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Summary. Coding theorem and weak converse of the coding theorem are proved for
averaged semicontinuous stationary channels and for almost periodic discrete channels,
whose phases are statistically known. Explicit formulas for the capacities are given. The
strong converses of the coding theorems do not hold.

1. Introduction

Averaged channels were introduced by Jacoss [5]. In this class of channels he
found the first example of a channel for which the strong converse of the coding
theorem does not hold, but the coding theorem and the weak converse of the
coding theorem hold (unpublished). The proof uses STRASSEN’s version of
SuraNNoN’s method of random codes. The disadvantage of this method is that the
channel capacity cannot be computed. In [9] WoLFowITz gave simpler examples
of channels without strong capacity and he gave the reason for which the strong
converse of the coding theorem fails to hold, but he does not show if these channels
have a weak capacity. In 3. we give a simple example of a channel without strong
capacity, but with weak capacity. The proof of the coding theorem and its weak
converse uses classical results for simultaneous channels [8], [3]. The main idea
consists in a comparison of codes for an averaged channel with its corresponding
simultaneous channel. This leads to a method which is representative for the more
complicated proofs in par. 3-par. 6, where we deal with coding theorem and weak
converse for averaged channels under different assumptions on the time struc-
ture (stationary, almost periodie, nonstationary) and the output alphabet (finite,
nonfinite) of the channel. It is remarkable that we need the strong converse for
simultaneous channels for the proof of weak converses for averaged channels.
This demonstrates the importance of the concept of a strong converse — which is
due to WorLrowrrz [10], [8] — even to coding theorists who are only interested in
weak converses. The results can be formulated roughly as follows:

The weak capacity of the averaged discrete stationary channel equals the
strong capacity of the corresponding simultaneous channel (Theorem 2).
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The weak capacity of the averaged semicontinous stationary channel is in
general greater than the weak capacity of the corresponding simultaneous channel
(Theorem 3).

The weak capacity of an almost periodic discrete channel, whose phase is
statistically known, is greater than or equal to the strong capacity of the corre-
sponding simultaneous channel. Equality holds if each phase has positive pro-
bability (Corollary of Theorem 4).

In all these cases we average with respect to a discrete p. d. In par. 7 we prove
the coding theorem and the weak converse for stationary discrete averaged
channels, where the average is taken with respect to a general p. d. The proof is
based on the proof for Theorem 3 and several new ideas.

2. Definitions

Let Xt =X ={1,,a}tfort=1,2,.. and (X', &)= (X' ¥)fort=1,2,...
where X' is an arbitrary set and &' is a ¢-algebra of subsets in X’. Furthermore let
8 = {s,...} be a nonempty (index) — set and let Fi(-|1|s),..., Fi(-|a|s) be
probability distributions (p.d.) on (X, €%) (feN, seS). For each z,= (21,...,2%)

(3
- Xy =] [ Xt we define a p.d. on
f=1

n n Z

The sequence of kernels (Fy(-|-|s))n =1,2,... forms a semicontinuous
(in general nonstationary) channel without memory. [In case X't = X’ is finite,
the kernels Fé(-|-|s) are given by stochastic matrices wt(k|i|s) = F¢({k}|i|s)
(1€ X, ke X'). We speak then of a discrete channel without memory.] Thus we
have assigned to each s € S a semicontinuous channel. If we are interested in the
simultaneous behaviour of all these channels, then we call this indexed set of chan-
nels a simultaneous channel (semicontinuous, without memory). Common pro-
perties of the individual channels are assigned to the simultaneous channel: statio-
narity, almost periodicity, etc. as follows. The set {Fy(-||s)|s€8} designated
by 8., is called simultaneous channel 8, in the discrete time-interval (1, n}.

A code (n, N, A) for the simultaneous channel S, is a series of pairs

{(ua, A7) -+ (uy, Ax)},

where w; € Xy, Aje @, fori =1,..., N, 4;nA4; = 0 for i +j and Fy(4;|u;)s)
=1 —-20<i<l)fori=12,...,N, se8 (sometimes instead of the code
(n, N, 2) we speak of a A-code. N is the length of the code (n, N, ). N(n, ) is
the maximal length of a A-code in <1, ).

Let D, = (D1, ..., Dp> be a partition of X, in finitely many elements of
¢, and let 3, be the set of all such finite partitions. 5, is the set of all p.d. on
(Xn, ), where & is the g-algebra of all subsets of X,

Fn Di|zn
RonDna) =33 palae) FalDil ) log 5 i
yneX,

t=1,...,0 BneXn

€dn
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is the (channel)-rate for pn, Du, Fu(-]]s).
Kesten [6] has shown by proving the coding theorem and the weak converse that

Olzlim% sup sup inf R(pn, Dn, )

7->00  Pn€PRn DneBn se8

is the weak capacity of the stationary semicontinuous memoryless channel.

- dF(-| 21| s)
C =maxinf R(p!, F(-|-|s)) = maxinf > pl(z!) logW
pt sel I I Pt 6932 Xj:l Zpl(yl)dF( [ylls

(. , xll 8)
is the strong capacity of the stationary discrete memoryless simultaneous channel.
This was was proved by Worrowrrz [8). KEMPERMAN gave an example of a
semicontinuous simultaneous channel with C; < C (published in [6]). However,
C is the weak capacity of the averaged semicontinuous channel, defined by:
Pn(!xn) =zQan('l-%'nl<9)
ses
where ¢ is a p.d. on a countable index set S and (Fu(-|-|s)), n =1, ..., are
semicontinuous stationary simultaneous channels without memory {(Theorem 3).

3. A Channel without Strong Capacity

Given X = X’ =1,...,a) and the stochastic matrices w(-|-|1), w(-|-|2)
with a rows and columns. For s = 1, 2, we define the discrete memoryless channel
(d.m.c.) (Pu(|-[s))n=1,2,... by

n
Py(ay|an|s) =] [w(z't|at|s) forall wz,eXy, 7,€X, n=12,...
t=1

and the averaged channel (a.c.) (Pu(-]")) n=1,2,... by
Py | ) = % Pal, |2a| 1) + % (@neXn, e X, n=12,..)

Theorem 1 (Coding theorem and weak converse). Let
¢ = max mf R(p,w(-]+]s)

P s=1

= strong capaczty of the s.c. (Sp)n=1,2,...

For the maximal code length N (n, 1) of the a.c. (Pg)n = 1, ... the following estimates
kold:

a) Given 0 < A < 1, 8 > 0, then there exists an ng = ng (A, 8) such that
N(n, ) >0t jor n =ng.

b) Given & > O, then there exists a 4 and an ny = ny(A, 6) such that
Nn,A) <eCtOn for n=mng.

Proof of part a) A A-code for the simultaneous channel

= {Pnp(-|"]8)]s=1,2} isa A-codefor P,(-]-).

b) Choose 4 < 3. For a A-code {(us, 4;)|i = 1, ..., N} of P, we have

Po(di|u) =1—2, i=1,...,N
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and therefore
Pu(Ailus|) =21 —2A—1=1—-2>0 (s=1,2;i=1,...,N).

A A-code for P, is a A’-code for 8, if 1 < L.
By thestrong conversefor S, we have N(n, 1) < eCr+k() V7 wherek(1')is a
known function [10]. This proves b).

Remark 1. The strong econverse of the coding theorem gives, if it holds, an
estimate of the following type:
Given 0 < A <1, § > 0, then there exists an ny(A, 8) such that for # = ng

Nin, %) < e+

holds, where C is the maximal constant for which estimation a) holds. (For
nonstationary channels we have instead of €' a capacity function Cp.)

Choose w(-|-|s) such that (Py(-]'|1))n=1,2,... has capacity 0 and
(Pu(*]-]2)) » = 1,2, ... has capacity Cs > 0. Then a fortiori C = 0. A 1-code
for $ Py (+|+|2)is a A-code Py. Choose 1 > § and let Ny (n, 1) be the maximal code

length for P,(-|-|2). Thus we have N(n, 1) = N; (n, 1 _g l) > eCr—k AV for all

n. Thus the strong converse does not hold.

Remark 2. A weaker form of the strong converse can be introduced ; namely,
there exists an « > 0, such that for all A with 0 << 4 < «, 6 > 0 there exists an
ng (4, §) with the property:

Nn,1) <0+, g4 =ng.
For the channel we discussed above this estimate holds with « = }. However,
for the channels considered in 4 even this weaker estimate does not hold.
Remark 3. For several stationary channels (e.g. discrete channel without

memory, discrete channel with finite memory) lim % R(peo, Fy) exists for each

N-—>0Q

stationary p.d. pe on

oo o0 d f .
(Xoo, Qo) = (HXt,ﬂgz) and  Ostas, = sup Hm %R(pm,Fn}

t=1 t=1 Poo N—>00

turns out to be the (weak or strong) channel capacity C.

The proofs of the coding theorem work mostly with ergodic stationary p.d.
In the first step it is shown that the joint source-channel distribution is ergodic
under suitable conditions on the channel. Then MoMmLaN’s theorem gives that

the information function-i— I (Poo, Fy) converges to
lim % R (Poo, Fp) (L} or with probability one).
n—>oo

In the last step an application of FEINSTEIN’s maximal code theorem leads
to the coding theorem. The channel defined in 1) has the remarkable property
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that
. 1

*) C< max lim—R(pX - X p, Py

PXPK*er XP R>OC

independent

sources
1 def ! def
< max lim — R(pes; Bp) = Cerg. = max lim - B(poo, Ppn) = Cstat.
Poogrgodic N> Doagtat, >0

stat.

Therefore the usual method of proving a coding theorem is not applicable.
Some authors already speak of channel capacity if Cgat, exists — without
having proved the coding theorem and a converse. (*) shows that this is not
admissible. Let us now proof (*). It is known, that the mean entropy H of a
stationary p.d. on the product measure-space has the linearity property:

(**) Given a p.d. q1, ..., ¢x and stationary p.d. p1, ..., % on (X, ¥), then
b E
H<ZQipi>:ZQiH(Pi)-
im1 i=1

We now choose gy, = p X - X pforn=1,2,... and define
Pr(@a]8) = 2, Pu(@n) Palay|aals) s=12,..; 5,eX,

zneXn
f)n(x;lxn[s) = pu{%n) Pn(x;,[xngs) s=1,2,...; zpneXy; z,€X,
2

s==1]

I

NMie

D (@, Tn) = 2. % Pu(y, T s) -

s=1

From R(py, Pu) = H(ps) + H(p,) — H(p,) and the above definitions, we
conclude that

]

1 -~
lim - R(pa, Pa) =lim & > 2 [H (pa) + H(p () — H(pal]|5)]-

n—>00 n—>00 s=1

Using (**) and the independence we get

[H (p1) + H (p1(-] ) — H (p1(-]*| )]

DM
l\DI —

o
il
o

lim -:;R(pn, P,) =

n—> 00

f
Ml@
vo| —

@
]
et

R(pr,w(-]*]s))
and therefore

max lim %R(pn,Pn):max%R(p,w(-]-]Z)):%C’2>O.
Pa=PXPX -+ XP H—>00 I
In [4] Hu Guo Dine proved that the coding theorem and the weak converse hold
if and only if the channel is “information stable” (Def. given in [4]). Information
stability, however, is difficult to verify for our channel and it is even more difficult
to find a formula for the channel capacity by this method.

5 Z. Wahrseheinlichkeitstheorie verw, Geb., Bd. 11
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4. The Weak Capaeity of an Averaged Diserete Channel

Given a set of stochastic matrices

(@67 imalse8 = (12,00 ), X=X'= (L0 al)

and a p.d. ¢ on 8. We can assume without loss of generality that ¢; > 0 for all
s € 8. Otherwise we would take instead of S a subset 8’ with g, > 0, s’ € 8" and

Zq; =1.

s'eS’

We define the individual discrete channels by

n
Py(ay|#n|s) =] [w@?|at|s) 2,€X,, xncX,, se8, n=12,.;
i=1

the averaged discrete channel by

Pﬂ(x;zlxn) ZZQSPn(x;LIxnlS)
seS

and the simultanecus channel by
Sn={Pp(-|"|8)|se8} n=12,...
‘We need the following:

Lemma 1. If f, is a decreasing sequence of conlinuous, convex, nonnegative
functions defined on a simplex itn R®, then lim f,, = f is continuous and the convergence
s uniform. A—reo

Sketch of the proof. It is clear that the limit exists. f is convex and could have

discontinuities only on the extreme points, but this does not happen. From
Dint’s theorem we conclude uniform convergence.

Lemma 2. a) fi(p)= inf R(p, F(-|-|s)) converges uniformly in p to
=1,...k
inf R(p, F(-]-]s))
seS
b) lim Oy =limmax inf R(p, F(-|-|s))
k—o0 k—oco p s=1,..., k
= max inf R (p, F(-|-|s))
p seS ‘

Proof. The set of all p.d. on {1, ..., a} forms a simplex. R(p, F(-|+|s)) as a
function of p is continuous, convex and non-negative. fi(p) satisfies the hypo-
theses of Lemma 1. This gives us a) and as an easy consequence b) (cf. [8]).

We can now formulate:

Theorem 2 (Coding theorem and weak converse for the discrete averaged channel
(Pu)net.s,.) Let C = maxinf R(p, w(-|-|s)). Then the following estimates hold:
p seS

a) Given 0 << A << 1, 6 > 0, then there exists an no = no(A, d), such that
N(n,2) > €9 for n=mnyg.

b) Given § > 0, there exisis a A > 0 and an ny = no(2, 8), such that

N(n, 1) < e+ for n=mny.
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Proof. Part a). A A-code for the simultaneous channel 8, is a A-code for P,.
The statement follows from the coding theorem for simultaneous stationary
channels without memory [8].

Part b). Define

ey = z Qs » Ne = inf gx > 0.
x=k+1 x=1,..., k
(0) For the given 4 > 0 choose k such that |Cp — C| < §/2, then choose
A=ng/2 and 2= ex + k.

E
A J-code {(u;, 4;)|i =1, ..., N} for Py is a 1'-code for zqun(-[~[s), since
s=1

13
(1) > s Po(A;|ue] ) = Po(A;|w) — e 2 1 — (3o + ex) -
s=1
But
k
(2) 2 s Pu(Ai|ug|s) — gy Pu(Aj|ug|s) £ 1 —ep —mp for s'=1,...,k.
§=1

From (1) and (2) we have
@ Pu(A] |ui|s) =4 for s=1,....k i=1,..,N
and therefore
Pu(Ai|ui| 8) = $nx for s=1,...,k ¢=1,...,N.
Now we apply the sirong converse of the coding theorem for simultaneous discrete
channels without memory and conclude that
(3) Nn,2) <e"® 4 kng) /n foralln.
Statement b) follows from (0) and (3).
Remarks. 1. The proof uses essentially the strong converse for simultaneous

discrete channels without memory. Faxo’s Lemma would lead to the estimate

N(n, 1) < O Dm? byt lim O _ o,

k-—>00

2. From the proof of the theorem it follows that the weak capacity remains
unchanged if we average with respect to ¢*, where ¢* is equivalent to g¢.

5. The Weak Capacity of an Averaged Semicontinuous Channel

We return to the semicontinuous case as deseribed in § 2.

Theorem 3 (Coding theorem and weak converse for the semicontinuous averaged
channel (Pp)y~y,9,.. ). Let C = maxinf R(p, F(-|-|s)), then the following estimates
p ses

hold.:
a) Given 0 << A << 1, 8 > 0, then there exists an ng = no(2, 8), such that
N(n,2) > 0= for n=mny.
b) Given § > 0, there exists a 4 > 0 and an ng = ng (2, 8), such that
N(n, ) < Ctom for n =ny.
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Proof. a) Given 0 << 4 <1, § > 0. Choose k such that &z << 1 and define
i
Api= 1-2,’? < 1. A Ag-code for 1Sy = {Pn(-|-|s)|s=1,...,k} is a A-code for

P,. The coding theorem for ;S,, gives
eCun—k() Yn < Ng(n, Ax) < N (n, A)

and therefore N (n, 1) > ¢*¢~9 for n sufficiently large.
b) If we use Lemma 2 and the strong converse of the coding theorem for ;S,,
the proof of Theorem 2b) carries over verbatim.

Remark. An example of KEMPERMAN (published in [6]) shows that there are
semicontinuous channels with ¢ > (1. C is the (weak) capacity of (Sx),—12,. ;
O is the weak capacity of (Py),_1 o, .. Therefore we can give the intuitive inter-
pretation: The statistical knowledge of the individual channels which govern the
transmission increases the weak capacity.

6. Nonstationary Averaged Channels

Given stochastic a X a-matrices wt(-|-|s), se 8, t =1,2,..., we define the
nonstationary simultaneous channel (cf. [1])

(Suhn=to....= {Pu(-]| )| Pu@y |20l )

n
=] Jwt@?|at|s), zn e Xn, 2, X858} n=1,2,....
=1

Let g = (g1, g2, -..) be a discrete p.d. on the countable set S and ¢g; > 0 for all

sef.
Define

Cr(n) =max inf R(ps, Pu(:|-|s)) and C(n)= inf Ck(n).
k E=1,2,...

Theorem 4. If for the nonstationary averaged chamnel (Pp) n=1,2,... the
condition: (1) For each 81 > 0 there exists a k and an ny (01, k) such that

|Cn) — Cx(n)| <d1m for n=n1(d1,k)
holds, then we have the estimates
a) Given 0 << 2 << 1, 6 > 0, then there exists an ng = no (4, 6), such that
N(n, 1) > ™9 for n =ng.
b) Given 8 > 0, then there exists a A > 0 and an ng = ng (4, 8), such that
Nn, 1) < f@+en fop 5 =ny
(cf. [1] Einleitung).
Proof. a) Given 0 << 1 <1, 6 > 0, choose k such that 1;:= e < 1.

A Jg-code for xSp = {P,(-|*|s)|s =1,...,k} is a A-code for P,. The coding
theorem for S, gives

el =0 < Ny (m, Ag) < N(n, A} for =

sufficiently large (Satz 2 in [1], Chapter 11I).
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b) Using (1) and the strong converse of the coding theorem for S, (Satz 3 in
{1], Chapter III) the proof of Theorem 2b) carries over verbatim.

Example. Almost periodic discrete averaged channels. Let (w?(: *))s=1, 2,...
be an almost periodic sequence of stochastic matrices (cf. [1], Chapter IT), then
we can define the simultaneous almost periodic channel

(Sa)n=1,2,... = {Pn(llé‘)lpn(x;lxn[ 8)
n
=[Jwtts@'t|at), zne Xy, 0, e X,,5=0,1,...} n=12,...
=1

and the averaged almost periodic channel
(Pn("))n=1,2,...:(Z%Pn('{'[s)> n=12,....
§=0

From Theorem 4 we conclude the

Corollary. For the almost periodic averaged channel (Pp)p-1,2,... the coding
theorem and the weak converse hold with
C’:lim—rl; max inf  R(pn|Pn(]|]s) =lim %Cn.
f—>00  (pl...,p"M)=pr 8=0,1,... N—> 00
Proof. We have to show that (1) is satisfied. But this follows from the almost

periodicity and the normcontinuity of B (p, w)in w as is shown in [1], Chapter 1T,
p- 2. The Bedingung 1, there is exactly the same as (1). It follows from the defini-

. . 1
tion of C, that % C, is monotone nondecreasing and w Cn =log a; hence,

lim % Cy = C. The capacity function is constant.

>0

Remarks. 1. € can be greater than

max inf R(p,wi( ).

p t=12,...
Example. Choose two stochastic matrices w(-|-|1), w(-|-|2) with
R(p,w(-|-|1)=0=0C1 and max R(p,w(-|-|2)=Cz>0.
p
Define

y for s=1,2,....

Then (wt(- *))i=1, 2, ... is a periodic sequence of stochastic matrices. The correspond-
ing simultaneous periodic channel (8,)4—12,... has the capacity

C=131Cs>max inf R(p, wt(-))=0.
p {=12,...

2. The corollary says: if we know the phase of an almost periodic channel
statistically and each phase has positive probability, then the (weak) capacity
of this channel equals the (strong) capacity for (Sy)p-1,9,...

[Coding theorem and strong converse for (8,)u-1,9,... were proved in [11.]
The statistical knowledge of the phase increases the maximal code length in such
a way that instead of the strong converse only a weak converse holds.
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If g, is not positive for all s, then the capacity of the averaged channel can of
course be greater than C.

Example. Choose w (- |-|1), w(-|+|2) such that
R(p,w(-|-|1) and R(p,w(-|-]|2))
have their maximum for different arguments p;, p2 and
R(p1,w(-|*|1)) > R(p1, w(| |2
R(pa,w(-|+|2)) > R(ps,w(-|:|1)

For q; = 1 the averaged channel is the periodic channel (w!(- -));=1, 2, ... and has
a capacity greater than the capacity of the corresponding simultaneous channel.

7. Averages of Channels with Respeet to General Probability Distributions

Until now we considered averages with discrete probability distributions.
What happens, if we take averages with respect to nondiscrete p.d., for instance,
the Lebesguemeasure on [0, 1] ¢

I. Let us look at a discrete averaged stationary channel with 8§ = [0, 1],

g = Lebesguemeasure on S.
Define

= [ Pu(c|"]5) q(ds)

[0,1]

Of course, w(i]j|s) has to be measurable in s for 4,7 = 1, ... a. In this case our
method from 4. is not applicable as can be seen by the following example:

w(i|jls) =1 i=1,...,a, se(0,1]

wi@|j|0)=1/a i,j=1,...,a.
Then (Py)u-1,2,... has strong capacity loga, because N (n, 1) = €™°8%; but
(Su)u=1,2,... has capacity 0, because w(|-|0) has capacity 0. We have to give
another approach.

II. Let (8, €, g) be a normed measure space, 8 is index-set as usual. Divide
[0, 1] in disjoint intervals of length 8. s; and sy are f-equivalent, if w(i|j]|s1)
and w(i|j|ss) are in the same interval for all ¢, j = 1, ..., a. This equivalence
relation leads to a partition of § in at most (1/8)* measurable sets

S{l=1,...,L(f) = (1/8)*)
and therefore to a partition of S, in the sets

lSn:{Pn(l]S)ISElS}’ l:l,,L(‘B)

For 0 < o < 1 define

(1) C(a, B)=max  sup inf  R(p,w(||s)
P laiees e =L(p) &
k se VuS

g U 8)21-a i=1
i=1

Instead of maxsup we can write maxmax, because we vary over a finite set of
index-constellations.
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Furthermore we define

C'(a) = max sup inf R(p,w(-|-]s)) and C=infC(x).
p {8']8cS,q(8)=21—a} se8” >0

It follows from the definitions that

(2) Ofo, ) = C(a) forall §.
Theorem 5. For the general stationary discrete avemged channel
(Pal | Mamsn = ([ Pal] |9 2(09)
n=1,2,...
the following estimates hold with C = infC(a)
>0

a) Given 0 << A < 1, § > 0, then there exisis an no(A, 8) such that:
N(n, 1) > e~ for n =mnp.

b) Given & > 0, then there exists a 4 > 0 and an ng = ng (A, 8), such that:
N(n,2) < et for n=mny.

Proof. a) Given 1, d > 0, choose o << A and 8’ such that ¢(8') =1 — « and

max inf R(p,w(-|-|s)) —C(a)| < 6/2.
» se8’
Define 1’ = i:z . A J-code for S, is a A-code for P,, because (1 — ') (1 — )
=1—(1—a)d —a=1— 4. Hence

N@#,A)=NMm 1) = dC@—@2n—EK@) [n > C—~0n

for n sufficiently large.
b) First of all choose o such that |C(x) — C| < /2. Let (S-S be a

%
family of sets such that the maximum is attained in (1), then ¢ (U ziS) has to be

greater than 1 — a. We define I — e(a, §) = q(;,S U --- U .8).
e(x, B) is by definition smaller or equal than «. Define now

n(x, f) = mf q(z,S)>0

and choose

7{e, B)
=0

Then a A-code for P, is a A’-code for
J Pal]-]s)g(ds)
LSS
since
(2) [ Paldilwls) = Pu(4i|w) — e(@. f) 21 — (37 B) + e, B).
llsU"'UlkS

But from (2) and the definitions given above, it follows that
3) [ PalAiu]s)q(ds) — [ Pu(d|ui|s)q(ds)

1SV VS ljS

Sl —efo, f)—nl,py for ¢=1,...,N;j=1,...,k.
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From (2), (3) we have
(4) [ Pn(Ai|us|s)g(ds) Z 4, f) for j=1,... k;i=1, ., N.
S

We need the trivial

Combinatorial Lemma. Let B;, i =1,..., I be measurable sets with q(B;)
=y>0@=1,...,I). If we define m as the maximal number of sets B; with a
common element, then the estimate m = y 1 holds.

Denote by Dj; the set
{s] Pu(djlus|s) = In(e, B), 56,8} (=1,....N;i=1,..,k).
It follows from (4) that
gDp)=in@pB) G=1,...N;i=1,...,k).

The sets Diy, Do1, ..., Dy satisfy the hypothesis of the Lemma. Hence, there
exists an element s; €,8 which is contained in at least }#(x, ).V of these sets.
That means there exists a subcode of length $%(x, §)N of the code

{ul, IZ-——]. .N}
such that o,
Pn(Ai1|?Z,~l|sl)gin(a,/3) for 41=1,..., (5 B)N].

Apply now the same arguments to Djz, ..., Dyz. Thus we find a subcode of our
subeode which is now a simunltaneous code for Py (-|-]s1) and Py, (-|-|sz) of length
greater than 1#(x, f) - % («, f) - N.Proceeding in the same way we have after
k< LB steps a subcode of length N* greater than (17(x, 8))X®. N with

Pu(A¥|uf|s) Z (0 f), j=1....N*i=1,. k.

From the strong converse of the coding theorem for simultaneous channels and
the normcontinuity of R(p, w) in w uniformly in p we conclude:

N (7 )" < N* < expO(x, f)n + f(f)n + K(n)|/n  where limf(f)=
Using (2) we have .
N(n, ) < expCa)n + f(B)n + K () -+ L(B)log 1w, B)-
Choose now f such that f(8) < §/4 and use |CU(x) — C| < /2. Then we have
N(n, ) < e+ for n sufficiently large. That proves b).
Remark 1. Theorem 5 can be extended to the semicontinuous case, if

C(x) =max  sup inf R(p,F(-|-]s))
p {§g(8)=1~a} seS’
— tim 1 max sup sup inf R(pn,Dn, Pul(-]-]s))
n—sco " pa (§]e(8V21-0) Dn 68
for all « > 0. Part a) follows then from the coding theorem for simultaneous
semicontinuous channels [6]. For the proof of part b) we use that for an arbitrarily
set of channel kernels {F(-|-|s)|se S} the corresponding set of information
functions {E(p, F(-|-]s))|s € 8} is totally bounded in the norm of uniform con-
vergence. {This is a consequence of Hilfssatz 1 in [1], Chapter I, par. 4.) Hence,
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we can find for given # > 0 a family of sets {;8*|j =1, ..., L(f)} such that for
81,82 € jS*

sup|{ R{p, F(-|-[s1)) — R(p, F(-|-[s2))| £ (G=1,...,L(B).
?

If we redefine the ;8, which we used in the proof of Theorem 5, as follows:
jS L= jS *
then, the proof of part b) carries over to the semicontinuous case.

Remark 2. The extension of Theorem 5 to the nonstationary case seems to be
difficult. 1t could be of interest for the “arbitrarily varying channel”-problem [7].

The author wishes to thank Professor Jacoss for putting at his disposal an unpublished
manuscript concerned with averaged channels. Furthermore, he wishes to acknowledge a
helpful remark of Professor BaJsaNsKI.
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