Integral Inequalities for Increasing Functions.

Rudolf Ahlswede, Universität Bielefeld, Germany
and

David E. Daykin, University of Reading, England.

Abstract. For numbers of increasing real functions f(x) with $\int_{-1}^{+1} f(x) dx \ge 0$ we give new integral inequalities. They generalize classical results. The proofs are short and simple being based on sequences.

1. Introduction. Let E be the set of all real functions f(x) defined and increasing for $-1 \le x \le 1$. Let F be the set of members of E with

$$0 \le \int_{-1}^{1} f = \int_{x=-1}^{1} f(x) dx$$
 (1)

Also let G be the subset of F with equality in (1). Our main results are:

THEOREM 1. If $f_1, \ldots, f_r \in E$ and

$$0 \le f_i(0) + \int_0^1 f_i(x) dx$$
 for $1 \le i \le r$ (2)

then

$$0 \le \left(\int_0^1 f_1 \right) \dots \left(\int_0^1 f_r \right) \le \int_0^1 f_1 \dots f_r.$$

Notice that for f_i defined and increasing for $0 \le x \le 1$ the condition (2) simply requires that f_i can be extended to lie in F.

THEOREM 2. If r is even and $f_1, \ldots, f_r \in G$ then

$$0 \le \begin{cases} 1 & f_1 & \cdots & f_r \end{cases}$$

THEOREM 3. If
$$f_1, \ldots, f_r, g_1, \ldots, g_s \in F$$
 and $0 \le \theta \le 1$ then
$$\left(\int_{\theta}^1 f_1 \ldots f_r \right) \left(\int_{\theta}^1 g_1 \ldots g_s \right) \le (1 - \theta) \int_{\theta}^1 f_1 \ldots f_r g_1 \ldots g_s .$$

THEOREM 4. If r, s are odd and
$$f_1, \ldots, f_r, g_1, \ldots, g_s \in G$$
 then
$$\left(\int_{-1}^1 f_1 \ldots f_r \right) \left(\int_{-1}^1 g_1 \ldots g_s \right) \leq \int_{-1}^1 f_1 \ldots f_r g_1 \ldots g_s .$$

These results will follow immediately from their analogues for sequences which we proceed to prove and discuss.

2. Finite increasing sequences. Let n be a fixed positive integer. Abusing our notation we now let E be the set of all real sequences $f(1) \leq \ldots \leq f(n)$. We let F be the members of E with

$$0 \le \Sigma f = f(1) + \ldots + f(n) . \tag{3}$$

Also we let G be the subset of F with equality in (3).

THEOREM 1'. If $f_1, \ldots, f_r \in E$ and

$$0 \le (n-1) f_{i}(1) + f_{i}(2) + f_{i}(3) + ... + f_{i}(n)$$
 for $1 \le i \le r$

then
$$0 \le (n^{-1}\Sigma f_1) \dots (n^{-1}\Sigma f_r) \le n^{-1}\Sigma f_1 \dots f_r$$

The familiar Chebychev type inequality ([3], 2.17) says that if $f_1, \ldots, f_r \in E$ and are non-negative then for positive integers s

$$\left(n^{-1}\Sigma f_1^{s}\right)^{1/s} \cdots \left(n^{-1}\Sigma f_r^{s}\right)^{1/s} \leq \left(n^{-1}\Sigma (f_1 \cdots f_r)^{s}\right)^{1/s}$$

Clearly this inequality follows immediatley from Theorem 1'. It is more convenient to prove a slightly different form of Theorem 1' namely

THEOREM 1". If $f_1, \dots, f_r \in F$ and t is an integer in $\frac{1}{2}n \le t \le n$ then

$$\mu_1 \cdots \mu_r \leq m^{-1} \Sigma f_1(x) \cdots f_r(x)$$
 (4)

where $0 \le \mu_i = m^{-1} \Sigma f_i(x)$ for $1 \le i \le r$,

and m = n - t + 1 while summation is over $t \le x \le n$.

Proof. We may assume that there is a smallest integer p in $t-1 \le p \le n$ such that for each i in $1 \le i \le r$ we have $0 < f_i(p+1) = \ldots = f_i(n) = g_i$ say. If t-1 = p then (4) holds with equality. So assume t-1 < p and put q = n-p and $h_i = f_i(p)$ and $k_i = (qg_i + h_i)/(q+1)$. Then for each i because $f_i \in F$ we have $k_i \le g_i$ and $0 \le ph_i + qg_i$ so $|h_i| \le g_i$ so $h_i \le k_i$ and $0 < k_i$. We change f_i to a new function f_i^* by changing $f_i(x)$ to k_i for $p \le x \le n$. Then $f_i^* \in F$ and has the same μ_i as f_i . Further Σf_i^* ... $f_r^* \le \Sigma f_1$... f_r with summation over $t \le x \le n$, because

 \leq

1/n

with products over $1 \le i \le r$. The result (4) follows by repetition of this process. It is easy to prove (5) by induction on r.

If r is to be allowed to get large the condition $\frac{1}{2}n \le t$ of Theorem 1" is necessary. To see this let all $f_i \in G$ and be 1 for $\frac{1}{2}(n-1) \le x \le n$ and constant elsewhere.

THEOREM 2'. If r is even and $f_1, \dots, f_r \in G$ then $0 \le \Sigma f_1 \dots f_r$ with summation over $1 \le x \le n$.

Proof. Split the sum at 2n and apply Theorem 1" to each half.

Inversion and change of sign for each f_i shows there is no such result for r odd.

THEOREM 3'. If $f_1, \dots, f_r, g_1, \dots, g_s \in F$ and $\frac{1}{2}n \le t \le n$ put $A = \Sigma f_1 \dots f_r, \quad B = \Sigma g_1 \dots g_s, \quad C = \Sigma f_1 \dots f_r g_1 \dots g_s \quad (6)$ with summation over $t \le x \le n$ then $AB \le (n - t + 1)C$.

<u>Proof.</u> We may assume $f_i(n) = g_j(n) = 1$ for all i, j. Then there will be a smallest integer p in t-1 \leq p \leq n such that $f_i(x) = g_j(x) = 1$ for p < x \leq n and all i, j. If t-1 = p the result holds with equality, so assume t-1 < p.

Now $-1 \le f_1(p)$, $g_j(p) \le 1$ for all i, j. If say $f_1(p)$, $f_2(p) < 0$ then we change f_1 , f_2 into two new functions f_1^* , f_2^* by changing $f_1(p)$, $f_2(p)$ into $-f_1(p)$, $-f_2(p)$ respectively. Clearly f_1^* , $f_2^* \in F$ and A, B, C do not change. So we may assume $0 \le f_2(p)$, ..., $f_r(p)$ and that c = f(p) < 1 where f now denotes f_1 .

Put q = n - p and $d = f_2(p) \dots f_r(p)$ and $e = g_1(p) \dots g_s(p)$ and b = (q + cd)/(q + d). Notice that $0 \le d \le 1$ so $-1 \le c \le b$ and $0 \le b$, and trivially $-1 \le e \le 1$. We change f into a new function f^* by changing f(x) to b for $p \le x \le n$. Let A^* , B^* , C^* denote the corresponding new values of A, B, C. Now f^* is increasing and the inequality $\Sigma f \le \Sigma f^*$ is equivalent to $0 \le q(1-c)(1-d)$ so $f^* \in F$. Observe that $A^* = A$ by definition

of b , and trivially B* = B . Finally the inequality C* \leq C holds because it is equivalent to qb + bde \leq q + cde which is $0 \leq qd(1-c)(1-e)$.

If b = 0 then $f^* = 0$ and the result holds. If 0 < b we divide f^* by b and go back to the beginning of the proof. The theorem follows by repetition of this process.

THEOREM 4'. If r, s are odd and $f_1, \dots, f_r, g_1, \dots, g_s \in G$ and A, B, C are defined by (6) with summation over $1 \le x \le n$ then AB $\le \frac{1}{2}nC$.

<u>Proof.</u> Suppose first that n is even. We use (6) to define A_1 , B_1 , C_1 with summation over $1 \le x \le \frac{1}{2}n$ and A_2 , B_2 , C_2 with summation over $\frac{1}{2}n < x \le n$. Thus $A = A_1 + A_2$ and similarly for B, C.

Now Theorem 3' says that $A_2B_2 \le \frac{1}{2}nC_2$. If we multiply all f_i , g_j by -1 it also says that $A_1B_1 \le \frac{1}{2}nC_1$. Similarly from Theorem 1" we find that A_1 , $B_1 \le 0 \le A_2$, B_2 . It is now clear that $A_1 \le \frac{1}{2}nC$. This case n even of this theorem yields Theorem 4 which in turn contains the case n odd of this theorem.

We now give an example to show that the constant $\frac{1}{2}n$ in Theorem 4' is best possible. We let all f_i be $-1, \ldots, -1, 0, \ldots, 0, p$ and all g_j be $a, \ldots, a, 1, \ldots, 1$ with $a = -(\frac{1}{2}n - 1)/(\frac{1}{2}n + 1)$ then $A \sim p^r$ and $B \sim \frac{1}{2}n - 1$ while $C \sim p^r$. Examples of the form $-1, \ldots, -1, n-1$ and $-n+1, 1, \ldots, 1$ indicate that there are no other inequalities between AB or |A||B| and C or |C| with summation over $1 \le x \le m$.

DEFINITION. We say non-negative real numbers $w(t), \ldots, w(n)$ are good weights if $\frac{1}{2}n \le t$ and for all $f_1, \ldots, f_r \in F$ we have

$$0 \le \Sigma w f_1 \dots f_r \tag{7}$$

with summation over $t \le x \le n$.

Thus good weights are related to Theorems 1, 1', 1". We could not find weights for the other theorems.

Let H be the set of all $f \in G$ of the form -p/q, ..., -p/q, 0, ..., 0, 1, ..., 1 where q, n-p-q, p terms have the value -p/q, 0, 1 respectively and the positive integers p, q have $p+q \le n$. It is easy to see that H is a basis for G. If we adjoin the function 1, ..., 1 to H we get a basis for F.

THEOREM 5. The non-negative reals w(t), ..., w(n) with $\frac{1}{2}n \le t$ are good weights iff (7) holds whenever r = 1 and $f_1 \in H$.

<u>Proof.</u> Necessity is obvious, so to show sufficiency let $f_1, \ldots, f_r \in F$. By linearity we may assume $f_1, \ldots, f_r \in H$. There is a least p in $t-1 \le p \le n$ such that $f_1(x) = 1$ for all i and $p < x \le n$. If t-1 = p then (7) clearly holds, so assume t-1 < p and $f_1(p) < 1$. Then by inspection of the functions in H we see that $w(x) \ f_1(x) \le w(x) \ f_1(x) \ldots \ f_r(x)$ for $t \le x \le m$ and the theorem is proved.

3. Remarks on Lattices. The FKG and GKS inequalities of physics have many applications (see [1, 2, 4, 5]). It was trying to generalise them that led to this paper. Let L be the lattice of subsets of a

finite set. Examples show that our above results do not generalise to L . For α , $\lambda \in L$ let $\sigma_{\alpha}(\lambda)$ be 1 if $\alpha \in \lambda$ but -1 otherwise. The case $|\alpha| = 1$ of these functions σ_{α} is used in physics. We do not allow $|\alpha| = 0$. Then it is easy to see that $\Sigma \sigma_{\alpha} \leq 0 \leq \Sigma \sigma_{\alpha} \sigma_{\beta} \quad \text{where summation is over } \lambda \in L . \quad \text{We have proved}$ that $\Sigma \sigma_{\alpha} \sigma_{\beta} \sigma_{\gamma} \quad \text{is } >0 \quad \text{if } 1 = |\alpha| < |\beta| \quad \text{and } \alpha \notin \beta \quad \text{and } \alpha \cup \beta \in \gamma . \text{ is } =0 \text{ if } \alpha = \{1, 2\}, \ \beta = \{2, 3\}, \ \gamma = \{1, 3\}, \ \text{but is } <0 \quad \text{otherwise.}$ Elementary arguments show that $0 \leq (-1)^r \Sigma \sigma_{\alpha} \cdots \sigma_{\alpha} \quad \text{if } r = 4 \quad \text{and} \quad |\alpha| = 2 \quad \text{or if } r \leq 2^{s-1} \quad \text{and } s \leq |\alpha_i| \quad \text{We omit the proofs.}$

REFERENCES.

- R. Ahlswede, D. E. Daykin, An inequality for the weights of two families of sets, their unions and intersections,
 Z. Wahrscheinlichkeitstheorie und Verw. Gebeite 43(1978) 183-185.
- 2. R. Ahlswede, D. E. Daykin, Inequalities for a pair of maps $S \times S \rightarrow S$ with S a finite set. Math. Z. 165(1979) 267-289.
- 3. G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press (1959).
- 4. D. G. Kelley, S. Sherman, General Griffith's inequalities on correlations in Ising ferromagnets, J. Math. Phys. 9(1968) 466-484.
- 5. P. D. Seymour, D. J. A. Welsh, Combinatorial applications of an inequality from statistical mechanics, Math. Proc. Camb. Phil. Soc. 77(1975) 485-495.