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1. Introduction, Basic Definitions and Results

Let S be the family of all subsets of the set {1,2,...,n}. It was shown by the
second author in [3] that

(1.1) |Al|B|L|AvB||AAB| forall A, BcS”,
where AvB={aub: ac4, beB} and AAB={anb: acA, beB}.

The present investigation started with the discovery that instead of the pair of
Boolean operations union, intersection (U, n) one can also use symmetric
difference, intersection (A, M), so

(1.2) |Al|B|Z|AAB||AAB| forall A, BcS",
where AAB={alb: acA, beB}.

It was then natural to look for all pairs of Boolean operations for which
inequalities of the above type hold. It turns out that up to simple isomorphies,
explained in Sect. 2, the two inequalities above are the only non-trivial ones.
Again up to isomorphies the trivial ones are

(13) |A||BI<|A||AAB|<|AAB||AAB|  for all A, B<S™

A more fruitful and challenging investigation started from the following two
facts:

1) The proof in [3] of (1.1) and our proof for (1.2) were quite different, and
we felt the need for a unified approach.

2) Our 4-weights inequality of [1] has far reaching consequences, as ex-
plained in Sect. 9. However that inequality for the pair (U, n) does not hold for
the pair (A, N).

In order to analyze and understand those facts, we consider more general
maps ¥: §SxS—S, where § is now an arbitrary finite set, and we introduce
several notions of expansiveness for pairs of such maps (¢, ). Our studies are
centered around the problem of how those notions behave under direct products
of two pairs of maps. As a result we find new lattice inequalities.
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Basic Definitions

Before we list our definitions of expansiveness and establish relations between
them, we explain our terminology.

Throughout IR denotes the non-negative reals, and S, T finite sets.

For ¢: S xS —>S and A4,BcS we write

@(A,B)={¢@la,b): acA,beB}.
If o, : SxS—=8§and E,, E, =S xS, then
QY(E, Ey))={p(a;,b,), ¥(a,,b,): (a;,b,)eE,,(a,,b,)eE,} =S x 8,

and when E, =E,=E we write ¢y (E) for ¢ y(E, E). Note that when E=A4 x B,
then @y(E)=0¢(4, B) x {(4, B). For a: S—IR and A<S put a(4)= ) «(a). The

acA

map o: 5 — IR with «(a)=1 for all aeS is denoted by 1, and for this map «(A4) is
the cardinality |4} of A. The set of all ordered 4-tuples (s, f,y, ) of maps
o, B,7,6: S—»IR is denoted by M. Frequently we write MM instead of My if no
misunderstanding is possible. By € we denote a subset of M containing
(1,1,1,1). Lastly X +Y denotes the union of the sets X, Y and says that XY
= g_

For two pairs of maps ¢g,¥g: Sx8—S and ¢,, ¢ TxT—>T define the
direct product @gp, Ysr: (Sx T)x(Sx T)—S x T by
(LA @srllsy, 11), (55, 02)) =(@s(s1, 52), Pr(ty,12))

Ysr((s1, 1), (85, 02)) =(Ws(s1, 55), Yp(ty,12))

for all s;,5,€8 and all ¢,,t,eT.

For ¢, y: S x S—S define the square functions 2, y2: §% x $2-S by

(L5) @*((a,b), (c,d))=(p(a,d), Y(c, b))
W2 ((a, b), (c, d))=(p(c,b), y(a,d) forall a,b,c,deS.

Kinds of Expansion

(@, ¥) is expansive if

(1.6) |A||B|<|o(4,B)||Y(4,B)] forall A,BcS
(p, ¥) is set-expansive if

(1.7) |E|Zley(E)| forall EcSxS.

(@, ) is partition-expansive if there are two partitions SxS=D, +...+D_ =D%
+...+D¥ |D,|=|D¥| (1<i£z), such that for each i, 1<i<z, and all E|,E, <D,
with |E{|=]E,| we have both

(1.8) @y(E,, E;)=Df
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and

(1.9) |Eq|Sloy(Ey, E)l.

Since {@Y(E,, E))|=Yo(E,, E,)|, it is clear that (1.9) can be replaced by
(L10) [E{|=|Yo(E,, E))l.

(o, B, 7, 0Ye € is compatible with (¢, ), if

(.11} a(a@)d)=y(p(a,b)o(¥(a, b)) for all a,beSs.

(o, ¥) is C-expansive if for any (z, 5, y, )€€ which is compatible with (@, ) we
have

(1.12) 2(A)B(B)=<y(e(4,B)6((4,B)) for all 4,B<S.
(o, ¥) is €-set-expansive if for any compatible (o, B, y, 6) € € we have

(1.13) Y w@pB®= Y y(@dk) forall EcSxS.

(a,b)eE (a,b)e g (E)

The most important special case is obtained by choosing € =9 in the preceding
definitions. We then say that (¢, ) is M-expansive resp. M-set-expansive.
Finally, we call (¢, ¥) explosive if

(1.14) |E||FI=|@Y(E, F)lloy(F,E)| forall E,F<SxS
and M-explosive if given any «, §,7, 6, 2, 4, v, w: S—R such that

(115} a(a) B(b)y(c) 3(d) < Ao (a, d) u(y (c, b)) v(e(c, b)) 0 (¥ (a, d)
for all a,b,c,deS,

we have

(1.16) (ZE)(ZF)é(ZEF) : (ZFE) forall E,F=SxS§

where

Y& =2.((a,b)eE)a(a) B(b)

Y =2 ((a,b)eF)y(a)d(b)
Yer=.((a, b)e 9Y(E, F)) (a) u(b)
2re=2.((a,b)e pY(F, E)) v(a) w(b).

There are some obvious relations between those concepts:

(1.17) IM-explosive = €-set-expansive = E-expansive == expansive
(1.18) IM-explosive = explosive = set-expansive = expansive
(1.19) @-set-expansive = set-expansive

(1.20) partition-expansive = set-expansive.
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The Results

Theorem 1. The direct product ((¢g, @), (W, Y1) of an Wig-expansive pair of
maps (@g, Yg) with an M-expansive pair of maps (@1, Y1) is Mg, r-expansive.

The power of the Theorem lies in the fact that one can apply it iteratively.
This leaves us of course with the task to decide whether a component pair (¢, V)
is M-expansive. We completely settle this for all Boolean ¢, y: {0,1}2-{0,1} in
Sect. 2. All expansive Boolean pairs (¢, ) fall into equivalence classes (in a sense
made precise there). The representatives are

(hy(x, p) wi(x, y)=(y, x); (hy(x, ¥), wo(x, ) =(x Uy, x "V y);
(h3(x, ¥), w3 (x, y)=(xAy, x); (ha(x, y), walx, Y =(xAy, x Ay);
(hs(x, p), ws(x, p)=(x Ay, xy).

Among those only {hs, ws) is not M-expansive,

Corollary 1. Let o, f,7,0: {0,1}">R and let (@, y)e{(h;,w): 1Zi<4} be com-
patible with («, B, v, 8), then

o(A) BB)=v(9(4, B) (Y (4, B))  for all 4,B<={0,1}".

The fact that not all expansive pairs are 9M-expansive naturally leads to a more
general question:

(1.21) If (@5, W) is Cgexpansive, €M, and if (@, ¥;) is Cr-expansive,
C.cM,, for which €=M 1 is (pg, ©1), Ws, W) C-expansive?

A first result in this direction is

Theorem 2. If (¢g, ) is M-expansive and (@, Y;) is expansive, then the direct
product (@5, @), (s, s)) is expansive.

We firmly believe, but have not been able to prove it, that a stronger
statement is true.

Conjecture 1. The direct product of expansive pairs of maps is expansive.

This is probably the most outstanding problem in this context. Since (A, M)
is not W-expansive Theorem 2 also does not say anything about this case. In
order to get results for this case and also to have a unified proof for both (1.1)
and (1.2) we have introduced the notions of set-expansive and partition-expan-
sive. From Lemma 4 in Sect. 2 we know that all expansive Boolean pairs are also
partition-expansive and hence set-expansive. Therefore the following result gives
all inequalities in the Boolean case for (o, f, 7, 6)=(1, 1, 1, 1).

Theorem 3. If (¢, V) is set-expansive and (@, ;) is partition-expansive, then the
product is set-expansive.

Next we investigate for which weights («, 5,7, 6) on {0, 1}" is (A, n) expan-
sive. Lemma 3 in Sect. 2 exhibits some cases for n=1. For general »n we have in
so far the following result.



Inequalities for a Pair of Maps § x §—8 with S a Finite Set 271

Theorem 4. Let L be a sublattice of {0,1}" and let o, f,7,6: L=1R with § a
monotone increasing function on L.
If (A, n) is compatible with (o, B, y, 0), then

a(A) B(B)<y(AAB)S(AAB)  for all A,B<L.

The proof makes use of special properties of (A, n). Another result for this pair
is in the spirit of question (1.21).

Theorem 5. Let L be a sublattice of {0, 1}", let S be a finite set, and let (@g, Ys) be
Wig-expansive. Let (@, ) be the direct product of (¢g, Ys) and (A, n) on L.

Suppose «, f,7,0: S x L>IR are compatible with (@, ) and that 6=95(s,1) is a
monotone increasing function in e L, then

a(4) B(BYZy(p(A4,B))6(y(A,B)) forall A,BcSxL.

Our last result originated with the idea of finding weight inequalities for
arbitrary subsets E S x § rather than just the usual E=4 x BcS x S. This led
us to introduce the notions of explosive and M-explosive pairs (¢, y) and to
study square functions (@2, ).

Theorem 6. The following are equivalent:
(@) (o, ) M-expansive,
(b) (@2, ¥?) M-expansive,
© (@, ) M-explosive.
Furthermore (') implies (b') implies (¢') for the statements

(&) the direct product (@, @), (W, ¥)) expansive,
(b) (9% ¥?) expansive,
() (o, ) explosive.

Since we know that in the Boolean case (¢, @), (, ¥)) is expansive iff (¢, ¥) is
expansive, we have the

Corollary 2. A Boolean pair is expansive iff it is explosive.

There are all kinds of special cases of Theorem 6. For instance we know that
(v, N) is M-expansive on {0, 1}, hence M-expansive on {0, 1}" by Theorem 1 and
therefore M-explosive on {0, 1}”. Since this implies M-set-expansive we have the

Corollary 3. Let o, B, A p: {0,1}">R be compatible with (U, ), then for
Ec{0,1}"x{0,1}",

F={(a;ub,, a,nb,: (a,,b,), (a,,b,)e E}
( %Ea(a)ﬁ(b)é( %:Fi(a),u(b).

This is the kind of inequality we were looking for. The same holds for any
sublattice L <={0, 1}*, for if «(a) f(b)<A(aub) u(anb) for all a,beL, just define
a(c)=p(c)=Alc)=u(c)=0 for all c¢ L. Then the hypothesis holds on all of
10, 13" It easily can be shown by standard techniques that L can be replaced by
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any (finite or infinite) distributive lattice. Now if we restrict E to be of form E
=A4 x B with A, Bc L, then we get our old inequality of [1].

2. A Classification of all Boolean Pairs of Maps

We adress ourselves in this Section to the Boolean case S={0, 1}. The 16 binary
Boolean functions f: S xS—S are

(2.1) 0, xNy, XNy, YNX, X, y, XAy, xUy;

1, xNy, XNy, y~x, X, ¥, xAy, xuy.

Let us use the notation A={a: ac A} and &(a)=¢(a) for ¢: S>R and aeS. We
call (¢, ¥) (o, B, 7, 6)-expansive iff

(22) (A) B(B)<y(p(A, B)5((4,B)) for all A, BS.

Obviously the following rule is valid.

Rule I. Equivalent are:

(@) (¢, ¥) (& B, v, 0)-expansive,

(b) (@, kp) (OC, ﬂ) Vs 5)-expansive,

(c) (&, @} (0, B, 6, v)-expansive.
Now we establish a similar rule for partition-expansive.

For FcSxS write F=F{0)x{0}+F(1)x {1} and define F'=F(0)x{1}
+ F(1) x {0}. Clearly

(23) |F'|=|F| and FcG iff F'cG'.
If (@, W) is partition-expansive, there exist partitions
SxS8=D,+..+D,=D¥+. .. +Df

such that for all E;, E, <D, |E,|=|E,|, oY (E,, E,)=Df and |E,|Z|@Y(E,, E,)|.

Since ¥ (E,, E,)=(0¥(E,E,)) and since (D¥) +... +(D¥y =S x S it suffices
to use the partitions S xS=D, +...+D,=(D*) +...+(D¥) to see that (p,¥) is
also partition-expansive. By (1.10) also (¢, ¢) is partition-expansive. Therefore
we have

Rule I1. Equivalent are:

(a) (@, Y) partition-expansive,

(b) (@, ¥) partition-expansive,
(c) (¢, @) partition-expansive.

It is clear from Rules 1, IT that in studying expansive or diagonal-expansive or
M-expansive maps (¢, ) we can limit ourselves to the pairs described by the
following triangular configuration.
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Table 1
¥

XUy
xAy

0 *

*
%
*

* % QO %

LR

% ¥ % % QO %

* "Ny MmO Io

* QO % x ¥ % My o

* =not-expansive

P =partition-expansive
0 =Mi-expansive and partition-expansive

0 XAy X—y y—x

xAy

xXVy o
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The justification of Table 1 goes in several steps. First one decides whether a
(@, ¥) is expansive or not. This can be done case by case with the help of the

following
Table 2
¥(©0,1) YL 1
1
©(0,1) (1, 1)
¥(0,0) ¥(1,0)
0
¢(0,0) »(1,0)
0 1

On easily verifies that (@, ¥) is expansive iff in Table 2: a) adjacent squares are
not equal, and b) ¢ and ¥ are not constant.
Thus one obtains that exactly the following pairs are expansive: (h;, w,),

1=£i<5, defined in Sect. 1, and

(he(x, y), wg(x, ) =(xDy, x—y);
(hg(x, y), we(x, Y))=(x Vv y, x Ay);
(hio(X, ) wio(xX, Y)=(xAY, y).

(hq(x, ), wy(x, y)=(xAy, y —x);
(ho(x, y), wo(x, ¥)=(y—x, x—y);

Using Rules I and the fact that @ ranges over S if a does leads us to the
following relations:

(2.4) Equivalent are:

(@) (hs, ws) (o, B, v, 6)-expansive,
(b) (hg, we) (o, B, 7, 8)-expansive,
(€) (hy, ws) (2, B, 7, 8)-expansive,
(d) (hg, wg) (o, B, 8, y)-expansive.
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(2.5) Egquivalent are:
(e) (h25 WZ) (OC, ﬁa 7 5)-€Xpansive,
(D (hy, wo) (o, B, 7, O)-expansive.
(2.6) Equivalent are:
(8) (hs, w3) (&, B, 7, 6)-expansive,
D) (B, Wio) (B, 0,7, O)-expansive,

By the forgoing it suffices for the study of IM-expansiviness to consider the
representatives (h;, w)), 1 <i<S.

If we use Rule II instead of Rule I we get the same classification with respect
to partition-expansive.

In the remainder of this Section we show that all 5 representatives are
partition-expansive and that with the only exception of (x Ay, xny) they are all
IM-expansive. The following result helps in deciding whether a pair (¢, ) which
is expansive is also M-expansive

Lemma 1. Let ¢, : SxS—>S={1,...,t} be an expansive pair of maps. Let
o B,y,0: S>R satisfy

2.7 al@) BBV y(p(a, b)) o (a, b))  for all a,bes.
Then

a(A) B(B)<y(p(4,B)o(W(A,B)) forall A,Bc=S with |Aj=1 or |B|=1.

Proof. Suppose A={a} and B={b,,...,b,}, if 1<i<j<r and B'={b;, b;} then
by expansiveness

=|A||B'|slo(a,b) v o(a, byl ly(a, b)u(a, by,
so (p(a, b)), ¥(a, b)) +(p(a, b)), ¥(a,b)). Hence the set {(¢(a, b)), Y(a,b)): 1=2i=r}
consists of r distinct points of ¢(a, B) x y(a, B), and it follows that

3 lola. b)) 0@ b) S (0 e, B) S a. B

The result now follows by summing (2.7) with b=b, over 1 <i=<r.

Lemma 2. Let S={0,1}: (xAy, xAY) is not Wi-expansive, all other Boolean
representatives (h;, w)), 1 £1=54, are M-expansive.

Proof. From Lemma 1 we know that we have to consider only the case |4|=|B|
=2, that is, A=B=3S.
Case (h,,w,): Here

X, =a(0) f(0)=7(0)6(0)

X, =a(0) (1) =(1) 0(0)

Xy=0(1) B(0)=y(0) 6(1)

X,=a() p(1)=y(1)6(1)
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and therefore
2. X =u(A) BB)<y(p(4, B)) 6(¥ (4, B)).
Case (h,,w,): This was already pfoved in [1].
Case (h;, ws)
X1=70)000), X,=y(1)6(9)
X;=y()o(l),  X,=v(0)6(1).
Again
LX) +y(1)(3(0)+6(1)
=(y(¢(4, B)) 6(y/(4, B)).
Case (hy,w,)
X, 29(0)6(0)=5(0)%,  X,=<y(1)8(1)=s(1)?
Xysy(o(l)=s(1)%  X,=7(0)6(0)=5(0)

where

s@=y»(0)6(0), s()=yr1)s(1).

We show first that ) X, <(s(0)+s(1))* and then we apply the inequality
(1/70)8(0) +1/7(1) 6(1)* = (y(0) +y(1))(5(0) + (1)),

which is a simple consequence of the arithmetic-geometric mean inequality, to
complete the proof. Notice that

X, X,=X,X,<min(s(0)* s(1)%
and therefore
min (X, X)) <min(s(0)% s(1)?), min(X,, X,)<min(s(0)% s(1)3).
This implies
> X;=min(3s(0)*+s(1)%),  (s(0)*+3s5(1)*) < (s(0) +s(1))”.
Case (hs, ws): Choose a(0)=p(0)=y(0)=5(0)=2, 5(1)=3, and a(l)=B(1)=y(1)
=1 to see that this pair is not WM-expansive.

Even though (A, n) is not M-expansive it is still E-expansive for interesting
classes €. Clearly §'-expansive and G-expansive imply (€U E')-expansive. We
describe now some interesting classes

Lemma 3. (A, n) is €-expansive for
(@) €={( §,7,9): 6(1)=5(0)},
(b) €={(2, 8,7.0): 6=y or 6= or s=a},
(© C={(of,7,0): a=p=1},
(d) €={(x,5,7,9): »©)27(1) and «(1)2«(0)}.
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Proof. By hypothesis
2.8) X, =7(0)6(0), X,=7(1)4(0),
X;29(1)o(0), X, =y(0)5(1).
(a) Since 8(1)26(0), Y. X, <(y(0)+7(1)(6(0)+6(1)).

(b) Let a=d (B __5 is symmetrically the same). From (2.8) we conclude
B(0)=7(0) and B(1)=7y(1) and therefore

(@(0)+a(D)(BO)+ A1) =(2(0) + (1) (3(0) +6(1)).

If y=0 we can normalize such that y(0)=5(0)=1, y(1)=5(1)=s. Then X, =1;
X,, X5, X,Ss. If s=1, then s*=s and (2(0)+a(1)(B0)+B(1)Z(1+s)* as
wanted. Assume therefore s><s<1 and choose & such that «(1)f(l)=
52 +e=<5<1, ¢>0.

X,X, ¢
X =2203 . 7
X, Tst4e’

therefore
2
s
ZXi§23+T+S2§2S+1+s2
st+e
as wanted.

(¢) From (2.8) 6(0)= (1), y(O)Z(S(l—l) and therefore

1 1
5(0)+6(1) 3(0)+7(1) 2 ((—1)+ ) (%ﬂ ())z4=3 X,

(d) Since a(l)za(0), X, =a(1)B0)=y(1)6(0) and X,=a(l)B(1)=y(0)5(1).
Now y(0)=y(1) and using (a) we can also assume 6(0)=d(1). This implies
7(0)6(0)+7(1)6(1H)27(1)6(0)+7(0) 6(H = X5+ X,

The results of Lemma 3 are for n=1 and they do not necessarily extend to
general n. We give are counterexample for the class described in (b).

Example (n=3)

000 010 101 (i1 100 011 110
o 4 1 2 1 o 0 0
g2 1 0 0o 0 0 0
1 1 X 0 0o 0

y 4

One now checks that both, («, 8, v, o) and (o, B, 7, y), are compatible with (A, N).
However, for A={101, 111}, B= {000, 010}

2(4)=B(B)=3, a(AAB)=y(AAB)=5  y(AAB)=1.
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Therefore
x(4) B(B)£7(AAB)x(A A B)
a(4) B(B)£7(AAB)y(A A B).

Thus the example serves simultaneously as counterexample in case =« and in
case 6=1.
We tend to believe that the following is true for general n:

Conjecture 2. If («, B, «, B) is compatible with (A, A), then
o(A) B)Sa(AAB)B(AAB) forall A,B<={0,1}".
A special case would be a=p.

Lemma 4. All Boolean representatives (h;, w;), 1<i<5, are partition-expansive
and therefore also set-expansive.

Proof. Case (hy,w,): Partition S xS=D, +...+D,=D¥+...+ D} such that |D,|
=|D}|=1 and Df ={(a, b)} if D;={(b,a)}, 1 Si=<4.

In all other cases we can choose D,=D}, 1<iZz.

Case (h,,w,): Choose D ={00}, D,={11}, D;={01, 10}. Since h,w,(D,)=D,,
1£i=3, we are done if E,=E,=D,. Otherwise |E,|=|E,|=1 and obviously
[Eq[=|hyw,(Ey, E,).

Case (h3, w;): Choose D, ={00}, D,={01}, D,={10,11}. Again h,w,(D)=D,,
1<i<3, and the previous argument applies.

Case (h,,w,): Choose D, =S°. For E,, E,=S? |E,|=|E,|, and any (a, beE,

H{(e(ay,b,), Ylay, by)): (ay, by)€E, (ay, by)eEL}|
zl{(pla;, b), Y(a. by): (a;, b)) eE }=]|E,]|

Case (hs, ws): Choose D, =S?. One verifies that in the table

ayb, a, b,
. a,nb,

1 101100 01
10 00011011
01 101000 0o
00 00 001010

00 01 10 11  a,b,

. . X
every s x s-minor has at least s different elements / .
y

In conclusion let us mention that we tend to believe that also in the non-
Boolean case
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Conjecture 3. Expansive is the same as set-expansive.

Furthermore, it is conceivable that also in general expansive is the same as
partition-expansive. This and Theorem 3 would imply Conjecture 1.

3. Proofs of Theorems 1 and 2
Proof of Theorem 1

We are given IM-expansive pairs of maps (¢g, Y¥g), (@7, ¥7) and their direct
product (¢, ) on S x T. Let o, B, 9, 0: S x T> R satisfy

3.1) @ BB)=y(p(a,b)é(Y(a,b) forall a,beSxT.
Let A, B be arbitrary fixed subsets of § x T. We must show that
(3.2) «(4) B(B)=y(p(4, B) 6(¥(4, B)).
We define now marginal weights which do depend on A, B. Define g, Bs, vs, -
S—IR by
(33) oagls)=>.(teT, (s, ) A)a(s, 1)
Bss)=>.(te T, (s,)e B) B(s, 1)
VS(S) = Z (t € T, (S, t) € (p(Aa B)) '))(S, t)
8s(5)=>_(te T, (s, 1)ey(4, B))d(s, t).
Then
(B4 a(d)y= ) oals,n= ZS(Z (teT, (s, e A)als, )= ag(s)=ag(S).

(s,f)ed seS

Similarly B(B)=f4(S).

(35) (@4, B)=}((s.)ep(4,B)) ¥(s,1)
= Y (QeL(s)ep(4,B) (s 1)

seps(S,S)

= Y 7s(s)=y5(0s(S, 9)).

se@s(S,S)

Similarly 6(y (A4, B))=4({5(S, S)).
(Since (g, Yg) is M-expansivs it is expansive and so

ISTIS|=[s(S, S)| [Ys(S, S)I-

Therefore S=@4(S, S)=14(S,S), but this is not used.)
Assume for the moment that

(3.6) ag(sy) Bs(s2) S vsl@s(s1,52)) 55(‘/’;(31552) for all s,s,€S.
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Since (g, ¥g) is M-expansive this together with (3.4) and (3.5) implies
(3.7 a(4) f(B)=us(S) B5(S) = v5(0s(S, 3)) S5(¥5(S, S))
=7(¢(4, B)) 6(y/(4, B))

which is (3.2) as required. Thus it remains to prove (3.6).
Let s, s2 be fixed arbitrarily, and put s, —(ps(sl, s;) and s, =y4(s4,5,). Define o,
187‘3 yT‘,\ T_)IR by

(3.8) ocT(t)={‘x(S1=t) if (51, )e4

0 otherwise
{ﬂ(sz, ) if (s, t)eB
otherwise

Y(s3,0)  if (s3,0)e@(4, B)
rr(t)= { otherwise

0 otherwise.

5,(t) = {5 S, 1) if (g, 0)eP(A, B)

Then

(3.9)  as(s;) =Y (teT,(s;, )ed) als, )= Y ap(t)=ap(T).

teT
Similarly,

Bs(s,)=B+(T)
(3.10)  y5(s3)=D.(teT, (55, )€(A, B)) y(s5,1)
2 (te@(T,T), (53, 1)€@(4, B) 7(s5, 1)
=) (tep (T, T)) 1) =v1(0r (L T)).

Similarly 55(s,)= 6 (b (T T))
Assume for the moment that

(B11)  ar(t) Br(t)Syr(or(ty, ) 6, (W p(ty,ty)  for all ¢,,1,eT.

Then by hypothesis on (@1, 1) we have
(G.12)  ar(T) Br(T) = y1(@ (T T)) 67 (¥ (T, T)),

in other words (3.6) follows.

To complete the proof we must show (3.11). The left hand side of (3.11) is
zero unless (s;,t1)€A4 and (s,,¢,)eB, in which case it is «(sy, ;) B(s,, t,). Further-
more in this case

P(51:£1), (52 1)) =(@5(51,5,5), @t s, 1) = (53, @1 (t1, ,))E(A, B)
Y (315105 (S2:82)) = (W51, 8,0 Yt 4, ,)) = (54, Y (24, 1,)) €Y (4, B)

so the right hand side of (3.11) is y(¢((s,¢,), (55, £,)) (W (S5, 1), (55 £,)) and (3.11)
follows from (3.1). Q.E.D.
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Proof of Theorem 2

We just write out the proof of Theorem 1 again with a=f=y=35§=1, except that
we cannot use the i-expansiveness of (¢r,¥;) to go from (3.11) to (3.12).
Instead we put

T,={t: op(t)=1}, T,={t: pr(t)=1},
Ty={t: y;()=1}, T,={t: o;()=1},
then
wr(D)=|T1,  Br(T)=IT5l, ye(T)=|Tsl,  6(T)=|T,].

Since (3.11) holds again this implies for t,eT, and ¢,€T, that ¢(t,,t,)eT; and

Yrttr)ely.
Therefore ¢ (T, T,) < T, and ¢ (T}, T,) = T. Since (¢4, Y4) is expansive

ar(T) B (D) =TT Sl o (Ty, T Yo (Ty, TSI T T =y(T) 6,(T)
50 (3.12) holds as required. Q.E.D.

4. Proof of Theorem 3

We want to show that (@, ) set-expansive, (¢, ¥7) partition-expansive implies
that the direct product (@, ¥)=(s, ¢1). W, Y1) is set-expansive. Given G =(S
x T)x (S x T) we must show that

4.1) [GI=loy(G)l.

Let Tx T=D,+...+D,=D*+... + D be the two partitions with the proper-
ties as required in the definition of partition-expansive ((1.8), (1.9)). Partition G
as G=G,+...+ G, by the rule: ((s, 1),(s',t")) of G goes in G, iff (¢,t)eD,. Replacing
D, by Df we get similarly oy (G)=H,+...+H,.

If for i, 1<i<z, ((54,t), (80 17)), (55, 1,), (55, 15))€G,;, then this implies that
(t,t))(t,,15)eD; and hence by hypothesis on (@p, ) i (t5,t)
=(@r(t,,15), ¥ (1, 1)), then (t5,¢,)eDF. Therefore,

(@((51 1), (52 12)), (P (52, £2), (57, £1)) = (@551, 82), £3), (s(52, 81, Ea)) € H .
Thus we have shown that
42) oY (G)<H; for 1=isz
‘Suppose for the moment that
4.3) 1G=ley(G)l  for 1sizz
then |G| =Y |G| <Y |9 (GIS Y. [H,|=10y(G)| as required.
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So it remains to prove (4.3). We choose a value of i and fix it. Then for
convenience we write J instead of G;, D instead of D,, D* instead of D¥, H
instead of H,. For k=1,2,... and Uc(SxT)x(SxT) let U, be the set of all
points (s,s) of SxS for which there exist at least k distinct points
(t1, 1)), .-y (b 1) of Tx T such that

((S’ tl)a (S/’ tll))a ey ((S, tk): (S,7 tk)a (Sla t;c))e U

Notice that when U =J then (¢,,t}),..., (. t;) necessarily lie in D. By hypothesis
on S we have

o =losWs)|  for k=1,2,....

Let x be a point of ggys(J,). This means that there are (s, s)),(s,, 55)€J, with x

=(s(51,53) Ys(55,57)-
Further for j=1,2 there exist distinct

s 850), (S5 850))s o5 (55 £33y (S5 )} = J.
By hypothesis on T we have
ks{or(t t/2j)= wT(thz ty): 10, j<k},

and hence xe(py(J)), giving o5y s(J) = (@Y (V).
Finally,

1= ] S Y los¥sUI =Y oy (D)l =loy ().
This establishes (4.3) and completes the proof.

5. Proof of Theorem 4

Let L be a finite distributive lattice, which always can be viewed as sublattice of
{0,1}". Let o, B, y, 6: L»IR with 0 a monotone function (6(a)<(b) for a<bh)
satisfy

afa) fD)<y(aAb)o(anb) for all a, beL
then we have to show that
a(A) f(B)<y(AAB)6(AAB) forall A4, B<L.

We make use of the elementary

Lemma. If for s,tel C(s,ty={(a,b):a,beL;aAb=s,anb=t} then (a,b),
(a@,b)eC(s,t) implies (av a',b Ab)eC(s,t).

Clearly, the C(s,t) partition Lx L:

LxL= Y C(s0).

(s,t)eL x L
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Since v, A are symmetric operations
C*(s,t)={a:(a,b)eC(s,1)}

equals
*C(s,t)={b:(a,b)eC(s, 1)}

and by the Lemma this set is closed under v, A, that is a sublattice of L.
Now aAb=aAb' iff b=>b" and therefore C*(s,1)n C*(s,t'Y=g. For all s,teL
define D(s,t)={(s,d): de C*(s,t)}. Then clearly (s,)==(s’,t) implies D(s, t)
D(s',t)=@. Since |D(s, t)] =|C*(s, 1) =| C(s, t)| and the C(s, t) partition L x L, the
D(s, 1) in fact partition L x L also.
Assume for the moment that

(5.1) |E,|<|E,| forall s,teL and A,B<L,

where E,={AxB}nC(s,t) and F,={(AA B) x(4 AB)} nD(s,t). In other words
E, is the set of all (a,b)e A x B with aAb=s and a A b=t while F,, is the set of all
(¢, d)e(AAB) x (A A B) with c=s and de C*(s,1). Then

() pB)= ) a@pb)=) Y «ap®

(a,b)eAx B s,teL (a,b)eEg:

<Y Y p@hb)éanb)

s,tel (a,b)eEg:

=) X 9

s,teLl (a,b)eEg,

<> 2 90

s,teL {c,d)eF g

<Y Y 0@

sitel (¢, d)eFg,

= 2 7(¢) (d)=7(AA B) 5(A A B).

(c,d)e{AA B) x (A A B)

Now E_, is of the form E={(e,,me,),...,(e,, ne,)} where n denotes complemen-
tation in the sublattice C*(s,t), so

|F,|=l{(s,d):d=e; Ame;; 1 =i, j Sk}
{e;—e 150 jsk}c C¥(s, t)=|{e;~e;: 1 S0, j <K,

hence |E,|<|F,| by the Marica-Schonheim Theorem ([9]) and our proof is
complete.

6. Proof of Theorem 5
The proof is literally the same as the proof of Theorem 1 with one exception:

Since (@, Y1) is not M-expansive we have to show how (3.12) follows from
(3.11).
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We wish to show that
(6.1) o7 (T) Br(T)=yr(@r(TT)) 6 (T, T))
=77(T) 64(T).
The equality holds here because (¢, ¥ r)= (A, A) is expansive. Let
T, ={t:(s,,1)eA}
Ty={t:(s,,1)eB}
T,=1{t:(s3,)e@(4, B)}
T,={t:(s5, )Y (A, B)}.
Then
T, ATy={t, At t,€T,,t,eTg}
={t; A t,:(51,t,)€A,(5,,t,)EB}
c{t:(s5,0)€0(4, B)} =T,
TnTy={t,nty:t,€T,,t,eTy}
={t, Nty (5, t)€A,(5,,1,)€B}
c{t: s, eP (A, B =T,.
Next define o1y, Biry Y1y Sry: TR, by
ocm(t) =a(s,, 1)
Biry(&)=B(s2, 1)
Yy (D =7(551)
Oy (1) =0(s4,1)

$0 dp, increases with t. Then

ary(Ty= Z ary(t)= 2 afsy, )= z alsy, = (T)

1eT 4 teT 4 (S1t,€t)7:€A
ﬁ(T)(TB)Z Zrﬁ(T)(t): z B(s,, )= Z B(s, 1)=B(T)
® ele (Szt,et{eB
Yo T,)= ZT Yery)(B)= ZT: V(S3,0)= Z 7(s3,)=p7(T)

teT
(s3,t)ep(4,B)

5(T)(Tw): Z 5(T)(t): Z O(sy, 1) = z 0{s4,t)=0,(T).

teTy teTy teT
(s4,1)e¥ (4, B)

Assume for the moment that

(6.2) opy(ty) B () Syt t) Oy, Aty)  forall ty,1,€T.
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Then by Theorem 4

OC(T)(TA) ﬁ(T)(TB) = V(T)(TA ATB) 5(T)(TA A TB) R V(T)(Tq;) 5(T)(T.1,)

which is (6.1).
But (6.2) simply says

a(s1,81) B2 15) SY(@s(S1,82), 11 A1) S (Wrs(sy,55), 1 N Ey)
=7(83, 1 81,) 6(s4, 1, NE)

and this is true by our original hypothesis.

7. Proof of Theorem 6

Recall Definitions (1.4) and (1.5) for the direct product and for square functions.

(a) = (b)
The key idea in this proof is to express the square functions as direct products of
I-expansive pairs.

For z=(a,b)eS? and Z =S? define

(11) z*=(b,a), Z*={(b,a):(a,b)eZ}
and for n: S?—IR define
(7.2) n*(b,a)=n(a,b) for all (a,b)eS>.

Put gpg=0, lﬁs=lﬂ, QDT:‘p*, lﬁT=§D*~
Then for all X, Y =82 we have the identities

(73) @*(X,Y)=0sr(X,Y¥)
(74) (X, Y) =05 (X, Y™
This can be justified as follows:
for x=(a,b), y=(c,d)eS>
@*(x,»)=0((a,b),(c,d)=(p(a,d), Y (c, b))
=(¢s(a, d), ¢1(b, c))
=¢sr((a,b),(d, ) = @sr(x, y*)
and
Y2 (e, ») =¥2((a,b), (c,d) =(p(c, b), ¥r(a,d))
=r(b, ¢), ¥s(a, d) =(bs(a, d), Y (b, c))*
=(Wsr((@,b),(d, ))* =(Ysr(x, y*))-
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By hypothesis
(7.5) a(x) B =y(0*(x,) 6(y*(x,y)) for all singletons x, yeS x S.

This is equivalent to

(7.6)  a(x) B*(y*) = (s (%, ¥*) 0(Ysr(x, y*)*)  forall x,yeS xS

and with z=y* equivalent to
(71.7)  a(x) B*(2) Sy(@gr(x, 2)) 0*(Ygr(x,z))  for all x,zeS§ x S.

Since (¢, ) is M-expansive, by the definition of @gr, Ysr and Theorem 1 also
(pgps ¥gr) is Pi-expansive. Therefore (7.7), and hence also (7.6) and (7.5) hold for
sets X, Y82

(b) = (0)
Given a, f, ..., w satisfying (1.15), define o2, 2, 1%, u*: SxS—>R by
o*(a,b)=a(a) pb)  B*(a,b)=7(a) 3(b)
a,by=Ma)ub) p*(a,b)=v(a) w(b).
Then (1.15) says
a*(a,b) B (c,d) < 22 (¢(a, d), Y (¢, b)) 1 (9(c, b), ¥ (a,d)
=2%(@*((ab), (c, D)) > (¥*((a. b), (c, D).
By hypothesis (¢2,¥?) is M-expansive, so for all E, F =S xS we have

o’ (E) B*(F)S A2 (@*(E, F)) p*(W*(E, F)) or %;éz >

EF FE

(© = (a)

We know already that IMM-explosive implies Wi-expansive.

(a") = (b') This is the same as the proof for (a) => (b) except that now every
weight is the unit weight and we use now the hypothesis ((¢, @), (¥, ¥)) is
expansive instead of Theorem 1.

(b") = (¢) Specialize the proof of (b) = (c) to unit weights.

8. Remarks on Contractions

We say @, ¥: S xS—S is contractive if ¢ and  are surjective and if
(8.1) |@(A4,B)|[¥(4,B)[<|A||B| forall 4,B<=S.

Further let M-contractive be defined in the obvious way.

Remark 1. One easily checks in Table II that in the Boolean case S={0,1} only
(x,y) and the 7 equivalent to it (X, y), (x, ¥), (X, ¥), (¥, x), ...) are contractive.
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Remark 2. Some information about the structure of contractive pairs is readily
obtained. If for a,b, ceS, b=*c, ¢(a,b)=(a, ¢) then necessarily ¥ (a, b)=1y(a,s) for
all seS. It follows that for every row of the table for (¢,¥) corresponding to
Table Il either ¢ is constant when we say “top” or ¥ is constant when we say
“bot”. The same applies to columns.

Type 1. Every row for instance has “bot”. Then no column has “bot” for
otherwise ¥ would be constant. In this case equality holds in (8.1). The pair is
both M-contractive and Pi-expansive.

Type 2. Every row and every column has both a “top” and a “bot”. If [S|=2 then
it can be shown that those pairs are all expansive and contractive. Therefore,
since proper expansion occurs for n>1, the direct product of contractive pairs is
in general not contractive. If |§|>2 we get at least one strict inequality in (8.1).

Remark 3. In case |S|=2 a (¢, ) of Type 2 is never M-contractive. This can be
seen as follows. Let t=common “top” value, b=common “bot” value.
Since (¢, ¥) is surjective there exist by b, t,+t and part of their table is

top bot
b |t t
2 /b, b| P
b, g b Iy b bot
ay g
Choose
L ifa=t 3 if a=b,
y@={L if a=¢, da=32 ifa=b
0  otherwise 0  otherwise

a(ay)=a(a)=pFb,)=pby)=1, o )=p()=7 elsewhere.

Then y(p(a, b)) 0(Y(a, b)) =3-3<1-T=a(a) B(b).
However if A={a,,a,}, B={b,,b,} then

L =G+ 2+3)=7(p(4,B)) 6()(4, B) $4=2-2=0(A4) f(B).
9. Consequences of the 4-weight Inequality of [1]

We first restate the inequality.
Let L<={0, 1}" be a sublattice of {0, 1}" and let o, B, y, §: L—IR, then

9.1) afa)pb)sylaub)danb) for all a,beL
implies
9.2) w(4)pB)=y(AvB)o(AAB) forall 4,BcL.

If a=f=y=06=1 one gets
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1. Daykin [3]
9.3) |A||BI<|AvVB||AAB| forall A,B<L.

This inequality implies several known inequalities. We list here the following
ones

a) Marica-Schénheim [9]

9.4) |A|Z|A~A|  fordll A=L.

Proof.
|A||B|=|4]|B|=|A v B||4AB|

=|AvB||AAB|=|AAB||AAB|=]A~B||B~Al

Choose now B=A.

b) Daykin, Kleitman, West [5]

(9.5 |A||BIZ|AvB||L| forall A,B<L.

Proof. Clearly |A A B|<|LJ.

¢) Kleitman [§]

9.6) |UnD||L|Z|U||D| for U an upset and D a downset of L.

Proof. Put A=UnD and notice that LvAcU, LAA<D. Then
|AlIL|s|Lv Al|LAA|=|U||DI.

d) Seymour [11]

0.7 UNGIZIU nG,||L|  for upsets U, U,<L.

Proof. Notice that U nU,=U, v U,.

II. Chebychev

Let oo, 04, ...,0,; Bo, ..., f€R .
Put y,=max{a;f,, o, p,:05i<k}, 0=k<n, then

08) Ea)XB)Sm+DY .

In particular if 0Za, <...<a, and 0SB, <...<f,, then y,=o, B, and we get
Chebychev's inequality

O9) (a)TH)S0+1) Y o
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Proof. Let o, f: {0,1}"—IR | and define
y(c)= max afa) f(b} for all c{0,1}"

c=aub

Then

afa@) pb)<y(aub)-1, 6=1, and hence
a(A) B(B)=y(4 v B)|A A B.

Choose now a, : {0,1}"—IR , such that
«({1,2,....k)=0,, P{L2,....k})=ph, O0=Zk<n, and
a=p=0 otherwise.

For A=B={{1,2,...,k}:0<k<n} AvB=AAB=A, |A|=n+1, and therefore
a(A)=Z% B(B)=Zﬁk’ and (Z‘xk)(ZBk)é(n"‘l)ZVk'

III. Holley [7]

If «,B: {0,1}">R, and

9.10) o(a) B(B)<a(aub) flanb) for all a,be{0,1}”
then for an upset U and L={0,1}"

011 «(L) BU)2(U) B(L).

Proof. Choose y=u, 6=, A=L, B=U. Then LvU=U, L AU=L and hence
the inequality.

More generally, for a monotone function f: {0,1}"—IR _ rather than just the
characteristic function of an up-set, Holley’s inequality says that under hy-
pothesis (9.10) one has

9.12) oAL)(X f(P) BEN= (XS (p) () B(L).

peL P

This follows immediately from (9.11) by writing f as
f=Y/1I, with 4,20 suitable.

IV. Fortuin, Kasteleyn, Ginibre [6]

Suppose that for o: {0,1}">R |

9.13) afa)ab)Sa(aubya{anb) for all a,beL={0, 1}"
then for two up-functions f, g

0.14) (X a(p) f(P))( ZLOf(p) g =( Y «(p) £ (0) gPN( Y (P)).

peL peL pel
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In particular if U,V are up-sets f=1I, and g=1, then (9.14) says that
9.15) a(U)a(VY=a(U A V)a(L).

Proof. Since UnV=UvV, (9.15) follows immediately from our inequality.
Notice also that we actually get the sharper estimate

(D)oMW (U v V)o(UAV).
The derivation of (9.14) from (9.15) is standard, one just writes f and g as

SO)=X 41y, g@)=2 11y (p)

and calculates the expressions in (9.14).
We suggest that extensions of our results be found for the case of non-
discrete sets S (in the spirit of Preston’s generalization of Holley’s inequality

[10]).
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