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By 
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1. Introduction and statement of the results 

Let G, s denote an undirected graph (without loops and multiple edges) with 
n vertices and N edges. P(C~) shall count the number of pairs of different edges 
which have a common vertex and finally f(n,  N) is defined by 

(1.1) f(n, N) = max p(GN,), 

where the maximum is taken over all possible graphs G~. 
In information theory the problem came up to determine f (n,  N) for certain 

hypergraphs. We give here a solution for graphs and for bipartite graphs. As Vera 
T. S6s kindly informed us, this problem has been solved by Most-m KATZ [1] for 
"nice" N's. 

In order to state our results we need the concepts of a quasi-complete graph 
and of a quasi-star. Suppose the vertices of the graph are denoted by 1, 2 . . . . .  n. 
We define the quasi-complete graph C~ with N edges in the following way: i and 
j are connected for i, j<-a (i#j) and a +  1 is connected with 1, 2 . . . . .  b, where 
a and b are determined by the unique representation 

(a) (1.2) N =  2 +b, O~-b<a.  

A quasi-star S~ with N edges is defined as follows: use the unique representation 

and connect the first n - c - 1  vertices with every other, connect the vertex n - c  
with the first n -  d vertices. 

It is easy to see that S (~)-N~ is the complement graph of C~ if we change 
the order of the vertices. We use the abbreviations 

(NIl S(n, N )=  p(S,).  (1.4) C(n, N) = p n ,' 

Let G~,m denote an aritrary bipartite graph with N edges and l+m vertices, where 
I vertices are coloured red and m pink. 

1 Research of this author  was supported by the Deutsche Forschungsgemeiaschaft. 
This work was done while the author  visited the Institute of Mathematical  Statistics, Universi- 
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98 R. AHLSWEDE AND G. O. H. KATONA 

THEOREM l. Suppose 1 <=m, N=qm + r, O~_r <m. Then maxp (G~,,) is assumed 
for the graph in which q red vertices are all connected with all the pink ones and one 
more red vertex is connected with r pink ones. 

THEOREM 2. f (n, N)=max [C(n, N), S(n, N)]. 

THEOREM 3. 

S(n ,N)  if 0 ~ N < - ~  2 

f ( n , N )  [C(n ,N)  i f  -~ + - ~ <  N~- . 

Moreover, there are infinitely many n's for which f (n,  N ) =  S(n, N) for all 

N < ~ I  n2 and f(n; N)=C(n, N) for all N > ~  . o n  the other hand there are 

infinitely many n's for which this is n0ttrue.  (For further details see Lemma 8.) 
We give two different proofs of Theorem 2. The first is more elegant and is 

based on Theorem 1. 
The second proof is more elaborate, however, it uses techniques which we 

also use in the proof of Theorem 3, and it is worthwhile knowing that both Theorems 
can be proved by the same approach. The first proof might be more suited for 
generalizations of Theorem 2. 

2. Proof of Theorem 1 

The present proof and also the first proof of Theorem 2 are formulated in 
terms of vertex-vertex incidence matrices. 

F, or the bipartite graph G~, ,, with l red and m pink vertices and with N edges 
the matrix J(G~ m) is defined by 

J(G~m) = ra ~i=1 ..... t \ f j Y j = l , . . . , m  

where 
[1 if the i-th red andj- th pink vertices are connected in GiNm 

(2.1) aij = i0 otherwise. 

If J~,, is an l •  0--1-matrix with N l's q(JiN~) denotes 

l m 

Z Z 
i = 1  i=1 

where r 1, ..., rt and, sl, ...,sin are the numbers of l 's in the rows and columns, 
respectively. Since 
(2.2) q (J(G~ m)) = 2p (G~ m) + 2N, 

for our purposes it suffices to maximize the quadratic form q(J~N,m). We need 

LEMMA 1. max q(Jz~,,~) is assumed for a matrix with the property: if ai i=l  and 
i'~= i, j'<=j, then ai, j ,=l .  
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PROOF. Suppose j~,N maximizes and its rows and co lumns  are ordered such 
that  r~>=r2>=...>-_r~ and sa>=S2>-_...>=sm. Suppose that there are entries a~ j= l ,  
a u, = 0  for j ' < j  (or ai,j=O for i'-<i). By exchanging this 1 and 0, q(jiN, m) changes by 

- ~} + % -  1)~ + (s~, + 1) ~ -  s} = 2 + 2 ( s f -  s j) > 0 ,  

a contradiction and the lemma is proved.  

PROOF OF THEOREM 1. We prove it by induction on n = l + m .  I f  / + m = 2  
the statement is trivial. Suppose that / + m > 2  and also that j~Nm has the properties 
described in Lemma 1. We can also assume that q>=s~, because otherwise we 
can exchange the role of  rows and columns without changing the total number  
of  rows and columns, because r~<sl>m,  and we can h a v e  l ' s  only in the first 
r 2 columns. (We write 0's in the undefined places.) 

Notice that we have now I 's  only in t h e  submatrix J* determined by the first 
q columns and first s~ rows, and by Lemma 1 the first row of this submatrix con- 
tains only l 's .  Denoting by J~-_p,,~ the ( s t -1 )Xr~-mat r ix ,  which is derived form 
aT* by omitting its first row, we can establish the recursion f o r m u l a  

l r l  Sl 

(2.3) q( ] , ,~ )  = s,~+ X r~ = X s~+ X r~-~ - 
i = 1  i = 1  i = 1  i = 1  

" ( s i - - 1 ) 2 + X r / ~  + ~ ( 2 s i - - 1 ) + r ~  N-,,  = = a ( . E ) . g - 2 N - g  2 . _ .  ,_ ,~_l,r,, ____. - - r l _  r,. 
i = 2  i = 1  

This means that if we want to maximize q(jtN, m ) with fixed rl and c a then we h a v e  
to maximize N-r1 q(Jsl-l,  rl). Here s l - 1  + q < l + m  and we can use the induction hy- 

N - r  I pothesis. Since c1-1-<q, max q(]~1_1,,1) is assumed for a matrix in which the 
first u - I  rows are full with l 's  and in the u-th row the first r entries are 
l 's;  where 
(2.4) N - r l = ( u - 1 ) r l + v ,  O < - v < r l .  

All the other entries are O's. 
We have thus proved that it is sufficient to consider the matrices j t N  w h i c h  

have l ' s  in the first rl places of  the first u rows and in the first v places in the 
(u+ l ) - t h  row, where u<=q<=m and N=ur~+v,  0<=v<ra. Denote these matrices 
by J(N, ra). We have only to prove that 

(2.5) q(J(N,  r~+ 1)) _-> q(S(N,  rl) ). 
For  this we use the equation 

(2.6) q(J(N,  rl)) = u~+v2+v(u+ 1)2+(r~--v)u ~. 

We distinguish two cases: 

1. Case v>=u. Then 

N = U ( r l + l ) + v - u ,  0 <= v - u  < r  
and by (2.6) 

(2.7) q( j (N ,  r l+ 1)) = u(r l+ 1 ) 2 + ( v - u ) 2 + ( v - u ) ( u +  1 ) 2 + ( r a - v + u +  1)u 2. 
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An elementary calculation yields 

q(J(N, r~ + 1 ) ) - q ( J ( N ,  rO) = 2rlu-2vu.  

Since r~>v this proves (2.5) in the first case. 

2. Case v <u. Then N = ( u -  1)(rl+ 1) + ( v - u + r l +  1), where O~_v-u+r 1 + 1 <  
< r l + l  follows from u<=r~ and v<u. W e c a n  again use (2.6) and get 

(2.8) q(J(N, rl+l))  =(u- -1 ) ( r~+l )Z+(v- -u+r l+l )~+(v-u+r l+l )u2+ 

+ (u -- v) (u -- 1) 3. 

Again by an elementary calculation 

q(J(N, r~+ 1) ) -  q(J(N, rl)) = 2r~v-Zuv, 

which is non-negative because r~>=u. We thus have proved (2.5) in both cases 
and q(d(N, rl) ) is maximal if we choose r~=m. The Theorem is proved. 

3. First proof of Theorem 2 

Denote the vertex-vertex incidence matrix of  G. N by 

where 

a i j  = 

I(GN) = r. ~=1 ....... k~ i j I~=l , . . . , n  , 

{10 if i and J are c~ otherwise. 

The n• I(GN.) is symmetric, has 2N l 's and O's in the diagonal. Also every 
0 -1-mat r ix  I. N is the incidence matrix of  a graph G. N. Define 

(3.1) Q(I~) = ~ c~, 
i=1 

where ei counts the number of l 's in the i-th row or i-th column. Clearly, 

(3.2) Q (I(GN,)) = 2p (I(GN,)) + 2N 

and it suffices to maximize the expression in (3.1). Again we need an auxiliary 
result 

LEMMA 2. max Q(Iff) is assumed for a matrix with the property: i f  a~j=l  and 
i'<-i, j '<=j , i ' ~ j ' ,  then arj,=l.  

PROOF. Let the rows and columns of an optimal Iff be numbered by 1, 2 . . . . .  n 
such that el->%->...->e,. Now suppose that ai~=l,  i<j, but ai,j=O for i '<i.  
By exchanging this 1 and 0 (also symmetrically the corresponding term) we get 

c~=ci ,+l ,  c*=ci--1,  c*=ct  for t # i ' , i ,  
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and 

c *~- ~ c~ = 2c~-2c,+ 2 > O, 
t=l t=l 

because c~_c i. This contradiction proves the lemma. 
We begin now the proof of Theorem 2. Suppose f f  has the form described 

in Lemma 2. Denote the largest index i satisfying ai ,~_l=l by w=w(I.N). Then 

Jaw+l,w = aw, w+l = 0 ,  aij = 0, for w + l  <= i,j. 
(3.3) 

ta~ = 1 for 1 =< i, j --< w with i # j.  

In the class of matrices I.  N maximizing Q(I,N), let the minimal and maximal value 
of w(l~) be denoted by wa and w2, respectively. We distinguish two cases: 

n 
1. Case w2~=-~. Cut the matrix I ~ ,  with w2=w(I.N), after the w2-th row 

and w2-th column. It is separated now into four submatrices A, B, C and D. Here 
A is a w2• matrix with O's only in the diagonal. B and C are w2• and 
(n-w2)• matrices (symmetrical images of each other), respectively, D is a 
0-matrix. 

Consider the expression 

(3.4) Q(IN) = c~= ~ (c,_(we_l)),.+2 z~ c,(w2_l)_ z~ (w2_l)2 + c~ = 
i = j  i = l  i = 1  i = 1  i=wl--I* 1 

w 2 

= z~ (c , - (w2-1) )  2 + ~ c~+2N(w2-1)-2w2(w2-- 1) 2. 
i = 1  / = w 2 + l  

B and C are incidence matrices of bipartite graphs and 

W 2 

(3.5) q(B) = q(C) = z~ (c , - (w2-1))2+ ,~  c~. 
i = 1  / = w 2 + l  

To maximize Q(I. N) for fixed w2 means therefore simply to maximize q(B). Since 
w2>=n-w2 it follows from Theorem 1 that the first column of  B contains as many 
l 's  as the number of  l 's  in B permits. This leads to a contradiction if the first 
column is full, because a~,~,~+a=l contradicts the definition of w~. It follows 
that B contains l 's only in the first column and that this number is smaller than w2. 

C is symmetrical to B. The matrix 1, N, which consists of A, B, C and D is the 
incidence matrix of a quasi-complete graph. 

n n 
2. Case w2<-~. In this case also wl-< ~ .  Cut now the matrix 1~ with 

wa=w(IN.) after the first w~-1 rows and w~-1 columns. We obtain four matrices: 
A, B, C and D. A is a ( w ~ - l ) •  matrix with O's only in the diagonal. B is 
a (wx-1)• matrix, C is the symmetrical image of B. D is a 0-matrix 
since aw~,,~x+l=0. We can use (3.4) with wa-1  instead of w~. Then Q(I. N) can be 
maximized by maximizing q(B). Since Wl--l<n-wa+l by Theorem 1, q(B) 
is maximal if we ~hoose B full with l 's  in the first rows. However, by definition of  
w~, a,~x_a,,~=l , that is, the first element of  the last row of B is 1. It follows that 
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the first W l - 2  rows of B are full with l's, because otherwise we could find a ,B  
(and 17) which maximizes Q(I. u) and h a s  w(I.U)<wl ~, 

Thus we have found an optima[ matrix which has l ' s  in the first w l - 2  rows 
and columns everywhere except the diagonal, furthermore it has l 's at the beginn- 
ing of  the ( w l -  1)-th row and column. The other entries are 0. This is the incidence 
matrix of  a quasi-star graph. Case 1 and 2 yield 

f(n, N) = max (C(n, N), s(n, N))I 

Notice that the proof  gives also an interesting property of S(n, N): 

(3,6) S(n+I ,N)~S{n ,N)  i f  n=>4,  and N<_- 2 " 

~N, n + l  
To see this it suffices to check that w(~,~ ) < T "  Suppose the contrary, then 

2N>= w(w-1)+ 2(n+ l -w)(w-2)  =-w~+(2n+5)w-4(n+l) >= 

( n+  1) (3n-7)  n ( n .  !) 
4 2 " 

This contradiction for n_->4 establishes (3.6). 

4. Comparison of  C(n, N) and S(n, N),  the proof of  Theorem 3 

At the first moment one might think that it should be easy tO compare C(n, N) 
and S(n, N) for given n and N. However, the functions are given only in an implic!t 

way by number-theoretical-combinatorial expressions. Also around N :  -~ In / 2 

they are very close to each other. Of course it is quite easy to make the comparison 

if N < < l ( 2 ) o r  N > > l ( 2 ) ,  but we would like to consider values of N around: 

2- 2 as well, We  shall need several lemmas, which we now state and prove. 

LEMMA 3. 

PROOF. Since the quasi-star with N edges a n d  the quasi-complete graph with 

n N ( 2 ) -  edges are complementary to each other ( i f  we change the order of  the 

vertices ), it suffices to prove the statements for any pair of complementary graph~. 

If  We denote by cl, c n the valencies of  the first graph, then ,~  ci =2N,  ~" (ci) 
' ""' ~=1 i=~:'l k21 
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is the number ofadjacencies and ~ / n - 2 / - 1 )  is the corresponding number 
i = l  

for the complement graph. Now 

c, ,) 
i=1 2 = -2 i=1 (n--ci - -1)(n--ci - -2)  = 

= --~=ln ~ -  ,~nc i - - -~  n + 2  Z c ~ +  1+~- (c~-cO = 
i = l  i=1 i=1 i=1 "= 

(;,) (n n 3 3 ~?(ci] ~ +n  2 + 4 N - 2 n N .  = - - 2 - 2 N n - ' 2 n " + 4 N + n + i ~ = l  !,2) = i=l 

b) follows easily from a). 
After we know now that one of the functions can be expressed in terms of 

the other one, we express now C(n, N)  as partial sum of an infinite sequence. Define 
flij by 
(4.1) flij = i+j ,  0 <-j <= i. 

The k-th element of the sequence flo0, fla0, fl~0, fl21, fi~,~ . . . .  is denoted by ~k- 
N 

LEMMA 4. C(n, N ) =  ~ ~k. 
k = l  

PROOF. We proceed by induction on N. The statement clearly holds for N =  1. 
Use the expansion 

It is easy to see that eN=fl._l,b_l. Recall that the quasi-complete graph with 
N edges is composed out of a complete graph of a vertices and an additional 
(a+ 1)-st vertex, which is connected with the first b vertices. 

Suppose that b + l < a ,  then the quasi-complete graph with N + l = [ ~ / + b + l  

O = b + l < a )  has one more edge from the (a+l)-st  vertex. The number of new 
adjacencies is a - 1  +b. This is, indeed, equal to the new term aN+l=fl._l,b . If 

�9 ( ; /  b + l = a ,  then the quasi-complete graph with N + I =  a ~1 edges is simply a 

complete graph with a + l  vertices. The number of new adjacencies is 2 a - 2 =  
=~.-1, .-~ which again equals, eN+l- The proof is complete. 

LEMMA 5. a) C(n, N)<--S(n, N)  is equivalent to 

N 

(4.1) k=l~' (~xk + ~(~)-k+l) <= N(2n-- 4). 

C C ~ l  n b) if C(n, N)<-S(n,  N)  
for  n + l ,  N. 

it is also true 
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PROOF. By Lemma 3a), C(n,N)<=S(n,N) is equivalent to 

(4.2) C ( n , N ) + n ( n 2 1 ) - C { n , ( ~ ) - N I  
Since 

(4.3) ~ X flij= n 
i = 1  j = 0  

we get from Lemma 4 

and that (4.1) is equivalent to 

N 

=< N(2n-4) 

/n,,, 
n--2 i ~2] - N  U 

= Z Z f l i j - -  Z gk  = Z O~(~)- -k+l  
i = 1  j = O  k = l  k = l  

(4.4) ~ '  (~k + ~(~)_k+a) <- N(2n -- 4). 
k = l  

Obviously b) follows from (3.6) and the fact that C(n+l ,  N)=C(n, N) for 

We give now a proof which uses only results of the present section. It is far 
more complicated than the above argument, but it also shows how the new tech- 
niques work, which we need later anyhow. 

It is clear from a) that it suffices to prove the inequality 

or equivalently that 

N 

z~ (=k + ~(.+1)_1,+1) <= N(2n-2 )  
k = l  

N 

k__~a( --~ ) '~ 2N. (4.5) ~ ( " ' ~ l ) - - k + l  ( g ) - - k + l  ~--- 

We prove it first for some special N's. Suppose 

({x} is the smallest integer ->x). Then 

N n--2  i 

k = 1 k~] - 
= Z ~ , j -  Z 13,j:  ~ - I  , 

i : 0  j = 0  i = 0  j = 0  

and 

N n--1 i 1 n--1 i l i I 

Z ~,.+~ ~+1 = Z Z ~ , j +  Z B~,j= Z Z ~,j- Z Z/~,~+ Z &j = 
k = l  ~ 2 2-- i ~ l §  j = n - - I  i = 0  j = O  i=Oj=O j = n - - 1 .  
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Therefore the left hand side of (4.5) is 

which equals 

We proved that in the case 

N = ( 2 ) - ( ~  ) ({n-~l} ~ / ~ n }  

exact equality holds in (4.5). 
We shall now verify that the difference of the sides (right-left) of (4.5) is an 

increasing function of N in the interval 

I ] ('In I (n-~l)_(l~l) ,[ 
and it is decreasing in 

(4.7) (n+211--(1+21)<=(~1--(l--211. 
In the last interval (4.6) the last terms of the left hand side of (4.5) are 

and 

g (~ ) - -N+ l :  fll--2,l--l--N+(~)--(12) (i l l- i ,0 if  i = {21-- ( /1 )  . 

Thus for N +  1, the new terms are 

fll,(~+1)_(l-~1)_N_ I and fli-2,1-2-N+(~)-(~)" 
Their difference is 

l + ( n + l ~  (I+1~ n l 
J - - (  2 J-N-I-I+2-1+2+N-(2)+(2)=n-21+3" 

The right hand side of (4.5) is increased by 2, so the change of the difference of 

the sides is 21-n- 1, which is non-negative by the supposition {-~--}<-1. Similarly 

if we are in the interval (4.7), the last terms in (4.5) are 

and 

~(~)-~+1 =/~l-~o---N+(~)-(~)" 
Thus going to N +  I, the new terms are 

fll__l,l__N+(tl~l)__(l~l)+l and fll-2,,-N+([)-(~)" 
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Their difference is 

l - l  + l - N + ( n + l ) - ( l +  l)+ l . / + 2 - / +  N-{~}+{~} = n-l§  

The change of the difference of the sides of (4.5) is l-n, non-positive because of 
l<=n. This proves the statement of our lemma, if 

n + l  

{{T } } 
but we need it for N<-~  . However 

n + l  

T 2 <=l (n}  ( 2 ) - [ { T  }] 

n+2 ]  

holds, when 0 ~ -  2 - ' 

0 = < 2n2-2n-n2-2n = n2-4n, 
that is 

which iSparticulartrUe for n_->4.we The lemma iSc(n,N)<=S(n, N ) p r ~  2 (2} 
In know that if holds for N <-1 n 

2 '  
then it is also true for n+  1. However, in order to prove Theorem 3 by induction 

l ( n + l )  n + l  Alsoinsome on n we have to prove the inequality for N ~  ~ 2 - T "  
1 ( n + l )  

cases it is true up to ~-I, 2 and we want to consider those cases as well. Th!s 

is done in 3 more lemmas. The last one, Lemma 8, gives the complete solution. 
Instead of C(n, N)<-S(n, N) we shall use a further modified version of (4.1). 

Since 
(~) 

k = l  

the left hand side of (4.1) is equal to 
(~)-N 

n ( n 2 1 1 -  Z ak" 
k = N + l  

Introducing the notation F - - I ( 2 ) - N  we obtain from (4.1) necessarily 

1 tl 

(4.8) ~ ~k ~ r(2n--4), 
1 [n~, r - - I  

where r is not necessarily an integer, but there are always 2r terms on the left 
hand side. 
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One more form of (4.8) is 

(4.9) ~ '  ~k~ => 2n--4. 
/. 

Let e und f be defined by 

1{2} { f t  (4.10) -~- = §  

(It is easy to see t h a t  th is  i s  unique). 

-<7  (0 = f  e). 

e 
LEMMA 6. Suppose f < - ~  (in (4.10))/f 2e+2f>=2n, 1. Then C(n, N)<-S(n, N) 

e 
PROOF. Case A: f > ~ + l .  We want to prove (4.8). The sequence of numbers, 

we are investigating (when f is an integer) is (starting from left to right and from 
the middle going backward in the next row). 

f i e - 2  . . . . .  2 f - 5 ,  2 f - 4  . . . . .  2e-41 e - l ,  ..., e + f - 2  
(4.11) *_/2f_2~,~.__~,e+l 12e, . . . . .  . 2f,, 2 f - l ,  ; . . . . .  ,el 2e--2, .~e+f-l ._~ , 

- -e+2f- -2  2 e - - 2 f + l  2f--e  e - - f  

I f f  is not an integer, the only difference is, that  On the right hand side one number, 

e + f - 2 stands instead of e § f - 2 and e + f - 1 .  

Observe that in one interval in table (4.11) the sum of the numbers standing 
under each other is constant. The sums are 

(4.12) e+2f - -4 ,  ..:, 2 e+2 f - -4  . . . .  , e+2f - -2 ,  ..., 2 e §  . . . .  

-e+~i-~ ~e-2i+l -e+21 elf  

l [ n } - N < = e - f  Using (4.8)we have Subcase 1: Prove the statement for r = - ~  2 
~ J 

to prove that the sum of the last 2r terms in (4.11) is not smaller than r (2n-4) .  
The sum of  the last 2r terms of (4.11) is exactly the sum of  the last r terms in (4.12). 
Since r<=e-f, they are constant. It is enough to prove that 

(4.13) 2 e + 2 f - 3  _-> 2 n - 4 .  
Later we need the inequality 
(4.14) 2e+2f - -4  _-> 2 n - 4  

as well, thus we make the calculations here together. From the definition (4.10) 
of e and f we have 
(4.15) n ( n -  1) = 2e~-2e+4f. 

Suppose, the converse of (4.13) ((4.14)) is true: 

n > e + f + ~  (n > e+f) .  
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Substituting into (4.15) we obtain 

1 1 2e2--2e+4f>(e+f+-~)(e+f--~) 

(2e=-2e+4f > (e+f)(e+f-- 1)). 
Reordering it: 

1 
(4.16) e2-2e-f(2e+f-4)+-4 > 0 (e~-e- f (2e+f-5)  > 0). 

I f  e=>2 then 2 e + f - 4  (if e=>3 then 2 e + f - 5 )  is non negative, f ( 2 e + f - 4 )  
( f ( 2 e + f - 5 ) )  is an increasing funct ion o f f ,  so (4.16) remains t rue if we use the 

e 
inequality f_->~ (supposition of our  lemma) :  

t e (  e ) 1 e2 1 e2--2e-- -~  - 2 e + - ~ - - 4  + - ~ - =  4 t - ~ - > 0  

(4.17) 
/{  e (  e ) e~ 3e ) 

e 2 - e - ~  - 2 e + - ~ - 5  = - ~ - + - } -  > 0 . 

However, these inequalities do not hold when e_->2 (e=>6). If n_->3 then e->2, 
thus (4.13) is proved for n->3. The inequality (4.14) is proved only for e->6, 
that is n_->9. For the values n<_-3<9 it is easy to check in Table 1 that the supposi- 

e Of the lemma is not satisfied for n = 3 ,  4, 6, 7 and for the remaining tion f=>~- 

values n = 5 ,  8, 9 (4.14) holds. 

1 II / X 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
!6 
17 
18 
19 
20 
21 
22 

1,5 
3 
5 
7,5 

10,5 
14 
t8 
22,5 
27,5 
33 
39 
45,5 
52,5 
60 
68 
76,5 
85,5 
95 

105 
115,5 

34 

6 

7 
8 
9 

10 
10 
11 
12 
12 
13 
14 
15 
15 

0,5 
0 
2 
1,5 
0,5 
4 
3 
1,5 
6,5 
5 
3 
0,5 
7,5 
5 
2 

10,5 
7,5 
4 
0 

10,5 
Table 1 

/ ' l  
n z--":{2 J e f 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

126,5 
138 
I50 
162,5 
t75,5 
t89 
203 
217,5 
232,5 
248 
264 
280,5 
297,5 
315 
333 
351,5 
370,5 
390 
410 
430,5 

16 
17 
17 
t8 
19 
t9 
20 
21 
22 
22 
23 
24 
24 
25 
26 
27 
27 
28 
29 
29 

6,5 
2 

14 
9,5 
4,5 

18 
13 
7,5 
1,5 

17 
11 
4,5 

21,5 
15 
8 
0,5 

19,5 
12 
4 

24,5 
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Subcase 2: Prove the statement for e-f<r<-fi The second interval in (4.12) 
contains the value e §  If  e+2f-2>=2n-4, we do not have to prove any- 

1 
thing. Otherwise the average r ~ '  ~k (see (4.9)) decreases when we use larger values 

ofr .  So, it is sufficient to prove (4.8) for r=f  The left hand side of  (4.8) is 

( -e+ 2f)(e+ 2f -2)+(e-f)(2e+ 2f -3) = e~ + 2 p - e - f .  

(4.8) is equivalent to 

Using e2-e=(~}-2f  

and this is equivalent to 

e2 + 2 f 2 - e - f  - > f ( 2 n - 4 ) .  

we obtain 

(~)+2f2--3f ~ f(2n-4) 

This inequality always holds, because f is a half of  an integer, it cannot satisfy 
n - 1  

2 < f < 2 "  

Subcase 3: f<r<-2e-f+l.  The new term (see (4.12)) in this interval is 2e +  
1 

+ 2 f - 4 .  We have proved (4.14), thus the average 7 ~ ' e ~  is increasing in this in- 
terval, consequently (4.9) and (4.8) hold. 

Subcase 4: 2e-f+l<r<-e+f-1.  If the new term e + 2 f - 4  is -~2n-4 ,  we 
are done. In the contrary case the average is decreasing, so it is sufficient to prove 
it for r=e+f-1 .  The statement means that the average of  e~ s for the 4 intervals 
is - ~ 2 n - 4  (see (4.9)). We have proved it for 2 intervals, so it is sufficient to prove 
the same for the two new intervals: 

(-e+2f-2)(e+2f-4)+(2e+2f-4)(2e-2f+ 1) ~ ( e -  1) (2n-4) .  

This is equivalent to 
(4.18) 3 e 2 - 2 f  _-> 2n(e- 1). 

Since f<e, we can prove (4.18) with 3e instead of  2f: 

(4.19) 3e ----> 2n. 

We know n(n-1)=2e2-2e+2f and using again f<e we have 

(4.20) n(n-  1) < 2e2+2e. 

2n 
Suppose (4.19) does not hold: e<-~- ,  and substitute into (4.20): 

8n ~ 4n 
n ( n - - 1 ) < - - ~ - + - ~ - ,  or n - 2 1 < 0 ,  
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which is a contradiction for n ~ 2 1 .  For  smaller n's it is easy to check from Table 
1 that  (4,19) holds for n = 3 ,  4, 6, 7, 9 ,10 ,12 ,13 ,  ,20. For  n = 5 , 8  and 11 
(4.19) is not true, but (4.18) holds. Case A is proved. 

e e 
Case B: I f  ~ f = < ~ +  I, then (4:11) and (4.12) have a slightly different form: 

li e--2,  ..., 2e--41 e - 1  . . . . .  e§  
(4.11") 112e . . . .  , e + 2 f - - 2  . . . . .  2f, 2 f - -1 , . . . , e  I 2e--2 . . . . .  e + f - 1 ,  

(4.12') 2 e + 2 f - - 4  . . . .  , e + 2 f ' 2  . . . . .  2 e + 2 f - - 3  . . . . .  

e--1 --e+2f  e--f  

So, in this case we consider only 3 intervals. The first two are exactly like in Case A. 
The length of  the third is different, but we did not use it. The lemma is proved. 

e (in (4.10)). I f  2e+2f>=2n-1, LEMMA 7. Suppose f < - ~  
<-- S(n, N) holds when 

l [ 2 } ' N < = 2 e - f + l .  r = ~  

then C(n, N)<= 

I f  2e+2f-<2n--1, then C(n,N)<=S(n,N) holds when 

e-:) <_ <: mid 
~ '  1 2 e - f +  1 (f--> 2) 

and the opposite inequality holds when 0 < r = f  The inequality C(n, N)<=S(n, N) 
changes its direction only once in this interval. 

' PROOF. Case A: f ~ 2 .  The sequence of  numbers, we are investigating now, 
have the following form: 

[. . . ,  e + 2 f - 7  . . . . .  2 e -  6 1 e - 2  . . . . .  e + 2 f - 3  . . . . .  2 e - 4 [ e -  1 . . . .  , e + f - 2  
(4"21)[12e~ . . . .  , e + 2 f - 1 ,  e §  .. . .  , e[ 2 e ' 2 ,  . i . , e + 2 f - 1 ,  e + 2 f - 2 ,  . . . , e + f - 1 .  

e--2f4-2 2f--1 e--2f f 

Observe that in one interval in table (4.21) the sum of the numbers standing under 
each other is constant. The sums are 

(4.22) 3 e + 2 f - 7 ,  ..., 2 e + 2 f - 4  . . . . .  3 e + 2 f - 5  . . . . .  2 e + 2 f - 3  . . . . .  

e--2f§ 2f--1 e--2f  f 

Subcase 1. I f  2e+2f-3>-2n--4,  then (4.8) holds for 0<r=<f, otherwise 
it does not hold. This proves the lemma for the first interval. 

Subcase 2. Consider now the interval f < r < - e - f .  If  2e+2f-3>-_2n-4 is 
true, 3e+2f-5>--2n-4 is also true whenever e_->2 (that is, n->3). Then (4.8) 
holds. If  2 e + 2 f - 3 < 2 n - 4  holds, then first we prove that (4.8) holds for r = e - f .  
We have to prove 

(e-- 2f)(3e + 2f -- 5) + f (2e + 2f -- 3) >-- (e--f)(2n--4), 
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that is, 
(4.23) 

We use 

3e~-2f2-2ef-e+ 3f >- 2n(e-f). 

3  ef+ 

By the suppositions 2e+2f<--2n-2, so it is enough to prove this last inequality 
after substituting -f(2e+2f) by - f ( 2 n - 2 ) :  

o r  

3(~)-2nf + 2f + 2e-3f >= 2n(e-f) 

3 ( ~ ) + 2 e - f > =  2he. 
Since f <  e, we can write 

(4.24) 3 | n |  + e  _-> 2ne. 

We prove it in an indirect way. Suppose the contrary, i.e. 

(4.25) 

and use (~)=e2-e+2f>=e~-e. 
creasing in e, it follows 

2n-- 1 

As the right hand side of  this inequality is in- 

by (4.25). Reordering it, we obtain 0 > n ~ - 1 3 n + 4 .  This is a contradiction for 
n->13. For smaller n's: (4.26) holds (see Table 1) when n = 5 ,  6, 8, 9, 10, 11, 12. 
For n=3 ,  4, 7 (4.24) is not true, but (4.23) is true. 

n 
Subcase 2a. If ~ < e - f ,  we have to prove that the inequality (4.8) changes 

n 
its direction earlier than e - f ,  at ~ .  It is enough to prove that it holds for r =  n . .  
In other words: 

(2--f)(3e+2f--5)+f(2e+2f--3)>--(2n--4)2 

has to be proved, or equivalently 

(4.26) 3ne+ 2nf -2ef +4f >= 2n~ +n. 

It is sufficient to prove 3ne>=2nZ+n (we omitted a positive number, as n>-_e), or 

(4.27) 3e _-> 2n + 1. 
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2n+ 1 
We verify it in an indirect way. Suppose e <  and substitute into the 
inequality 3 ' 

n Z - n  = 2 e 2 - 2 e + 4 f  < 2e*+2e = 2e(e+  1), 

< 2 2 n + 1  2 n + 4  
n2--n 

3 3 

or equivalently n 2 - 2 9 n - - 8 < 0  which is a contradiction if n->30. For smaller 
n's: (4.27) holds (see Table 1) when n=4 ,  7, 10, 13, 14, 16, 17, 19, 20, 21, 22, 
23 ,24 ,25 ,26 ,27 ,28 ,29 .  The remaining n's do not belong to this case 

/ 
Subcase 3: e - f < r < = e + f - 1 .  If 2 e + 2 f - 4 ~ 2 n - 4 ,  the averages do not 

decrease in this interval, and we are done. If  2 e + 2 f - 4 < 2 n - 4 ,  it is enough to 
investigate r = e + f - 1 ,  the average will be the smallest here. We have to prove 
that the sum in the last 3 small intervals is _->(e+f-1) (2n-4) .  The 3 d interval 
gives 

( 2 f -  1 ) ( 2 e + 2 f - 4 )  = 4 e f + 4 f 2 - 2 e  - 10f+4. 

Adding to the sum of the 2 previous ones (see (4.23)): 

3e~ + 2f~ + 2ef  - 7 e - 3f  + 4 >= ( e + f - 1 )  ( 2n - 4) 
or equivalently 

(4.28) 3e ~ -  3e -> 2en - 2 n  § - 2 f - 2 e -  1). 

It is easy to see, that 
1 )~=  

f ( 2 n  - 2 f - 2 e  - 1) = ~ 2f(2n - 2 f - 2 e -  1) <=21,1 ['.2n -_22e-2 1. 

n ~ e ~ 1 n e 
= 

Substitute it into (4.28) 

2 2 1 _ 6e2-6e  --> 4 e n - 4 n + n  +e  + ~ - 2 n e - n + e  

or equivalently 
1 

--n~+ 5e - 2 e n - 7 e +  5n---~ >- O. 

2 1 (4.29) 3n - 4en - 4e + 5n - 20f--~- ~ O. 

Since 2 f<  e: 

(4.30) 3 n ~ - 4 e n -  14e+ 5n - 4  ~ O. 
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F.rom [ ~ ) = e 2 - e + 2 f  we obtain 

e ~ 
2 

Substitute it into 

(4.30) 

< - -  1 + 1 / ~  -5 l + n l / 2  
2 2 

( 3 - 2  J/2)n2-(7 1 / 2 - 3 ) n - 7  - 1  => 0. 

This holds for n=>42. An ugly compution shows, that for 3~_n<=41, n ~ 6 ,  either 

(4.29) holds or f _ > e ,  that is, not our case. For  n = 6  (4.28) holds. 

Subcase 4." e + f - l < r < = 2 e - f + l .  If  

(4.31) 3 e + 2 f - 7  => 2 n - 4 ,  

1 
then the new terms do not decrease the average r ~'c~k' Use the assumption f=>2 
of Case A: 
(4.32) 3e+  1 -_> 2n. 

This is weaker than (4.29), which was proved for n=>21 and was checked for 
n=3 ,  4, 6, 7, 9, 10, 12, 13 . . . . .  20. For  n=5 ,  8, and 11 (4.32) holds. 

Case B: 0 < f < 2 :  (4.21) and (4.22) have a slightly modified form 

~... l e - 3  . . . . .  2e-61  e - 2  . . . . .  e + 2 f - 4 ,  e + 2 f - 3 - 4 ] e - 1  . . . . .  e §  
(4.21') [12e . . . . .  e + 2 f - 1 ,  e + 2 f - 2  ..... el 2 e - 2  . . . . .  e + 2 f - - 1 ,  e + 2 f - 2  . . . . .  e+f--1 

e - - 2  2f--1 e - - 2 f  f 

(4.22') 3 e §  . . . . .  2e§  3 e + 2 f - - 5  . . . . .  2 e + 2 f - - 3  . . . . .  

e--'2 2f~--1 e ~ 2 f  

The only change that the 4 th interval is shorter, but we did not use its length. The 
cases n = 3  and 7 can be done by an easy computation. 

Case C: f = 0 .  

.... 2e-81 e - 3  . . . . .  2 e - 7 ,  2e-61 e - 2  . . . . .  2e-41 

(4.21') []2e, 2 e - 1 ,  2 e - 2 ,  2 e - 3 ,  2 e - 4 ,  ..;,el 2 e ~ ,  2 e - 3  . . . . .  e - 1  

e--3 1 e--i 

(4.22") 3 e - 7  . . . . .  4 e - 8  . . . .  , 3e--5, .... 
e--3 i e--~l 

We prove that all these numbers are _->2n-4. It  is enough to prove that 3 e - 7  -> 

_->2n-4, tha t l i s~3e-3->2n.  We prove it in an indirect way. Suppose e <  2n+____~3 
3 
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and use n ( n - 1 ) = 2 e ( e - 1 ) :  
2n+3  2n 

n ( n -  1) < 2 - -  
3 3 '  

or equivalently n - 2 1 < 0 .  This is a contradiction if n~21 .  
case, when n<21  and f = 0  (see Table 1), namely when n=4 .  
that  the statement holds for n = 4. 

There is only o n e  
It  is easy to check, 

e 
LEMMA 8. If f>=-~ in (4.10), then 

(4.33) C(n, N) <= S(n, N) for 0 ~ N <- -~ 

and 

<N<= . (4.34) C(n,N)  => S(n ,N)  for 2 = 

e 
I f  f <-~,  

- < 2 n -  1 

but 2e+2f>-2n-1,  then (4.33) and (4.34) hold, again. I f  f < 2 '  2 e + 2 f <  

< < "  {-~, e - - f ) ,  and then there is an R such that f = R = m m  n 

C(n,N)  <= S ( n , N )  for O<= N<= 2 

~(n]-R<-N< I {2 ] C(n, N) ~= S(n, N) for 2 = 

+{o}+. 
C(n,N)  <= S (n ,N)  for -~ <= N <= 2 

C(n, N) >- S(n, N)  for 7 + R <= N <= . 

PROOF. We use induction over n. For  n = 3  the statements are true. Let n > 3 .  
Suppose the statement is true for n - 1 ,  we want to prove it for n. According to 
the induction hypothesis C(n-1 ,  N)  <- S(n, N) if 

(4.35) 0 ~ N <= 2 2 

By Lemma 5 
(4.36) C(n, N)  <- S(n, N)  

follows under the condition (4.35). F rom Lemma 6 we know that (4.36) holds when 

(4.37) "--2 2 -- z<-- N <= 2 <2) - R "  
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where 

(4.38) 

e 
and R = 0  if ~ -~f ,  

te+f--1 if e ~=f 

~ e 
z ] 2 e - f + l  if 2 ~f<~- 

! 

(2e+f-3 if o f<2 

(_~ e_f) e ~f.  f<=R<__min n ,  if 7 

If  we are able to prove that 

1 (n) 1 ( n 2 1 )  n - 1  
(4.39) 2 2 2- 2 

(see (4.35) and (4.37)), then (4.36) holds under the condition 

0<_-- N N - ~  --R. 

n--l<=z. 

Z=e+f--1. Assume the opposite of (4.40) holds: 

Substitute it into the equality n(n-1)=2e~-2e+4f: 

(4.39) is equivalent to 
(4.40) 

e Case A: -~<=f Then 

n--l>e+f--1 or n>e+f 

(e+f)(e+f-1) < 2e2--2e+4f, 
which is equivalent to 
(4.41) e2-f2-2ef-e+ 5f > 0. 
If f + 2 e - 5 = > 0  (if e=>2), then 

f ( f+ 2e-5)_-> 2 ( f +  2e--5) e ( 2  + 2e--5) 
5e 2 5e 

---->-2- - - 4  2 '  

(4.41) results in - e Z + 6 e > 0 .  This is a contradiction if e~6 ,  that is, if n>=9. For 
e 

smaller n's either - - > f  or (4.40) holds. 
2 

Case B: 2<_-f< 2 . 

which holds for n=>0. 

We have to prove n -  1 <= 2 e - f +  1 

n - -  1 ~ / f n ' ~  
2 < V ( 2 J  = ]/e2-e+2f~ e: 

3n 3 
2n <_-- t-4, 

or 2n=<3e+4. Use 
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Case C: 0-<f< 2. We have to prove n -  l <= 2e + f -  3 or 

(4.42) n <- 2 e - 2 .  
n -  1 2 n - 2  

Use w~--~---<--e: n _  <- 1/~ - 2 .  This holds for n=>9. For n = 4 , 6  and 7 (n=5 

and 8 do not belong to this case) (4.42) holds. The lemma is proved. Lemma 8 
completely proves our Theorem 3. 

5. The second proof of Theorem 2 

We use the results of Section 3, in particular Lemma 8, and its methods and 
notation. First we have to prove another inequality: 

LEMMA 9. C(n,N+n)--C(n,N)>=2N+(~)if 

/I l} < 
~ N z  

PROOF. We start with the case N =  ~- ~ 1 =<n . Then the statement holds 

with equality. The difference C(n, N+n)-C(n, N) is the sum of the following 
terms (see Lemma 4): 

~-1,0, . . . , /~-1.-1,/~,0 . . . . .  ~,.-~-~ 

(here we used l<=n and n<=21§ The sum of these terms is 

.~ i+ ~ i = 3 +(n-l)  n+l -1  2 + 
f = / - - 1  i= l  2 

The desired equality is proved. Now we prove that the function 

(5.1) C(n, N+n)-C(n,  N ) - 2 N -  [~ ) 

is increasing in the interval 

and it is decreasing in 

{ ~ / + 2 1 + l - n  ~ N ~  ( ' ~ 1 }  [[~1 ~ l <  n) �9 

This proves the statement, since(5.1) i s 0 f o r  N = ( / }  and N = ( I ~ I } .  If 
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then the difference C(n,N+n)-C(n,N) is the sum of  the terms 

Here 

and 

0 ~ n -  1 + N -  ecause of l < n, < 

If we change N to N +  1, a new term comes in: ilt,,-Z+N@' and ill-l,u-(~) wil  

be omitted. The change is 

However, in (5.1) 2N changes to 2(N+1) .  So, the total change is n-l-l>=O, 
and the function (5.1) is increasing. On the other hand, if 

then the difference C(n,N+n)-C(n,N) is the sum of the terms 

ill--l,N--(l~) . . . . .  f l l - - l , I - - l '  ill, O' "' '" ill, l '  i l l + l , 0  . . . .  ' fll+l,o+21+N-(12) ' 
where 

f,+m) 
( u s i n g N < t T j  and n<- 21+ l, i f = - l ,  bt, t is the last term). Changing N 

into N-t-l,  the sum changes with 

ill+l,n--21--1+N-- ( / )  - - i l l - - l , N - - ( / )  : n - -  2l + 1, 

and (5.1) changes with n - 2 / - l < = 0 .  The function is decreasing in this interval. 
The lemma is proved. 

LEMMA 10. 

(5.2) f ( n , N ) = m a x ( f ( n - l , N ) , f ( n - l , N - n + l ) + ( n 2 1 ) + 2 ( N - n + l ) )  

if n-l<-_N<=[n21 ]. (Otherwise only the defined term is considered on the right 
hand side.) 

PROOF. Consider an optimal graph. There are two possibilities: a) either each 
vertex is contained in at least one edge b) or not. 

In case b) our graph must be optimal also for n - 1  vertices, so f(n, N ) =  
= f ( n - 1 ,  N). In Case a) there is an edge containing the last vertex, thus by 
Lemma 1, the first vertex is connected with every vertex. Consequently, at the 
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first point there are adjacencies. The remaining N - n + l  edges have one 

adjacency at their both ends with edges going to the first vertex. This is 2 ( N- - n +  1). 
What remained is the number of adjacencies among edges not containing the first 
vertex. They must form an optimal configuration on n - 1  points. Thus in case 
a) the number of  adjacencies is 

f(n-l,N-n+l)+tn;lj+" " 2 ( N - n + l ) .  

The lemma is proved. 

PROOF OF THEOREM 3. We prove that f (n,  N)= C(n, N) or S(n, N) by induc- 
tion on n. The exact result is given by Lemma 8. This is true for n=2 ,  3. Suppose 
it is also true for n - 1  (with any N) and let us prove it for n. 

Case A. Suppose f ( n - - l , N )  and f ( n - - l , N - n + l )  are both assumed for 

q as oom.te Sinoe a, o 

Subcase I. If  additionally 

then we can use Lemma 9: 

C ( n - l , N ) - C ( n - - l ,  N - n  + l) >= (n;1)  + 2(N-n  + l). 

That is the first term under the max in (5.2) is => than the other one. Consequently 
f (n,  N) is assumed for the quasi-complete graph. 

Subcase 2: N _ n + l < / [ ~ _ 2 ] / .  I n ( n - l ]  this case we shall prove that C(n-1, 

N - n + l ) < = S ( n - l , N - n §  Indeed, it follows from Lemma 8, when 

- 1 < = 2  - 2 2 ' 

that is always for n~4 .  It means that in Subcase 2 , f ( n - 1 ,  N - - n + l )  is assumed 
by the quasi-star and it belongs to the next case. 

Case B: Suppose f ( n - 1 ,  N) is assumed for the quasi-complete graph and 
f ( n - l , N - n + l )  for the quasi-star. It is easy to see that 

S(n-1,  N - n +  1 ) + ( n 2 1 ) +  2 ( N - - n +  1 )=  S(n, N). 

In (5.2) we have max (C(n- i ,  N), S(n, m)), we obtain always either a quasi-star 
or ~ quasi-complete graph. 
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(5.5) 
and (5.4) results in 

Case C: f ( n - 1 ,  N) is assumed strictly for the quasi-star and f ( n - 1 ,  N - n  + 1) 
strictly for the quasi-complete graph. It means that 

(5.3) C(n-1,  N) < S ( n -  l, N) 
and 
(5.4) C(n--1, N - n + l )  > S ( n - l , N - n + l ) .  

By Lemma 8 (5.3) results in 

N < ~ -  + 2 ' 

1 {.~11 n-~ (5.6) ~- - T  < N - n + l .  

But (5.5) and (5.6) contradict each other. 

Case D: f(n--1, N) is assumed strictly for the quasi-star and f ( n - 1 ,  N - n  + 1) 
(not necessarily strictly) also for the quasi-star. We have again (5.3) and (5.5). We 
shall prove that in (5.2) the second term under the maximum is larger, that is, 
S(n -  1, N)<= S(n, N). Rewrite this inequality using Lemma 3 : 

~_  ~[.,(~)-N}--.(~5'}-eN+~.N, 
o r  

C[n-1, [2}--N}--C{n-1, (n 21}-N} >=n (n 21}-(n-I) (n 22)-2N: 

~ z 2  

By Lemma 10 this holds when 

o r  

till/ 
this follows from (1.2) when 

2- 2 + T  <- 2 - -  +1 

The theorem is finally proved. 

However, 

holds, that is always if n=>4. 
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6. Open questions 

1. Some strange number-theoretical combinatorial questions arise. What is 
the relative density of  the numbers n for which R = 0  (see Lemma 8)? What is 

the distribution of R ? 

2. We started to think about the next problem. N 0<=N <- different 

3-types are given on an n-set. What is the maximal number of pairs of  3-tuples 
having 2 elements in common. By easy symmetry-arguments it is enough to con- 

sider the case 0 = < N ~ 2 / 3 J .  We conjecture that in this interval the maximum 

is assumed for a quasi-complete 3-graph, or a quasi-3-star on some m<=n ele- 
ments. Recently Vera T. Sds and M. Simonovits have some results in connection 
with this problem. 
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