity of the corresponding simultaneous channel (Theorem 2). 
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The weak capacity of the averaged semicontinous stat ionary channel is in 
general greater than  the weak capacity of the corresponding simultaneous channel 
(Theorem 3). 

The weak capacity of an almost periodic discrete channel, whose phase is 
statistically known, is greater than or equal to the strong capacity of the corre- 
sponding simultaneous channel. Equali ty holds ff each phase has positive pro- 
babillty (Corollary of Theorem 4). 

In  all these cases we average with respect to a discrete p. d. In  par. 7 we prove 
the coding theorem and the weak converse for stat ionary discrete averaged 
channels, where the average is taken with respect to a general p. d. The proof is 
based on the proof for Theorem 3 and several new ideas. 

2. Definitions 

Let X t = X ~ {1, ... ,a} for t ~ 1, 2, ... and (X 't, ~'~) = (X' ~') for t ~ 1, 2 .... 
where X '  is an arbi trary set and ~'  is a a-algebra of subsets in X' .  Furthermore let 
S = {s, . . .} be a nonempty  (index) - -  set and let F t(- 11 I s ) , . . . ,  F t(. [a[s) be 
probabili ty distributions (p.d.) on (Xt, s ( teN,  sES). For each x~ = @1 . . . . .  x n) 

�9 X n  = ]-~ X t  we define a p.d.  on 
t = l  

t = l  t = l  t = l  

The sequence of kernels (.Fn(.I.]s))n = 1, 2 . . . .  forms a semicontinuous 
(in general nonstationary) channel without memory.  [In case X' t  _= X '  is finite, 
the kernels F t (.[. ]8) are given by  stochastic matrices w t<kl~lS) = F~({k) lgls) 
(i ~ X ,  k ~ X').  We speak then of a discrete channel without memory.] Thus we 
have assigned to each 8 e S a semicontinuous channel. I f  we are interested in the 
simultaneous behaviour of all these channels, then we call this indexed set of chan- 
nels a simultaneous channel (semicontinuous, without memory). Common pro- 
perties of the individual channels are assigned to the simultaneous channel: statio- 
narity, almost periodicity, etc. as follows. The set {Fn(" [" 18)[sES} designated 
by  Sn, is called simultaneous channel Sn in the discrete time-interval <1, n>. 

A code (n, N,  4) for the simultaneous chaimel Sn is a series of pairs 

{(ul, A;) ... (u~r A~)}, 

t 

where ui ~ Xn ,  A~ E ~'~ for i = 1, . . . ,  N,  A~ (3 A j = 0 for i * i  and Yn (A l l u~ l s) 
> 1 - -  2 (0 < 2 < 1) for i = 1, 2 . . . .  , N, 8 e S (sometimes instead of the code 
(n, N, 4) we speak of a k-code. N is the length of the code (n, N,  4). N (n, ~) is 
the maximal  length of a k-code in <1, n>. 

Let  ~)n ~-- <D1, . . . ,  D~> be a parti t ion of X~ in finitely many  elements of 
~n and let ~n be the set of all such finite partitions. ~n  is the set of all p.d.  on 
(Xn,  s where s is the a-algebra of all subsets of Xn.  

Fn (n~ I xn [ s) 
R(p.,~.,~)= E E P-(x-)~,,(~ Z ~,.(U.)F,~(D,y,~i~) 

i = l , . . . , b  xn~Xn yn~Xn 
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is the (channel)-rate for pn, ~)n, Fn (" ]" ] s). 
Kesten [6] has shown by proving the coding theorem and the weak converse that  

I sup sup infB(pn,  ~)n,s) Ci = lira 

is the weak capacity of the stationary semicontinuous memoryless channel. 

dF(.[z~[8) a~" 
C = max infR (pl, ~ (. I" Is)) -~ max il~f~ pl (x 1) ] log ~ ~(y~)) dF(~ yl Is ) ~--(" I xll s) 

~l ~eS pi seS X ' i  y i e X i  

is the strong capacity of the stationary discrete memoryless simultaneous channel. 
This was was proved by WoL~owI'rz [8]. K~MrEi~MAI~ gave an example of a 
semicontinuous simultaneous channel with Ci < C (published in [6]). However, 
C is the weak capacity of the averaged semicontinuous channel, defined by: 

P . ( . I x ~ ) = E q J . ( . l x ~ l s ) ,  
seS 

where q is ~ p.d. on a countable index set S and (Fn(.[.Is)), n = I . . . . .  are 
semieontinuous stationary simultaneous channels without memory (Theorem 3). 

3. A Channel without Strong Capacity 

Given X = X' = (1 . . . . .  a) and the stochastic matrices w(.I.I1), w(. l" 12) 
with a rows and columns. For s = 1, 2, we define the discrete memoryless channel 
(d.m.e.) ( P n ( ' l ' l s ) ) n =  1,2, ... by 

n 

t = l  

and the averaged channel (a.c.) (Pn(" l')) n -~ 1, 2, ... by 
�9 t # X ! - x P n ( x n i x n ) = l p n ( x n l x n I 1 ) ~ - l p n ( x n l x n l 2 )  (xne n , X n e l ~ n , n = l , 2  . . . .  ) 

Theorem 1 (Coding theorem and weak converse). Let 

c = max  inf  n (p, w (.]. I s)) 
s - - l , 2  

= strong capacity o/the s.c. (Sn) n = 1, 2 . . . .  

_~or the maximal code length N (n, ~) o/the a.c. (Pn) n = 1 . . . .  the ]ollowing estimates 
hold: 

a) Given 0 < 2 < 1, (5 > O, then there exists an no ~ no (~, (~) such that 

N ( n , ~ ) > e  (c+~)n /or n ~ n o .  

b) Given ($ :> O, then there exists a 2, and an no = no (~, 5) such that 

N ( n , ~ ) < e  (c+~)n ]or n ~ n o .  

Proo] of part a) A ~-code for the simultaneous channel 

S n =  {Pn( ' ] ' ] s ) ] s= l, 2) isa)~-codefor P~( ' I ' )"  

b) Choose ~ < �89 For a ~-code {(u~, A~)li = 1 . . . . .  N} of Pn we have 

Pn(A~Iu~) ~ I -  2, i =  l . . . . .  N 
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and therefore 

P n ( A i l u ~ l s ) > = l - - 2 - - � 8 9  ( s =  1,2; i = 1 , . . . , N ) .  

A k-code for Pn is a 2'-code for Sn, ff 2 < �89 
By the strong converse for Sn we have 2V (n, 4) ~ e cn+~(z) I/~ where k (2') is a 

known function [10]. This proves b). 

R e m a r k  1. The strong converse of the coding theorem gives, if it  holds, an 
estimate of the following type:  

Given 0 < 2 < 1, 8 > 0, then there exists an n0(k, 6) such that  for n ~ no 

hr(n, 4) < e (~+~)" 

holds, where C is the maximal constant for which estimation a) holds. (For 
nonstationary channels we have instead of C a capacity function Cn .) 

Choose w(.I . ]s  ) such that  (p~(.I.ll))n= 1,2 . . . .  has capacity 0 and 
(Pn (" [" 1 2)) n = 1, 2 . . . .  has capacity C2 > 0. Then a fortiori C ~ 0. A A-code 
for �89 Pn (' [" [ 2) is a 2-code Pn .  Choose 2 > �89 and let hr2 (n, 4) be the maximal code 

ee,-k'0.) V~ for all 

n. Thus the strong converse does not hold. 

R e m a r k  2. A weaker form of the strong converse can be introduced; namely, 
there exists an ~ > 0, such that  for all ~ with 0 < 2 < 6, 6 > 0 there exists an 
no (2, 6) with the property: 

N (n, 4) < e (c+ 0)n; n ~ no. 

For the channel we discussed above this estimate holds with ~ ~ �89 However, 
for the channels considered in 4 even this weaker estimate does not hold. 

R e m a r k  3. For several stationary channels (e,g. discrete channel without 

memory, discrete channel with finite memory) lira 1 R(p~o, .Fn) exists for each 
n - - - >  OO 

stationary p.d. 79r on 

(X~, gee) = Xt, ~t and Cst~t. = sup lira 1 .R (p~, Fn) 

turns out to be the (weak or strong) channel capacity C. 
The proofs of the coding theorem work mostly with ergodie stationary p.d. 

In  the first step it is shown that  the joint source-channel distribution is ergodic 
under suitable conditions on the channel. Then McMILLA~'s theorem gives that  

the information function ~ I (p~, Fn) converges to 

1 lira ~ R (79,o, .Fn) (L 1 or with probability one). 

In  the last step an application of Fv.INST]~I-~'S maximal code theorem leads 
to the coding theorem. The channel defined in 1) has the remarkable property 
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that 

(*) 1 
C < max lim --- R (p x .. .  x p, Pn) 

~b 
p •  . . . x p n - ~ o z  
independent  

sources 
def  

~< max lim 1 R(p~,  Rn) defcerg < max lim 1 R(pc~,Pn) = Cstat 
- -  n ' = ~ " 

P~ergodic n ~ r 1 6 2  P~s ta t .  n---> cr 
star. 

Therefore the usual method of proving a coding theorem is not applicable. 
Some authors already speak of channel capacity ff Cstat. exists --  without 

having proved the coding theorem and a converse. (*) shows that  this is not 
admissible. Let us now proof (*). I t  is known, that  the mean entropy /7 of a 
stationary p.d. on the product measure-space has the linearity property: 

(**) Given a p.d. ql . . . . .  q~ and stationary p.d. pl,  . . . ,  p~ on (Xoo, s then 

/ B q~ p~ = ~ q~ B (Pq.  
\ i = 1  / i = 1  

We now choose Pn = P X "'" X p for n = 1, 2 . . . .  and define 

x a ~ X n  

2 

2 

From R(pn, Pn) = H(pn) + H(p'n) -- H(pn) and the above definitions, we 
conclude that  

lira 1 R(pn, Pn) ---- lim 1 ~ 1 [H(pn) + H(p'n(']s))-- H(~)n('i'ls))] 
n--+co n n -+oo  n s = l  2 

Using (**) ~nd the independence we get 

lim 1 R ( p n , P n ) =  ~[H(pD+H(p~(.ls))--H(~ox(.[.]8)) ] 
~-->oo n s ~ l  

2 

R (p~, w (. 1. ] s)) 
S = X  

and therefore 
1 

max lim nl R ( p n , P , l = m a x ~ R ( p , w ( . l . ] 2 ) )  = ~ C 2 > C .  
p ~ , = p  x lo x . . .  • p n - + o o  lP 

In  [4] H u  Guo DING proved that  the coding theorem and the weak converse hold 
if and only if the channel is "information stable" (Def. given in [4]). Information 
stability, however, is difficult to verify for our channel and it is even more difficult 
to find a formula for the channel capacity by this method. 

5 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 11 
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4. The Weak Capacity of an Averaged Discrete Channel 

Given a set of  stochastic ma~rices 

(w( i j s ) ) i=  a ] S e S :  { 1 , 2 , . . . } ,  X :  X'~-~ {1 . . . . .  a}~ 
j = l  . . . . .  a J 

and a p .d .  q on S. We can assume wi thout  loss of  general i ty  t h a t  qs > 0 for all 
I 

s e S. Otherwise we would take  ins tead of S a subset  S '  wi th  q8 > O, s '  ~ S '  and 
8 : 1 .  

8 ' ~ S '  

We define the individual  discrete channels b y  

P~(xnlx~is)=l-[w(x',lx*ls) x'~x~, x ~ i ~ ,  s~s, n = l , 2  . . . .  ; 
t = l  

the averaged discrete channel b y  

Pn(x'~lx.) = ~qs  Pn(x:[ x,~l s) 
S ~ S  

and the  s imultaneous channel by  

& = { P ~ ( . l . l s ) l s ~ S }  n = 1 , 2  . . . . .  

We need the following: 

L e m m a  1. I] [n is a decreasing sequence o] continuous, convex, nonnegative 
]unctions de/ined on a simplex in R n, then l im [n = ] is continuous and the convergence 
is uni]orm, n~r162 

Sketch of the proo]. I t  is clear t h a t  the l imit  exists. ] is convex and  could have  
discontinuities only on the ex t reme points,  bu t  this does not  happen.  F r o m  
])l-NX'S theorem we conclude uni form convergence. 

L e m m a 2 .  a) ] k ( P ) =  in]  R ( p , F ( . I . I s ) )  converges uni/ormly in p to 
s ~ l  . . . . .  k 

in f  R ( p , F ( ' ] ' l s ) ) .  
S e S  

b) l i m C ~ = l i m m a x  inf  R ( p , F ( ' I ' [ s ) )  
k- - ->~  k-->co ~ s = l  . . . . .  k 

m a x  inf  R (p, F (. I" I s))- 
S E S  

Proo]. The set  of  all p .d .  on {1 . . . .  , a} forms a simplex. R(p ,  F( .  I" Is)) as a 
funct ion of p is continuous,  convex and  non-negat ive.  ]k(P) satisfies the  hypo-  
theses of  L e m m a  1. This gives us a) and as an easy consequence b) (cf. [8]). 

We  can now formula te :  

Theorem 2 (Coding theorem and weak converse for the discrete averaged channel 
( P n)~=l, e, ...). Let C = m a x  in]  R (p, w (. ]. Is)). Then the ]ollowing estimates hold: 

p s e S  

a) Given 0 < ,~ < l,  (~ > O, then there exists an no = no (~, 0), such that 

N (n, A) > e (c-~)n /or n ~ no. 

b) Given ~ > O, there exists a )~ > 0 and an no = no (~, ~), such that 

N(n , ) . )  < e  (c+~)n /or n ~ n o .  
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Pro@ Part  a). A )~-eode for the simultaneous channel S~ is a 2-code for p n .  
The statement follows from the coding theorem for simultaneous stationary 
channels without memory [8]. 

Par t  b). Define 
e ~ =  ~, q~, ~ =  inf q z > 0 .  

~ = k + l  ~ = 1  . . . . .  k 

(0) For the given d > 0 choose /c such that  ] C ~ - - C ]  =< ~/2, then choose 
2 = ~ / 2  and )~' = e~ d- �89 ~1~. 

k 

A Z-code {(ui, A~)li = 1, . . . ,  iV} for P, is a 2'-code for ZqsPn('l'[s), since 
s = l  

Z q ~ P , ( A ;  In~ s) => S , ( A ; l n d  - -  ~ > 1 - -  ( � 8 9  + ~,~). (1) 

But 

(2) 
7r 

A t  t i ~gsP~( i]uils)--qsP~(Ailuils')~l--e~--~g for s ' = l  . . . .  ,k .  

From (1) and (2) we have 

g s P n ( A ~ ] u i [ s ) > = � 8 9  for s = l , . .  /c, i = l , . . . , N  

and therefore 

P,(A~[uils)>l~ for s = l , . . , k ,  i = l  . . . .  , N .  

Now we apply the strong converse of the coding theorem for simultaneous discrete 
channels without memory and conclude that  

(3) N ( n ,  ,l) < e nc~ -F k(~k) V n for all n .  

Statement b) follows from (0) and (3). 

R e m a r k s .  1. The proof uses essentially the strong converse for simultaneous 
discrete channels without memory. FA~O'S Lemma would lead to the estimate 

N(n , , t )  < e (nr but lira C~ - - ~ o o o  

2. From the proof of the theorem it follows that  the weak capacity remains 
unchanged ff we average with respect to q*, where q* is equivalent to q. 

5. The Weak Capacity of an Averaged Semieontinuous Channel 

We return to the semicontinuous case as described in w 2. 

Theorem 3 (Coding theorem and weak converse/or the semicontinuous averaged 
channel (Pn)n=l,2,...). Let C = max inf R (p, F (. [ "I s)), then the/ollowing estimates 

p s ~ S  

hold: 

a) Given 0 < ,~ < 1, d > O, then there exists an no -= no (,~, ~), such that 

N ( n , ~ ) > e  (r /or n > : n o .  

b) Given (5 > 0, there exists a ,l > 0 and an no = no (~, ~), such that 

N ( n ,  Jt) < e (c+~)n /or n >=no. 

5* 
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Pros]. a) Given 0 ~ ~ ~ 1, 5 ~ 0. Choose k such t ha t  ek ~ 2 and define 

1--e~ < 1. A ~ - c o d e  for ~Sn = {pn(.].Is)  l s - -  1 , . . . ,  k} is a ~-code for 

Pn. The coding theorem for ~Sn gives 

and therefore N (n, 2) > e ~(c-  ~) for n sufficiently large. 

b) I f  we use L e m m a  2 and the strong converse of  the  coding theorem for ~Sn, 
the  proof  of  Theorem 2 b) carries over  verba t im.  

R e m a r k .  An example  of  ]~EMPERMAI~ (published in [6]) shows t h a t  there are 
semieon~inuous channels wi th  C > C1. C~ is the  (weak) eapaciby of (Sn)n=~,2,... ; 
C is the weak capac i ty  of  (Pn)n=~,2 .... . Therefore we can give the intui t ive inter- 
p re ta t ion :  The stat ist ical  knowledge of the individual  channels which govern the 
t ransmission increases the weak capaci ty.  

6. 5~onstationary Averaged Channels 

Given stochastic a • a-matr ices  w t (. ]. I s), s ~ S, t = 1, 2, . . . ,  we define the  
nons ta t ionary  s imultaneous channel (ef. [1]) 

( S n ) n = l , 2  . . . .  -~- { P ~ ( "  I" ] s ) ]  Pn(xn ]xnl s) 
n 

n =  1 , 2  . . . . .  

i = 1  

Let  q ---- (ql, q~, . . .)  be a discrete p .d .  on the countable  set S and qs ~ 0 for all 
s ~ S .  

Define 

C k ( n ) : m a x  inf  R(pn ,Pn( ' l ' l s ) )  and C ( n ) =  inf C~(n). 
Pn s ~ l  . . . . .  k k ~ ] , 2  . . . .  

Theorem 4. I /  /or the nonotationary averaged channel (Pn) n ~-1, 2 , . . .  the 
condition: (1) For each (~1 ~ 0 there exists a k and an n1((51, k) such that 

[C(n)--C~(n)] <(31n /or n ~ n l ( ( ~ l , k )  

holds, then we have the estimates 

a) Given 0 ~ ~ ~ 1, ~ ~ O, then there exists an no = no(~, ~), such that 

N (n, ~) > e c(n)-~n /or n ~ no. 

b) Given ~ ~ O, then there exists a ~ ~ 0 and an no = n0(~, ~), such that 

N(n,)~) < e c(n)+~n /or n ~ no 

(cf. [1] Einleitung).  

Pro@ a) Given 0 < 2 < l ,  ~ > 0, choose k such t h a t  2 k . - - 1 - ~  ~ l .  

A 2~-eode for kSn = {Pn(" I" Is) l s = 1 . . . . .  k} is a ~-eode for Pn. The coding 
theorem for ~Sn gives 

e c~(n)-~n ~ hr,(n, ,~) ~ N(n,  )~) for n 

sufficiently large (Satz 2 in [1], Chapter  I I I ) .  
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b) Using (1) and the strong converse of the coding theorem for ~Sn (Satz 3 in 
[1], Chapter III)  the proof of Theorem 2b) carries over verbatim. 

E x a m p l e .  Almost periodic discrete averaged channels. Let (wt( �9 "))t=l, 2 . . . .  
be an almost periodic sequence of stochastic matrices (cf. [1], Chapter II), then 
we can define the simultaneous almost periodic channel 

(S~)n=l, 2 . . . .  = { In  (" l" Is) l P~ (x~ I x~ [ s) 

, = 1 , 2  . . . .  
t = l  

and the averaged almost periodic channel 

(Pn("))n=l, 2 . . . .  : ( : q s P n ( ' , ' [ s ) ~  n :  1,2 . . . . .  
\ ~0  

From Theorem 4 we conclude the 

Corollary. For the almost periodic averaged channel (Pn)n=l, 2 . . . .  the coding 
theorem and the wealc converse hold with 

1 1 Cn C = lira n max inf R (Pn I Pn (" ]" Is)) = lim ~- . 
~'t--~.oo (pl , . . . ,pn)~pn S = 0 , 1 ,  . . .  n - - > z o  

Pro@ We have to show that  (1) is satisfied. But  this follows from the almost 
periodicity and the normcontinuity of R (p, w) in w as is shown in [1], Chapter II ,  
p. 2. The Bedingung 1, there is exactly the same as (1). I t  follows from the defini- 

tion of Cn that  1 Cn is monotone nondecreasing and 1 Cn ~ log a; hence, 

lim 1 Cn = C. The capacity function is constant. 
~-->oo 

R e m a r k s .  1. C can be greater than 

max inf R(p, wt( . . ) ) .  
p t=l 2,... 

E x a m p l e .  Choose two stochastic matrices w(. I" I 1), w(. [. 12) with 

R ( p , w ( . [ ' l l ) - O = C l  and m a x R ( p , w ( . I . 1 2 ) = C 2 > O .  
p 

Define 
=w(.I.12) 

w2~-l(.l.)=w(.I.ll) for s = l , 2  . . . . .  

Then (w t (. "))t=l, 2 . . . .  is a periodic sequence of stochastic matrices. The correspond- 
ing simultaneous periodic channel (Sn)n=12 . . . .  has the capacity 

C = � 8 9  inf R(p, w t ( . . ) ) = O .  
p t=1,2 .... 

2. The corollary says: if we know the phase of an almost periodic channel 
statistically and each phase has positive probability, then the (weak) capacity 
of this channel equals the (strong) capacity for (Sn )n= l ,  2 . . . . .  

[Coding theorem and strong converse for (Sn)n=l, 2 . . . .  were proved in [1].] 
The statistical knowledge of the phase increases the maximal code length in such 
a way that  instead of the strong converse only a weak converse holds. 
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I f  qs is not  posit ive for all 8, then  the capaci ty  of the averaged channel can of 
course be greater  t han  C. 

E x a m p l e .  Choose w(. ]. I1), w(. l" 12) such t h a t  

R(p,w(.I.I1) and R(p,w(.{.12)) 
have  their  m a x i m u m  for different a rguments  P l ,  P~ and  

R ( p l , w ( .  I .] 1)) > R(p l ,w( . ] .12 ) )  

R(pe,w(.[.]2)) > R(p2,w(.[.[1). 

For  gl = 1 the  averaged  channel is the  periodic channel (w t (. "))t=l, 2 . . . .  and  has 
a capaci ty  greater  t h a n  the  capac i ty  of  the corresponding s imultaneous channel. 

7. Averages of Channels with Respect to General Probability Distributions 
Unti l  now we considered averages with discrete probabi l i ty  distributions.  

W h a t  happens,  ff we take  averages with respect  to nondiscrete p.d. ,  for instance,  
the  Lebesgncmeasure  on [0, 1] ? 

I.  Le t  us look a t  a discrete averaged s ta t ionary  channel with S = [0, 1], 
q = Lcbesguemeasure  on S. 

Define 

po(. i.)= 
[o,]] 

Of course, w (i ] ~ [ s) has  to  be measurable  in 8 for i, ?" = 1 . . . .  a. I n  this case our 
me thod  f rom 4. is not  applicable as can be seen by  the following example  : 

w ( i [ j [ s ) = l  i = l , . . . , a ,  s e(O, 1] 

w(i l] lO ) = 1/a i , j  = 1 , . . . , a .  

Then  (Pn)n=l, 2 . . . .  has strong capac i ty  log a, because N(n ,  2 ) ~  en1~ but  
( S n ) n = l ,  2 . . . .  has capac i ty  0, because w(. [.10) has  capac i ty  0. We have  to give 
another  approach.  

I I .  Le t  (S, ~, q) be a no rmcd  measure  space, S is index-set  as usual. Divide 
[0, 1] in disjoint  intervals  of  length ft. 81 and 82 are fl-equivalent, ff w(il]lsl) 
and w(i[]t82 ) are in the  same in terva l  for all i, j = 1, . . . ,  a. This  equivalence 
relat ion leads to a par t i t ion  of S in a t  mos t  (l/fl) a~ measurable  sets 

aS(1 = 1 . . . .  , L(fi) <= (1/fl) a~) 

and therefore to a par t i t ion  of Sn in the  sets 

tSn = {Pn(" [" 18) l s ~ zs}, z = 1 , . . . ,  L(fi) .  

For  0 < ~ < 1 define 

(1) C(~, fi) = m a x  sup inf  R(p ,w( . [ . [ s ) )  
p h . . . . .  l ~ < L ( ~ )  k 

I n s t ead  of m a x s u p  we can write m a x m a x ,  because we v a r y  over  a finite set  of  
index-constellations.  
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Fur thermore  we define 

C ( e ) = m a x  sup inf S(p ,w( .[ . [s ) )  and C ~ - i n f C ( a ) .  
p {S'IS'r s~S" ~>0 

I t  follows from the definitions t h a t  

(2) C(~, fl) ~ C(~) for all ft. 

Theorem 5. For the general stationary discrete averaged channel 

( P n ( ' ] ' ) ) n - l , 2  .... = ( f P n ( ' l ' [ 8 )  q(ds)))n=J,2 .... 

the ]ollowing estimates hold with C = infC(~) 
c~>O 

a) Given 0 < ~ < 1, ~ > O, then there exists an no(~, ~) such that: 

N (n, ~) > e o n -  ~ /or n ~ no.  

b) Given (5 > O, then there exists a ~ > 0 and an no = no (2, ~), such that: 

N(n,  ~) < e cn+~n /or n ~ no. 

Pro@ a) Given 2, ~ > 0, choose ~ < 2 and S '  such tha t  q(S') ~ 1 - -  e and 

m a x  inf  R ( p , w ( . l . l s ) ) - C ( ~ )  ~ 0 / 2 .  
p S E S '  

f 
Define ~' ~ -- e A 2'-code for S n is a ~-code for Pn, because (1 - -  2') (1 - -  g) 

1 - - ( 1 - - g )  2 ' - - ~ = 1 - - 2 .  Hence 

N(n, ~) ~ N'(n, ~') => e(C(~)-(om)~-~(z') V~ ~ e( c-~)~ 

for n sufficiently large. 

b) First  of  all choose e such t h a t  ] C ( e ) -  C[ =~ 6/2. Let  h S . . . ~ S  be a 

family of  sets such tha t  the m a x i m um  is a t ta ined in (1), then q hS has to be 

greater than  1 - -  ~. We define 1 - -  e(g, fi) = q(hS kJ ... ~ l~S). 
e (~, fl) is by  definition smaller or equal than  e. Define now 

(e, f l ) =  inf  q(hS)>O 
i~l , . . .k  

and choose 

- ~ , = e ( ~ , f l ) + ~ - ~ ] ( ~ , f l ) .  

Then a 2-code for Pn is a 2'-code for 

f Pn( '[ ' ls)q(ds) ,  
hSU ... Ul~S 

s in ce  

(2) i 
lzSu'"ul~S 

p t A t n(Ai[uils) ~ Pn( i]ui ) - -  e(g, fl) ~ l -- (�89 + e(:c, fi)) 

But  from (2) and the definitions given above, i t  follows tha t  

(3) f Pn(A~Iu~]s)q(ds ) -- f Pn(A~l~Is)q(ds  ) 
h S ~)... Vl~S I~S 

< _ l - ~ ( ~ , f l ) - ~ ( ~ , f l )  for i = 1  . . . .  , N ; i = a  . . . . .  ~. 
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From (2), (3) we have 

(4) fPn(A~lu~[s)q(ds)>�89 for ] = 1  . . . . .  k ; i = l  . . . . .  N .  
l~ 8 

We need the trivial 

Combinatorial Lemma. Let Bi, i = 1, . . . ,  I be measurable 6"ets with q(B~) 
y > 0 (i = 1 . . . . .  I). I[ we ds[ine m as the maximal number o[ sets Bi with a 

common element, then the estimate m ~ ~ I holds. 

Denote by D~i the set 

{8lP~(A~lujIs)>_~v(~,~),~,,s ) ( ] = l , . . . , N ; i = l  . . . . .  k). 

I t  follows from (4) that  

q(Djr ~ ~V(~,fl) ( ] = 1  . . . . .  N; i =  l , . . . , k ) .  

The sets b i t ,  D21 . . . . .  DNi satisfy the hypothesis of the Lemma. Hence, there 
exists an element sl e ~,S which is contained in at least ~ (~, f l)N of these sets. 
That  means there exists a subeode of length ~7 (~, f l)N of the code 

{(u~, A~)li = 1, . . . ,  N} 
such that  

Pn(.A~ll~,lSl ) ~ � 8 8  for i t = l  . . . . .  [~V(~,fl)N]. 

Apply now the same arguments to DI~ . . . . .  Dlv2. Thus we find a subcode of our 
subcode which is now a simultaneous code for Pn (" I" I sl) and P~ (- I �9 Is~) of length 
greater than ~ (~, fl)" ~ (~, fl)" N. Proceeding in the same way we have after 
k < L(fl) steps a subcode of length N* greater than (�88 fl))r@. N with 

p~,(A*lu*lsd>=�88 ] = l , . . . , N * ; i = l  . . . . .  k.  

From the strong converse of the coding theorem for simultaneous channels and 
the normcontinuity of R (p, w) in w uniformly in p we conclude: 

N (4 ! ~ (~, fl))L@ < N* =< exp C (~, fl) n + / (/~) n ~- K (~) i n where hm [ (fl) = 0. 
~-+0  

Using (2) we have 

N (n, ~) <= expC(~) n + l(fl)n + K (v) i n  + L(/~)log ~ ( ~ ,  fl)). 

Choose now fl such ~ha~/(fl) ~ ~/4 and use IC(~) --  C l ~ 5/2. Then we have 
N(n,  ~) ~ e cn+~ for n sufficiently large. That  proves h). 

R e m a r k  1. Theorem 5 can be extended to the semicontinuous case, if 

C(~) = max sup inf R ( p , F ( . l . l s ) )  
p { S ' ] q ( S ' ) > l - - a }  s r  

---- lim 1 m a x  sup sup inf R (Pn, ~n ,  Pn ('[" I s)) 
n--+oo 1~,, {8"]q(8")~_1--o:} ~)~, s~S" 

for all ~ > 0. Par t  a) follows then from the coding theorem for simultaneous 
semicontinuous channels [6]. For the proof of part  b) we use that  for an arbitrarily 
set of channel kernels {F(. I" I s)] s e S} the corresponding set of information 
functions {R (p, F(.  ]. ]s))]s e S) is totally bounded in the norm of uniform con- 
vergence. (This is a consequence of Hflfssatz 1 in [I], Chapter I, par. 4.) Hence, 
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we can find for given fl > 0 a family of sets {iS* IJ = 1 . . . . .  L(fl)} such tha t  for 

81, 82 C iS* 

supIR(p,F( .[ . l s t ) ) -  R(p,F(.1.t~2)) I g fl ( ] =  1 . . . . .  L(fl)). 
P 

I f  we redefine the jS, which we used in  the proof of Theorem 5, as follows : 

iS:  = jS* 

then,  the proof of pa r t  b) carries over to the semicont inuous ease. 

R e m a r k  2. The extension of Theorem 5 to the nons ta t iona ry  case seems to be 
difficult. I t  could be of in teres t  for the "arb i t ra r i ly  va ry ing  channe]"-problem [7]. 

The author wishes to thank Professor JAco~s for putting at his disposal an unpublished 
manuscript concerned with averaged channels. Furthermore, he wishes to acknowledge a 
helpful remark of Professor BaJSANSKL 
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