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Abstract. For numbers of increasing real functions f(x)
. +1 . . . .

with [_1 f(x) dx = 0 we give new integral inequalities.

They generalize classical results. The proofs are short

and simple being based on sequences.

1. Introduction. Let T ©Dbe the set of all real functions f(x)

defined and increasing for -1 < x <1 . Let . F be the set of members
of E with
1 1 ' :
0 < £ = f(x) dx - (1)
-1 x=-1

Also let G be the subset of F with equality in (1). Our main
results are:

THEOREM 1. If f., ..., f ¢ E and

1? r
1 .
0 < f.(0) + f.(x) dx for 1 <1i<r (2)
i i —

0

1 1 1

then 0 < ( f1} . [ il } < f1 eeo T
0 o T 0 r

Notice that for f, defined and increasing for 0 < x < 1 the

condition (2) simply requires that fi can be extended to lie in F .

THEOREM 2. If r is even and f f € G then

1, ¢ o0 g -



THEOREM 3. If f1, ceey fr, Bys ~res B ¢ F and 0 <g < 1 then

1 4 {1 . L
[ fs f1 ce fr} ( Je O gs] < (1 - 8) . f1 ves frg1 .

THEOREM L. If r, s are odd and £is vnees fr, Bys +++» &g € G then

1 1 1
( » f1 e fr} [ » By von gS] < » f1 ‘e frg1 e B -

These results will follow immediately from their analogues for

sequences which we proceed to prove and discuss.

2. Tinite increasing seguences. Let 1n be a fixed positive integer.

Abusing our notation we now let E be the set of all real sequences

£(1) < ... < f(n) . We let F be the members of E with
0<zf=f(1)+ ...+ f(n). (3)
Also we let G be the subset of F with equality in (3).

THEOREM 1'. If f £, €D and

1> e

(@]
A

5 ) <n ge. ... £ .
r 1 r

(n"12f1) e (71

in

then 0

The familiar Chebychev type inequality (33, 2.17) says that if

f,» «.., £ € E and are non-negative then for positive integers s
1 r
1/s 1/s | 1/s
-1 s} -1 s ( -1 s?
n z f e < I .
( 1 (n I fr] tn X(f1 Ir) j
Clearly this inequality follows immediatley from Theorem 1'. Tt

is more convenient to prove a slightly different form of Theorem 1'

namely

(n - 1) £.(1) + £.(2) + fi(3) ..o+ £:(n) for 1<i

IA



_3...

ce, fr € F and t is an integer in

1

My »ev p < m 'z f1(x) cen fr(x) ,(h)

where 0 < u. m_1Z fi(x) for 1<is<r,

Boinb il i

and m=n -t + 1 qhile“§ggp§téggwis_gzgy t<x<n.

Proof. We may assume that there is a smallest integer p in

t=1 < p <n such that for each i in 1 <1 <r we have

0 < fi(p+1) = ,,, = fi(n) = &, say. If t~1=7p then (4) holds

i
vith equality. So assume +-1 < P and put g = n-p and h, = fi(p)
and ki = (qgi + hi)/(q+1) « Then for each i because fi e T

. 0 . l . . <k,
we have kl < g, eand 0O < phl + a8, so 'hi' < 8. so hl kl

and C)é)ki . We change fi to a new function. ff by changing
fi(x) to k. for p<x<n. Then f¥ ¢ I and has the same My
as 'fi - Turther Zf? cee f? < Zf1 ces fr with summation over

t £ x <n , because

(q + 1) Ik, < (q ngi) + Th, (5)

with products over 1 <i <r . The result (L) follows by repetition

of this process. It is easy to prove (5) by induction on T

If r is to be allowed to get large the condition In < t
of Theorem 1" is necessary. To see this let all - fi € G and be 1

for i{n = S X £n and constant elsewhere.

THEOREM 2'. If r is even and f +v+> £ eG then 0szIfr ...rf

1? 1 r

with summation over 1 < x < n .
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Proof. Split the sum at 3n and apply Theorem 1" to each half.

Inversion and change of sign for each fi shows there is no

such result for r odd.

THEOREM 3'. If fis eees T8 voes 8 €T and Insts<n put
A= Zf1 e fr ’ B = ZgT - F Cc = Zf1 e frg1 e By

vith summation over t < x < n then AB < (n-1t +1)C.

gj(n) =1 for all i, j . Then there

will be a smallest integer p in t-1 < p £ n such that

Proof. Ve may assume fi(n)

fi(x) = gj(x) =1 for p<x<n andall i,j . If t-1=17p

the result holds with equality, so assume t-1 < D .

Now -1 < fi(p), gj(p) €1 for all i, j . If say f1(p),
fg(p) < 0 then we change f19 f2 into two new functions f?; fg
by changing f1(p), f2(p) into —f1(p), —f2(p) respectively.

Clearly fﬁ, fs € F and A, B, C do not change. So we may assume

0 < fg(p), ceey fr(P) and that c¢ = f(p) < 1 where f now denotes £,

Put g=n-p and 4= fg(p) v fr(p) and e = g1(p) oo g (D)

and b= (q + cd)/(qg +d) . Notice that 0 <d < 1 so -1<¢c<hb
and 0 < Db , and trivially -1 <e <1 . We change f into a new
function f* by changing f(x) to b for P<x<n. Let

A*, B¥, C¥ denote the correspoﬁéihg new values of A, B, C . Now

f¥ 1is increasing and the inequality If < If* ig equivalent +o

0<a(1=-¢)(1-4a) so f%¥ e F. Observe that A% = A by definition

(6)



...5...

of b, and trivially B¥ = B, Finally the inequality C¥ < (¢
holds because it is equivalent to gb + bde < q + cde which is

0< qd(1 -¢c¢)(1-¢).

If =0 then f¥ =0 and the result holds. If 0 <D we
divide f* by b and go back to the beginning of the proof. The

theorem follows by repetition of this process.

2e3 8 ¢ G and

THEOREM L', If r, s are odd and £io eees fr, 8yo -

A, B, C are defined by (6) with summation over 1 < x <n then

S

AB < inC .

Proof. BSuppose first that n is even. We use (6) to define A1,

BT’ C1 with summation over 1 < x < 3n and A2, B2, 02- with summation
over in <x <n . Thus A= A1 + Aé and similarly for B, C .
Now Theorem 3' says that A232 < %ncz + If we multiply all fi, gj

by -1 it also says that A.B, < inC. . Similarly from Theorem 1"

17 1

we find that Ay, By =0 <A, B, . Itis nowclear that AB < nC .
This case n even of this theorem yields Theorem L which in turn

contains the case n o0dd of this theorem.

We nov give an example to show that the constant in in
Theorem 4' i3 best possible. Wé/let all f. be -1, ..., 1,0, ..., 0, p
and all gj be a, ..., 8, 1, ..., 1 with a=-(in - 1)/(in + 1)
then A~p and B~ 3n -1 while C ~ »" . Examples of the form
=1, ve., =1, n-1 and -n+1, 1, ..., 1 indicate that there are no
other inequalities between AB 'of [Al|B] and ¢ or [c] with

summation over 1 < x < p. N




DEFINITION. We say non-negative real numbers o w(t), +.., win)

are good weights if in <t and for all f1, vens fr € F we have

0 <zwf, ...f, (7

1

with summation over t < x <n .

Thus good weights are related to Theorems 1, 1', 17 . We could

not find weights for the other theorems.

Let H be the set of all f € G of the form -p/q, «..,
-p/q, 0y «v., 0, 1, «.., 1 where g, n-p-q, p terms have the value
-p/q, 0, 1 reépectively and the positive integers p, g have
ptg S n . It is easy to see that H is a basis fof G . If we

adjoin the function 1, ..., 1 to H we get a basis for F .

THEOREM 5. The non-negative reals w(t), ..., w(n) with in <t

are good weights iff (7) holds whenever r = 1 and f‘1 € H.

Proof. Necessity is obvious, so to show sufficiency let f1, N -3
By linearity we may assume f1, cees fr € H. There is a least p

in t-1 < p £n such that fi(x) =1 forall i and p<x <p .

If t-1 = p then (T) clearly holds, so assume t-1 < p and f1(p) <1
Then by inspection of the functions in H we see that
w(x) f1(x) < wix) f1(x) oo £ (x) for t £x <m and the theorem

r

is proved.

3. Remarks on Lattices. The FKG and GKS inequalities of physics
have many applications (see [1, 2, 4k, 51). It was trying to generalise

them that led to this paper. Let L be the lattice of subsets of a




finite set. Examples show that our above results do not generalise
to L . For a, A e L 1let oa(}) be 1 if ac A but -1
otherwise. The case |a| = 1 of these functions % is used in
physics. We do not allow la] = 0. Then it is easy to see that
an S0 < ano where summation is over X ¢ L . We have proved

B

g% is >0 if 1=Ja| < 8] and a ¢ Bandaupc v, ig =0 if

e={1, 2}, 8 =“{2, 3}, vy={1, 3}, but is <0 otherwise.

that Yo o
o

Flementary arguments show that 0 < (—1)rzoa oo 0 if r =4 ang
1 r

s and s < ,ai, . We omit the proofs.

Iaif =2 orif r<o2
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