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INTRODUCTION

In spite of the great activity in multi-user communication theory
during the last decade and in spite of the many interesting results which
have been obtained by researchers all over the world we feel that pro-
gress on the essential and harder problems has been rather slow.

We think that this is due to the fact that too much thought is given to
specific coding problems with ever increasing complexity, which can be
treated by composition of known techniques, and too little effort has been
put in trying to understand the basic principles in the subject or to create
new ones. As things stand now a beginner in the field must be frightened -
away by this huge collection of tricks known only to a few experts.

In order to keep the size of the paper in proportion we limit ourselves
to source coding even though there are many connections between
channel- and source coding problems in multi-user communication theory.
We intend to return to them on another occasion.

We hope to bring some clarity into' the subject by introducing two
principles: the coloring principle and the covering principle. Those to-
gether with Shannon’s idea [2] of the test channel for describing certain
coverings and the very elementary properties of typical sequences (see [6])
and the entropy (resp. information) function seem to be sufficient to prove
most existing source coding theorems. It is asked too ‘much to check this
in all cases, but as a justification for our belief in the power of the
present approach we give the solution to several outstanding problems.

In Part I we give the rate regions for the following source coding
problems: '

I. Gallager’s problem of coding arbitrarily varying sources (AVS)
with side information at the decoder (last paragraph of Section
IT of [22]).

1I. AVS with partial side information at the decoder (in the spirit
of [17], [18)).

I1I. Arbitrarily varying correlated sources (AVCS) with side inform-
ation at the decoder.
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IV. AVCS, thatisa robust version and generalization of the Slepian-
Wolf Theorem [15] under a positiveness assumption. '

Part I will deal with the 2-helper side  information problem, rate-
distortion versions of the above problems, and a robustification technique
of wide applicability, which makes it possible to convert coding theorems
for compound ([7], [33], [6]) multi-user sources (and -channels) to those for
arbitrarily varying multi-user sources (and -channels). |

Whenever in the literature channel theorems are used to solve source
coding problems things get overcomplicated and this already indicates
that something is not really understood. OQur present approach seems
more canonical.

In addition to the two most basic principles mentioned we emphasize
some ideas which may or may not be applicable in a particular situation, .
but which help as guides in finding solutions: the idea of separate encoding
the information and the side information and the idea of decomposing
information or entropy.

SgcTION 1. THE SOURCE CODING PROBLEMS AND THEIR RATE REGION

We give now a description of the source coding problems treated and
state the resiilts about their rate regions.

§1. ARBITRARILY VARYING SOURCES WITH SIDE INFORMATION AT THE
DECODER—A PROBLEM BY GALLAGER [22}

. Gimilar as in channel coding (see for instance [8], [13], [6]) one can
describe sources by more robust models, where the source output is
governed by an unknown probability distribution (PD) from a prescribed
class of PD’s. _

An arbitrarily varying (discrete memoryless) source (AVS) is a model
for a source whose letter distribution depends on a state which may vary
within a certain set S of states from one time instant to the next in an
arbitrary manner. We give now the formal description.

Let X, S_ be finite sets, and let P={p(|s)rse S} be a set of PD’s
on . Forevery s" = (5, - - -, ») € S" =[] Sdefine PD’s P(- |s") on
1
%n by

PO | s = tl;ll'P(x,|s,), = (5 ) € X (1.1)

- Set Pr={P(- |s") s": € §"}. Wecall the sequence (P")a-1 an AVS. Instead

of specifying the distributions we could equivalently consider ({X(s") :
5" & S")mw1, where X(s") has distribution P(- | s"). The difference to a
correlated source (X,, S))i=i is that not the joint distribution but ouly

Vol. 4, No. 1 (1979)



78 COLORING HYPERGRAPHS FOR MULTI-USER SOURCE CODING

conditional distributions are specified and that the S-outputs are not
governed by a probabilistic law.

The rate region for an AVS (without any side information) is well-
known, easily follows from the Carrier Lemma in Section 3, and can be
expressed as follows: ’

Denote by S the set of all formal convex combinations of elements
from S:

S={5:75= 2': as; with ; >0, Y, s =1,5€ S, r€N}. (1.2)
i=1

i=1

We can then define the distribution

P(-|35)= 2 aP(-|5) (1.3)
and a RV X(5) with distribution P(- | ).
In this terminology the rate region QR is given by - (1.4
R ={R:R>= max H(X(35))}
SES

Gallager considered in [22] the case in which the S-outputs are known
exactly to the decoder. He asked to determine the smallest rate at which
the -outputs can be coded with an arbitrarily small error probability

uniformly in s”. The problem seems to be not adaptable to standard -

techniques and furnishes an interesting example for the power of our
coloring techniques. We show that the optimal rate equals H* =

' max H(X(s)), which is in general smaller than max H(X(s)) and there-
se s : T

ses
fore the side information helps. As a little exercise the reader may
verify that in case the side information is available to the encoder (and
only to the encoder) the optimal rate is the same as without side inform-
ation. Obviously, if both, the encoder and the decoder, have the side
information, then the optimal rate equals again H*.

‘We give now the formal description of the problem. Let f, be a
mapping of X" into some finite set, binary strings of length log, ||f,]| for
instance (As in [17] we use again the notation [|f]| for the cardinality of
the range of function /). * F, is a mapping of the cartesian product of the

- range of f,, with §"into ". We refer to f, (resp. F,) as encoding (resp.

decoding) function. The pair (f;, F,) is called a code.
The block error probability of the oode is defined by
e(fr F,) = max Prob {F,(fu(X(s"), s") % X(s")}. (1.5)
S"l G SYI
A non-negative number R is called an achievable rate, if for any y > 0,
0 < A < 1, there exists an ng(A, ¥) such that for all n > ny(A, v) there exists
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a code (f,, F,) such that

e(fn, Fa) <A | _ (1.6)
and log || fal] < (R 4 »)n. o (1.7)
The infimum over all achievable rates is called the optimal rate Rp.

THEOREM 1. For the AVS with side informatioﬁ at the decoder the opti-
mal rate Rp is given by the formula

Rp = max H(X(s)).
sed

§2 AVS WITH PARTIAL SIDE INFORMATION AT THE DECODER

In the preceding paragraph we dealt with the situation in which the
decoder has exact knowledge of the S-outputs. Now we consider a more
general problem. . Let us imagine that in addition to the -¥-encoder
there is another person (or device), the S-encoder, who observes the
S-outputs. He is able to inform the decoder about those outputs at a
prescribed rate R,. Clearly, if R, > log |S|, then we are back in the old
situation of ‘a completely informed decoder. Let us give now the formal

description of the coding problem and the result.

f., (resp. g,) is a mapping of X" (re.sp. S™) into a finite set. They are
the encoding functions. The decoding function F, maps the cartesian

product of the ranges of f, and g, into X" The ecror probability of the
code (f;, gn, Fr) is defined by ' ' '

e(frn g F) = max Prob {F(f(X(), ga(5") # Xk (1.8)

A pair of non-negative real nﬁmbers (R;, Ry) is called an achievable
pair of rates, if for any ¥ > 0,0 <A< 1, there exists an np(A, ¥) such
that for all n > no(A, ¥) there is a code. (f,, ga Fy) with

e(fns 8ns Fr) < A (1.9
and : log |Ifoll < (Ry + ), (1.10)
log [lgall < (R + 7. o

The region of all achievable pairs of rates is denoted by Rpp. For
the presentation of the results it is convenient to adapt-the following
notation:

P(S) is the set of all PD’s on S. For p € P(S), S, is a random vari-
able (RV) with valuesiin § and distribution p. X, takes values in X" and
is distributed ac_:cording to

~Prob (X, =x) = §5Pr0b (X(5) = x) Prob (S, = 5). . (l.11)

U, stands for a RV with (U, Sps XP) forming a Markov.chain: .
U,—-S,—X,.

Vol. 4, No. 1 (1979)
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THEOREM 2. For the AVS with partial side information at the decoder
the rate region Rpp equals
R** = V{(R;, R): R > sup H(X,|U,), R, > sup 1(S, AU}
P € P(S) P E PSS :
where the union is taken over all sets of Markov chains (Upy=S,—=X,), e P(S)-
It suffices to use U,’s with ||U,|| < |S| + 2. . ,

§3 ARBITRARILY VARYING CORRELATED SOURCES (AVCS) wiTli SIDE
INFORMATION AT THE DECODER

We consider here (discrete memoryless) arbitrarily ‘varying correlated
sources (AVCS), which can be described as follows.

Let 2, 47, S be finite sets, and let {P(-,-]5):5= S} beasetof PD’s
on X' x Y. Foreverys"=(sy,...,s,) & §" = 1] S define PD’s P(-, - | 57)
. ]
on X" x A" by

P, [ 5" =[] P(x,, yels) for (x", y) & 7x g (11
=1

- We call the sequence ({P(-, - |s") : 5" € S)Z_, an AVCS, Instead of
specifying the distributions we could equivalently consider ({(X(sm,
Y(sM) : 5" € S")=: where (X(s™), Y(s™) is.a pair of RV’s with values in
X" x 4J" and distribution P(-, -|s"). In case |S| = 1 one gets the standard
correlated source (DMCS) considered by Slepian and Wolf ([15]) and in
case Y| = 1 one gets the AVS of §1. .For encoding functions Ju (tesp. g,) .
defined on " (resp. Y") a decoding function F, shall be a mapping of
the cartesian product of the ranges of £, g, and of S" into ¥~ J*. The
error probability of (f,,, g,, F,) is defined by :

e(fns 8y Fr) = max Prob {F(f(X(s7), gu(Y(s), s7) 5 (X(s"), ¥ (s")}-

S" n
| : (1.13)
Achievable pairs of rates and the rate region, denoted now by R4, are
defined in the usual way. ' B

THEOREM 3. The rate region RF for the AVCS A with side informa-
tion at the decoder can be characterized as Sollows:

5{54 = {(Ry, Ry) : Ry, R, satisfy (a), (b), (e}

where
(a) Ry > max H(X(s) | ¥(s))
: se S
(b) Ry, > max H(Y(s) | X(s))
S E S

© Ri+R> maqu(X (s), Y(5).
SE S

Jr. Comb., Inf. & Syst. Sci.
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If we denote by R(s) the rate region of the DMCS.((X,(S), Y(s)i=1,
then the Theorem says that

. se S
We therefore have the

COROLLARY. For the AVCS  with side information at the decoder
and additional side information at one or both encoders the rate region equals

(again) fR;ﬂ .

The cases in which one or both encoders have side information about
the states are still to be investigated. More generally one could study
the case in which the encoders and the decoder have different partial side
information in the following sense: There are 3 partitions £, ={4,, ey Ard
Q,={By,..., Bi,}, and £p = {Ci,..., Crp} of S, and at each time instant
encoder 1 (resp. 2) knows in which 4; (resp. B)) s, is contained and so
does the decoder with respect to his partition. This model covers all
cases of the present paragraph and goes considerably beyond it.

§4 AVCS WITHOUT SIDE INFORMATION

f. and g, are defined as-in §3. F, is now a mapping from the cartesian
product of the ranges of f, and g, into ¥m wx Jr. The error probability
of the code (f;, gn> Fn) is defined by . R

(f 8o ) = max Prob {Ff,(X(s"), gV # (X, Y-

(1.14)

- The rate region, defined as usual, is denoted by RS is again the
set of formal convex combinations of elements in S,

- Px,y|s8)= JZ-a,-P(x, yls) fors=2Zajs;
and (X(5), Y(§)) has distribution P(-, - 5)-
Tueorem 4. If an AVCS ] satisfies the entropy positiveness c‘o'ndi’tion
| CH(X(s), Y(8)) >0 forallse S, (i.lS)
then its rate region R equals [oF |
R = {(Ry, Ry) : Ry, R satisfy (a), (b), ()}, here

(@) R, > sup H(X(5)] Y(5)
ses

® Ry > sup H(Y(S)| X(9))
sES ’

© R+ Ry> sup HX(), Y(5).
ses
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82 COLORING HYPERGRAPHS FOR MULTI-USER SOURCE CODING

The theorem says that
R4= n R
se S
This characterisation of the rate region is in general nor valid without
the positiveness condition.

ExampLE. (0-1-case) Let us consider the case
Px,yls)=1o0r0 foralxe ¥,ye Y, s . (1.16)

This can also be described by an || x |4|-matrix with 0’s and I’s as
entries. This matrix has a 1 in position (x, ) exactly when P(x,y]|s) = I
for some s = §S.

Now let us look at the special case, in which the matrix is of the

101
calculation yields R = {(R,, Ry): Ry >1log2, Ry >1og2, R, + Ry = log 6}.
For a code (f,, g., F,) with e(/,, g, F,) < A < 1in the 0-1-case by (1.14)
necessarily e(f,, g., F,) = 0. :

We show that then

110 A . :
form (0 1 1). It is convenient to use X = 4 = 10, 1, 2}.  An easy

I/l = 3", llgall = 3. (1.15)

Suppose that (w.l.o.g. by symmetry) ||f,ll < 3", then there exists a pair
(x", x'") with f(x™) = f(x™). Endowing X" with a vector space structure
GF(3)" one readily verifies that there are vectors € = (e;,...,¢,) and
€' =(el,...,€) With ¢, ¢ & {0, 1}, 1 < # < n, such that

X = x" e,

The nth Kronecker product of the above matrix has a 1 exactly in the
positions (x", ") with p" = x" . *n ¥ = {0, 1}, 1 <t < n, and there
both positions (x", x” + ¢") and (>, x4+ €") have a 1. Since the second
components are equal and the first components have the same color this
contradicts e(fy, g, ) =0. . :

In the general 0-1-case the matrix is the vertex-vertex incidence matrix
of a bipartite graph and we have the problem to determine the rate
region of strict orthogonal colorings of the nth (Kronecker) product of
bipartite graphs. Let us denote this region by Q,. To give “single-
letter” characterizations for this region is of comparable difficulty with
the related 0-error capacity problem of Shannon [30], which comes from
channel coding and is for packing rather than for coloring. For recent
progress on this problem—in particular, the solution of the famous
pentagon case—see [32].

As a problem, which deserves further study, we propose to decide
whether for an arbitrary AVCS

RA = R R,

Jr. Comb., Inf. & Syse. Sci.
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if the AVCS A, (resp. ) is given by the set of PD’s
(P(-, -|5) - H(X(s), Y(s)) = O} (resp. {P(-, - | 5) : H(X(s), ¥(s)) > O},
QA+ is known by Theorem 4. ~

In his doctoral thesis [26] J. H. Jahn showed that for an AVCS the
rate region equals always R, if the encoders are allowed to use randomized
encoding. His proof is based on a generalization of Cover’s proof ([16]),
which leads to correlated random codes (see [8], [13]) and the elimination
technique of [13], which makes it possible to transform such’ codes into
codes with independent randomisation at the encoders only. The wide
applicability of this technique to arbitrarily varying multi-way channels
and correlated sources was emphasized in [13]. -Jahn’s generalization of
Cover’s proof lacks symmetry in the error estimates and this accounts
for the fact that the proof is very complicated. In Section 7 we give a
proof which avoids these difficulties. In conclusion we remark that a//
our theorems hold also for infinite sets S. This can be proved with the
help of a lemma in [8], called Approximation Lemma in [13], in the same
way as it was used in [13]. :

SecTION 2. COLORING HYPERGRAPHS

 The nature of this section is purely combinatorial. In the text some
remarks about connections to coding theory are made. However, these
connections will become fully clear only in the following sections.
Let QY ={1,2,..., I} beafinite set and let & ={E;: 1 <j<J} be
a family of subsets of Cf/. <Hypergraph” is a fancy name for the pair
(¢V, &). The elements of C|/ are called vertices and the elements of &
are called edges. |

§1 COLORINGS WHICH ARE GOOD ON ALL EDGES (UNIVERSAL COLORINGS)

A vertex coloring of (CY/, &) with L colors is a map &: Cf/ — {1, 2,
.» L}. In[10] we proved by a simple counting argument the following

CoLORING LEMMA 1. Let J, L and t be non-negative integers such that

J-L <1l o Q.1
For any hypergraph (CV, &) with |&|\ = J and
El<L(<j<J) (2.2)

there exists a vertex cbloi‘ing @ with L colors such that in every edge (uni-
versality) E; (1 < j << J) every color occurs at most t times, that is,

oD NE|<stforalll=1,...,Landallj=1,...,J. (2.3)

This result was used in [10] te prove a list code version of what is now

called the Slepian-Wolf source coding theorem [15]. Since the hypothesis
(2.1) holds for #’s which are rather small as compared to J and L one
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actually gets very small list. sizes. That was enough for the purposes it
- served in [10]. Noticeable facts about this result are:

(1) No assumptions about the interdependencies of the E;’s are made.
(2) No assumption about / is made.

(3) The universality mentioned above is not guaranteed by the Slepian-
Wolf Theorem, which says only that edges are colored “‘well in average”.
For the source coding problems solved in this paper universality is a key
issue and our old coloring result encouraged us in solving them.

(4) Since for this result the number of colors used could be as small
as- max |Ej|, by allowing L to be somewhat larger, better results can be

I</j=<J
obtained.

We present now some results which seem to be of importance for
multi-user source coding. The discussion is by no means exhaustive, that
is, other coloring results are concejvable, However, the techniques used
are adaptable to many situations, their power lies in their simplicity.

We denote by &,, 0 <A< 1, a coloring of (CV, &) for which inevery
. edge E;, 1 < j < J, at least (1 — N|Ej| colors occur only once. Dy is said
to be strict.

Strict colorings usually require an enormous number of colors. Our
first little result concerns strict colorings. It also plays an auxiliary role
for the proof of Lemma 3C. :

To a hypergraph (¢}, £) we can assign a graph (CY7, £*%), where the
vertex set is the same as before and 2 vertices are connected if they are
both contained in an E; for some j. A graph is a special hypergraph.
A strict vertex coloring of (CV, &%) is also a strict vertex coloring of
(CV, &), and vice versa. ““deg (i) denotes the number of vertices in the
graph, which are connected with vertex ; by an edge.

COLORING LEMMA 2. Let (C]7, £") be a graph with
max deg (v) < D,

ve Y ‘
then (CV, &) can be strictly colored with [ colors if _
‘ L>D-4 1. (2.49)
Proof. Color the vertices 1, ...,/ iteratively in any way such that

no two adjacent vertices get the same color. If the procedure stops before
all vertices are colored, then necessarily one vertex ;i must have deg (i) >
D11, contradicting the hypothesis. :

We present now 3 coloring lemmas of increasing complexity, the later
ones imply the earlier ones.. -Therefore, we could Just give the last one;
however, for tutorial reasons:and also in order to reflect the,d‘éveIOpmem
of the ideas we prefer the prescribed. setup. A coloring @ is called ap
L-coloring if ||®|| < L. : ; .

Jr. Comb., Inf, & Syst..Sei.
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COLORING LeEmMA 3A. 4 hypergraph (CV 5 6’) has an 'L-colorzng (152;\,
0<a<d if . S

max |E|(L — |E,|) ‘(l-—)\))\“<1 - (2 5)

1<ji<d l .
and Zj: exp {]E l(h()\) + A log (]FJ\L"‘))} < 1. o (2 6)

Jj=I
Here, and elsewhere h(\) = ——/\ log A — (1 — ) log (1 — /\) For. (2 6) to
hold necessarily L > max |Ej|. ‘
1

" YA
Proof. Let Xy, ..., X be i.i.d. RV’s with distribution Prob &=
1

= = for [ =1, , L. Color the vertices at random such that vertex v;

gets color lif X; = [.

We refer to this as the standard random L-colormg of ¢V in the sequel
Define now for i =1, . . Ij——l , J/ RV’s

ﬁi(Xb ..

We can view the coloring procedure as an iterative coloring of vertices

:X-)’—_{l 1fX;éX for all i’ < llEE.

0 otherwise 2.7

Vpy v - - V) Then f{ takes the value l if i gets a color whxch has not
occurred until step iin E : wo

Clearly, if ¥ fi(Xy, ..., XD =0 — N|E;| then at most ,\\E{ colors
iek;
occur more than once in E;, and therefore (1 — 2A)]E,-| vertlces aré colored
correctly. We upperbound now

i’rob{ e):l;i ﬁj<(1—A)}Ei\}.
i 5 !

It is clear from the deﬂnmon 2. 7) that tlus expressxon depen,ds only
on RV’s X; with i E E W.Lo.g. we can therefore con51der the followmg
problem:

PR R )
\

Xy, - X,, = IE,] are dxstnbuted as before L , :
f;(Xl,:., Xi) {1 lel?éX fOI'al.ll <1 :.

0 otherwise
It suﬁices to show that under the hypothesxs t(L‘— i1 — /\)/\“‘ <

Prob {z 7« X{, X <(1— }\)t} egp{ [h()\) + /\log ] ’ (2 g)

because this mequalxty 1mphes then
o

Prob L i - L i Il
{min |7 2 f <(1 A)} { exp. w, h(A)+Mog .

"Y

151< j=1 .
ST

-} . . . TSR o (2 9)
Vol. 4, No. 1 (1979) ="
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if (2.5) is satisfied, and hence:(2.6) gives the desired result. Jn order to

show (2.8) we use Bernstein’s trick, which yields for o < 0,

" Prob {;’l fi—(=Yt< 0} < exp {—a(l — K ifj]cxp ().
(2.10)
Notice that the /’s are not independent, however, since
' Prob{f,:z,,...,’flzel} »
-_—.S[szrob Vi=elfii=ci..i,fi = e Prob {7, — &} (211)
and since o

' | - L—s_ 1
PI'Ob {f:= 1 l.f:v—l =Es—ls-~-a.fl :51}2 2 >T, (2]2)

we can conclude

Prob {371 < (1 — D1} < exp (—a O(f +E7 )

(2.13)
.t L —¢ ‘
Setp:-z"andq-—T. |
The best choice for « is a = log (‘21\?'\) ifg 1—}—)\ < 1, which is

true by hypothesis.
| Prob‘{if; < (- /\)t} S exp {[A), + X log p + (1 — A) log g]t}
=t '

< exp {[A() + A log p]t}l’g éxp {[/7(/\) + Alog zt]t}

(2.14)
Before we consider more complex coloring problems, let yg pause and
demonstrate the significance of the result for source coding.

Rémark&’(l) Notice that in case |E)| = exp {an} for al] J=1,...,J,

L = exp {bn}, and s — exp {cn} for constants a, b, c > 0 with 5 > a,
obviously (2.5) holds for » = no(a, b, A) and for a Suitable ni(a, b, c, A)

exp {en}-exp {{AQ) — nxp — a)le®} < 1 for .2ny, and therefore also
(2.6) holds. In applications to coding this resujt js useful if we have

ing A very small. This can best be seep in the following:

EXAMPLE ] Let (X, Y)i—, bea discrete memoryless correlated source
(DMCS).  Write x» — X ., X, and yr — Yi,..., ¥,

‘As in Section 3, 'Is(X™) denotes the (X", 8)-typical sequences and
Go(Y" | x") denotes the Sequences generated by xn. We know (see Section

Jr. Comb., nf. & Syst. Sei.
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3 or [6]) that ,
@ DA =exp (HXmw+ 0V}~
©) " 1G(Y" | x9)] = exp (H(Y | X)n + 0(v/m)} for x" € T,(X").

© Prob erre ey — 1 - ofk). s.

(d) Prob(F"e Gy(Y"|x) | X" = x") =1 — O(é%)nfor x" e (X"
and ' e

(e) Prob (¥Y" = )" | X" = x") = exp {—H(Y | X)n 4 0(+/7)}

‘ for x" € I5(X"), y" € G(Y" | x").

Choose as hypergraph (CV, &) = (Y", (G(Y" | x"),n T (X)) and set
A= Nn) = exp {—3c4/7}. ' _ .

An easy calculation shows that with L(n) = exp {H(Y[ X + Tey/n}
(2.5) and (2.6) hold and the lemma implies the existence of a coloring
D, with L(n) colors. o _ .

Let the S-encoder report the elements of Jy(X") and the @-encoder
the color of the element »” observed. »

If Gy(¥Y" | x")ipc denotes the elements of edge G5(Y | x") incorrectly
colored, then : : S S

Prob (Y7 G(¥" | x"ine | x7) | o
< 24| Gy(Y" | %) Jexp {—H(Y | X)n + co/7)] (use &)
<exp{—cym), | -

which is very small for » large.-

This, (c) and (d) imply that the decoder can reproduce (X", ¥*) with
arbitrarily small error probability. By (a), (b) and the choice,of L
c Tc
t — . —=.
~ the rates are lesg than H(X) T{—“\/n_Fesp H(Y _} .X) + T
Thus we have derived Slepian-Wolf’s result ([15]). It would have

been sufficient to show that for arbitrary small e> 0, (H(X)+e, HY| X)+e€)
is achievable. L .

We gave the slightly improved form with Ci);lit" deviation to demons-
_ n

. trate that our approach could beé used for sharper error (resp. rates)
estimates, but this is a point of minor importance. Relevant is that we
have actually. proved mbre than the.result of [15]: not only a large pro-
portion (average), but strictly all edges are colored almost correctly
(Universality). For colorings of average goodness Lemma 4 below, which
is ah abstract version of Cover’s [16], already suffices. For results of
that type the (AEP)-property (€) is not needed.
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(2) The universality of the coloring makes the solution of ‘Gallager’s
-problem for AVS possible. However, in solving this. problem an addi-
tional difficulty arises, because certain |E;| may be so small that (2.6) does
not hold. This dxﬂiculty can be overcome with an additional coloring
provided by Lemma 2. The coloring. technique used there may be
appropriately named maximal coloring. Since we emphasize general
prmmples we draw attentlon to the duality “(maximal coloring, random
coloring) in source codmg and (mammal ‘coding, random coding) in

channel coding”. _
We give now a refinement of Lemma 3A. There are two reasouns for this:

1. Inapplying Lemma 3A we have to choose A very small in order to
cope with the lack of complete umformlty of the PD’s on the E;’s. By
coloring all subsets of the E,’s on which the PD’s are umform also
essentially correctly we can keep A constant and base evelytlzmg on
counting. , : : .

II. In Section 5 we treat AVS’s with partial side information (in the
sense of [17], [18]). It will be seen there that the solutnon of its coding
problem requires ““proper coloring of subedges’. :

The followmg concept turns out to be appropriate.

Suppose that in addition to a hypergraph (C(/ &) we are given ‘with
every edge Ej, E; € &, afamily &, = {E}, ..., EM} of subsets of E;, that

is, (E;, &) is again a hypergraph. Then we call 2= (CV, &, (€)=
a second order or (shortly) a 2-hypergraph. We denote by 95, 0 < A < 1,

a vertex colormg of J4{, for which in every subedge E" (m = 1, , M;
j=1, »J) at least (1 — A) |E]"| colors occur, whmh occur only once
in E, : (2.15)

COLORING LEMMA 3B. 4 2 hypergraplz XA 2= - (CV 6’ (&)= ‘) has an
L-coloring &3, if (2.5) holds and

J My ‘
X >: exp {Ef|(h + Alog (EIL™)} < 1. (2.16)
Proof Use the standard random L- colormg (Xl, ..., Xy and define
fori=1, yIhm=1, s My j=1,...,JRV’s’ . .
nex,, Xy 1if X; # X; for all i’ in (E'”n{l L IDUE —
0 otherw1se
(2.17)
We upperbound now Prob { 1 fi™ (1 - /\)]E'"]}
’ e Eﬂl .
Now for iy < 12 <... < zMj '\X'ith {1 1 <;S ,} = E we have
PrOb{ }m =1 !fjm == €5 5 - . - ’fil = 61}
L—- —E- 7
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Now repeat the arguments which led to (2.14). The only difference whxch
comes in now is that (2.13) is to be replaced by

Prob { £17i < (1 — Ne*} < exp {—a(l — A):*}{—g dEtal,
i=1 ’ . ) t .

where t* = |E["|, and ¢ = |E}|, as before. Then (2.14) is to be replaced by |

'L i ) . co
Prob {Zf, <1 - A)t*} exp {l*[/t(/\) + A log L” The very sameargu-
ments which led to (2.9) yield now - - -

Prob{ min ( min f”") <1— A}
=l ..., I\m=l,..., M, ]E}"f_ i EZE'" !

L 5 exp {IE"' [h(\) + X log (EAL~Y]}

J=1 m=j|

and hence the lemma.

Finally, we.present now the most general Coloring Lemma of its kind,
which includes both, Lemma 2 and Lemma 3B. - Our motivation for aim-
ing at this was again twofold: ' '

I. It is desirable to base coding .theory on as few -principles as
possible.

II. Gallager’s problem can be solved with the composition of two
colorings, one which is good for ““big edges’ (its existence is guaranteed by
Lemma 3A or 3B) and one which is good for “‘small edges (it can be
constructed according to the proof of Lemma 2). This composition is no
longer suitable for the limited side information problem of Section 5,
because here both times many colors are needed. Its solution requires
one coloring which is good for *“big’ and for “‘small” subedges simulta-
IZCOHSly Let (CV ‘_)q (EFE)EE uq) and (CV .B (gE)EE Q) be two 2-
hypergraphs with the same vertex set CJ/ and AN DB = @. Define

= (N, uqu_@ (Fp)Ee gy @) We are interested in colorings
of j[z which are strict on <V, A). o

Those colorings automatically color all subedges out of Uy G,

Ee 4
strictly and we need not be concerned with them. Write B as @ —

{Ei, ..., E;} and denote the subedges by E/", | <m < M, 1 <j < J.

Let (CV A*) be the graph assigned to (CV, A) as previously and let
D denote the maximal degree of the vertices in this graph.

We are now prepared to state

COLORING LEMMA 3C  Let [, = (V. AUB. (Fplee a U g) be a

2-hypergraph with A, B, E; (1 <j<J), Ef (1 <m < M;, 1 <j<J)and
D as just described.

For L > D+ 1 +d, 9, has an L-coloring @%,\, which is strict on (C{/,
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A if

max |Ej(d — [E)7(1— ! < 1 (2.20)
N o |
~and ¥ 5 2 exp {ER(BQ) + A log (Ejld=O)} < 1. .21)

F=1 m=l

Proof. The idea of the proof consists in a combination of the ideas
for the proofs of Lemma 2 and Lemma 3B as follows. We color the
vertices vy, vy, . . . iteratively as in the proof of Lemma 2 except that now
we have,since L > D + | +.d, ateach step at least d colors available one
of which we choose at random according to the uniform distribution on any
'd available colors, those with smallest values in {I, ..., L} for instance.
Thus we get a strict L-coloring of (Cl/, 1) as before. What do we get for
(V, B(FE)ge ¢)? This random coloring procedure can be described
by a sequence of RV’s ¥y, ..., T}.

Those RV’s are not independent or identically distributed. We over-
come this additional difficulty by substituting the functions /7" defined in
(2.17) by the following two types of functions.

Form=1,...,M,-;j_=1,...,Jandi—_—1,-...,IdeﬁnéRV’s

. / 1if ¥; 5= Yp, forall i’ < iwithi’ € E;
g -5 K1) = {0 otherwise (2.22)
and
—1if ¥; = Yy, for some i’ > iwithi' € E;
1 . H [ 3] 7
Gi(X1, -+ s Xn) = {O otherwise (2.23)
Clearly, if :
Y gl +Gl>( — 2W)|E (2.24)

i € B

then at least a fraction of (1 — 2X) vertices in E;" is colored correctly

‘We can use ;
Prob{ Y g + Gl <1 —2)E"}
ie Ej’"
<Prob{ ¥ gl<(—=XNEN+Prob{ ¥ Gl < —NEJ|}. (2.25)
' i€ E] i€ E

As in the previous proof one shows that

Prob{ ¥ ol < (1= ME < exp {00 + 1 1og E]igr). .26
i€ Ef"

By symmetry the same bound holds for the second term in (2.25).
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For those “who are without belief”’, for & < 0
Prob {ZG{ + NE"| < 0} < exp {aA|E"|}E exp {aZGf}
< exp {aMEm[}(lEll —OL + IEJI)‘EmI

= €XPp {——a(l — A)lE'"'}(lEjl | ]E‘ a)lEml’

that is our old expression.

This and (2.26) imply the result. ‘ Q.E.D.

§2 COLORINGS WHICH ARE GOOD IN AVERAGE

We introduce a weighted hyperoraph asa quadruple (CV, &, (015 Q)
where (CV, &):CV ={1,...,1}, &€={Es.. , E;} is a hypergraph,
Q: 8——\]R+, Q;E; —+]R+such that for all i, 1<1<I, and j, i< j< J,

<

2 ZIORS 1, 2 o) < 1. (22D
ieE 3 )
For a coloring & of the’ vertlces define for i = 1, Lj=1,....J

gl = {1 if () = (i ) for some i’ € E; — {1}

0 otherwise (2.28)

We say that @ has an average goodness A for the weighted hypergraph, if

J : -
Y Y 80N <A (2.29) -
: A1 i€k
COLORING LEMMA 4. The weighted h}_z—pérgraph (SV, &, (@))i=1, Q) has
an L-coloring of average goodness A\, 0 < X < 1, if

1sjsJ

max |E)L™t <. ; (230
Proof. Use standard random L-coloring. Then |

Eg/(Xy, ..., X) <|E|L™!
and therefore

J ' ’
E(z Y Q0K .., X) < max |EL.
J=LIEE; <j<J
Remark. This is an abstract version of Covers argument [16].

Notice that not the AEP-property, but only the value of max |[Ej| is
1<sjs J
important. 1If we apply for instance the Lemma to Example 1 with the

same choice of the hypergraph as there, then we don’t need property (e).
Adding to X the small errors resulting from (c), (d), we immediately get
the result of [15].

Before we become color blind we turn now to coverings and then we
present the necessary results on typical sequences. As can be seen
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already in the previous remarks, they are the skeleton for coding theory
and make the application of our coloring techniques possible. The reader
familiar with chapt. 3 of [6] just has to get used to our notation and can
then proceed to Sections 4, 5. For the understanding of Sections 6, 8, 9
complete familiarity with Section 3 is necessary.

Further results on colorings are derived in Section 6, §2, and in
Section 7.
§3 COVERINGS

We present a simple result about coverings, which is the ‘‘combi-
natorial cernel’” of Shannon’s rate distortion theorem for the DMC ([2]).
For a hypergraph (CV/, £) denote by deg (v), v &€ CV the number of
edges containing v. S

Cc &isacoveringof C7 if (Y = | E.

' , EesC
COVERING LEMMA. If for a hypel grap/z (V, &) nun deg (v) =
ve a7
then there exists a covering C with |C | <|&ld~! log || + 1.

Proof. Choose edges E(”, ce E® independently at random accord-
ing to the uniform distribution on ¢. The probability that », v € C/,
is not covered in k drawings is less than

. (1 — d|&™H~.
The probability that there exists a v which is not covered is less than
VI — dier-

If this quantity is strictly smaller than 1, then there exists a covering
with cardinality k£ and the result follows.

Remark. The most frequent application is to the hypergraph
(D5, (Y™, (Gx(Y"] X"n e ETS(X"))
(see Lemma G4). '

From Section 3 we know

V| = exp {H(Y)n + 0(y/71)} (Lemma TI (¢))
|d] = exp"{H.(X | Y)n + Q(v’ﬁ)} (Lemma G4 (c))
&) =.exp {HX)n + 0(y/7)} " (Lemma TI (c)).

Hence there is a covering .C = (G5 (Y| x{))i=y of EIB(Y") with
¢ =exp {{(X A Y)n+ 0(4/n)} edges. -

SECTION 3. TYPICAL SEQUENCES AND GENERATED SEQUENCES

For the ease of reference we give here the notions of typical sequences
and generated sequences and those of their properties needed in the sequel.
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They were mtumvely described already by Shaanon in [1] and also used
by Feinstein in [4]. Wolfowitz was the first to rigorously formalize them
([5]) and emphasize in his work their importance for Information Theory
(see [6]) which is simply due to the fact that those sequences carry essen-
tially equal probabilities and thus everything can almost be reduced to
counting. In [6] those notions are defined within +/-deviations, here we
also use typical sequences and generated sequences thh exact composi-
tions, and thus we can count exactly. With this- skeleton in our back we
can view many source coding problems just as coloring problems for
hypergraphs. Lemmata, which can be found in [6] or can be proved with
easy modifications of proofs given there, will be stated without proof. Thus
only the Lemmata in paragraphs 3, 4, 5 require a proof.

§1. TypiCAL SEQUENCES

Let X"=X,, ..., X, be a sequence of i.i.d. RV’s with values in X
and distribution p. For x"& X" and x € X depote by n(x]x") the
number of components in which x" has x.

x" is (X", §)-typical (or (p, 8)-typical) if for s > 0
Inp(ex) — n(x |7 < 8Vnp()(T — p(x)) for alxe X @1

Denote the set of those sequences by T,(X™) or by ff’g(p) Those twc
notations allow to focus on the RV’s ot the distribution. Theset Jo(X"
is of particular interest. Its elements are of exact type. Of course Go(X"
is non-empty only if for all x _ . :

p(x) = =, ny integral. | (3.2

We denote the set of those PD’s by Po(n, X). Clearly |Po(n, X)| <
(n + DXl Frequently, in order to save notation we make use of Landau’
symbol O:

For

f, g: R - R (the reals)f.= o(g) if llm llft ;%

In all cases where we. use those symbols, 'z'ictually- numerical bounds ca
easily be given. Also all the 0(4/n) occurring below are less than a universt
constant ¢ = c(}Z], ]q}l ISh- mdependent of PD’s.

Lemma T1.  (a) For every n

52

that is, the probabzlzty goes.to 1 umformly in n, If §—>o00.
(b) Prob (X" = x") = exp {— H(X)n -+ O(y/m)} for x" e ET,;(X”)
(©) | To(X™)| = exp (H(X)n + O(v/n)}.
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LemMA T2. If the distribution Py & Py(n, X), then
| Lo(X™)| = exp {H(X)n + O(log m)}.
The elements of J4(X™) have equal probabilities of value

exp {—H(X)n 4 O(log n)}. (Stirling!)
Lemma T3. For p € Py(n, X)

24 0 ‘ |
|T(X™ N X0(p)| = {Of exp {H(X)n + 0(+/n)}

§2. GENERATED SEQUENCES

Let S be a finite set and suppose that for' s" € §" X(s") = X (s, - - -,
X.(s,) 1s a sequence of independent RV’s with distributions depending
only on the 5’s. Denote by X" as sequence of RV’s with conditional dis-
tributions ,

Prob (X" = x"|s") = Prob (X(s") = x"), s" € S~ (3.3)
Abbreviate Prob (X(s) = x) as p(x |s) and Prob (X(s") = x™) as p(x"| 5").
Forx"e X", s"e &, x € X, s € Sdenote by n(x, s |x", s7) the number
of positions in which x” has x and s” has s.
A sequence x" &€ Xis (X" |s", §)-generated (or (X(s7), 8)-typical) if

[n(x, 5| x7, s7 — n(s| s p(x | 5) | < SVAGE ) p(x] HT = p()) (3.4)
’ forallx e X, s = 8.

Denote the set of those sequences by

Go(X™| 57 or To(X(s™) or XF(p(- | 5™).
Lemma Gl1. (a) For everyn
Prob (X" € Gy(X"|s") | s™) = Prob (X(s") € Ty(X(s") = 1 — 0(512>
(b) Prob (X(s") = x") = exp {— H(X(s") + 0(+/n)}
(© 1Go(X™|s")| = exp {H(X(s") + O(+/n)}.
Clearly,

HX() = ¥ HX(5)) = ¥, HX|5). 3.5)

n(s | s")
n

If § has distribution (Ps(8)); e ¢ = ( ) c s then by the linearity
B S ) :

of conditional entropies
‘:‘1 H(X|s)=nHX|S). (3.6)
= .

Also, if s" & (SM), "= S, ..., S, i.id. RV’s, then ’

Y H(X|s5) = nH(X| S) + 0(x/n). 3.7
I=1 X
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LemMa G2. Iffor every s € S p(- | 5) € Po(n, X), then
1G(x" |7 = | To(X ()] = exp {(HX(5") + O(log m)}:
The elements of Gy(X™|s") have e‘qual probabilities of value -
exp {—H(X(s") + 0 (log m)}.
Lemma G3  Iffor every s € S p(-|5) € Po(n(s | sm), X), then

: n ] 0
80715 0 251 = {0 G gaarto + 0/
LeMMmA G4  Let (X, S)iei be a DMCS. For every 8§ >0 there is a
8, = 8,(| |, |Y|, 8) such that for all n |
(@) G(X"|s") C Dop(X™) fors" € To(S™),
(b) U G (X" | 5™ D LX)

" e T(S™)
© Ifx"e Yp(X", then x" is contained in
exp (H(S | X0n + 0(y/n)} sets Go(X" | %) with 5" € To(S")-
 Lemma G5 Let (X, )% be a DMCS.  For every 8 > 0 there is @
5,11, |S|, 8) such that for all n:
xt e GyX*|s") for st € Ts(S") implies (x", 57) € Lo X", S")-

§3 GENERATED SEQUENCES IN A MARKOV CHAIN X - S — U

The results of this paragraph are needed in Section 5, and only
there.

Let X, S, U be RV’s forming a Markov chain X —S5— U. We
consider triples (X%, S", U =X ---5 Xay S5+ S Uy« -5 Un)s
where the (X, S;, U)i=; are i.i.d. with (X, S, Uy having the same distri-
bution as (X, S, U).

Using the abbreviations

w(x | 5) = Prob (X = x| § =5),

v(s | u) = Prob (S =5 | U= u), ,
p(xlu):Prob(X:xlU:-—u),(x,s,u)EfX’XSxCU, (3.3)
we can write ‘

p(xlu) =3 wix| (s | (3.9)

and by the Markov property
Prob (X = x | S=s, U=1) = wix |- (3.10)
LeMMa M1 With the assumptions of this paragraph x" € G(X" | 5", u"),
st e Gy(ST | u) imply x* € GF(X" | u") for a suitable constant 8 = 8%(8)-
Proof. One just has to use the definitions of the sets involved and

3
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make the necessary substitutions. Smce to our knowledge this has no-
where appeared in print, we carry it out.

Our assumptions say that for all (x, 5, u) € ¥ x S'x U
[a(xsu | x"s"u) —'n(su [ s"uyw(x | 5)]
< Sfnsu| s"uw(x | s)(1 — w(x [sN]M?,  (3.11)

In(su | s"u™) — n(u [u™)(s | u)| < 8[n(u | u")o(s | u)(1 — v(s | )], (3.12)

We have to show that for (x, u) € X x U

In(xu | xmuty — n(u | u"p(x | )] < S*[n(u | up(x | u)(1 — p(x I}“))]”Z-v

(3.13)
Casel. O<p(x|u) <l

It follows from (3.11) and (3.12) that
ln(xsu | Xx"smum — n(u | ww(x | $)o(s | )| L
< 8[n(su | stumyw(x | s)(1 — - w(x | $))]'2 +-8[n(u | u")u(s | u)(l — 7,(5 | u))]H*
and therefore by (3.9) that
e | wu) — n(u | w)p(x | )
<Y {n(xsu | x"s"u™y — n(u | Ww(x | SHv(s | w)|
<8 X nGsu | surywix | s)(L — w(x | )
s + [n(u | w)u(s \ u)(1 — o(s | uw))}2

Since p(x | u)(1 — p(x | u)) > 0, there is a constant 8*(x, u) such that
the last quantity is upper bounded by :

§*(x, wn(u | wp(x | u)(1 —p(x | w)]H2.

For §* = max-{a*(x u) (x u) w1th 0. < p(x|u) <1} (3. 13) holds in this
case.

Cask. 2 p(x | u)(l — p(x | u)) = 0.
SuBCASE 1. p(x | u) = 0.

Now (3.9) implies for every s w(x | s) o(s | u)=0. If w(xl s§) = 0, then
(3.11) i lmpues for those s )

» n(xsu | x"s"u") = 0, B (3.14)
and if o(s | u) =0, then (3.12) gives for those s _
0 = n(su | s"u") = Y n(xsu | x"s"u") (3.15)
- and hence again (3.14). Therefore, n(xu | x"u") = Y n(xsu | x-’;s”u") =0
and (3.13) holds. S
SuBcase 2. p(x | u) = 1.

Here for every s, either v(s | u) == 0 and we have by (3.15) -

n(su | s"u") = n(xsu | x"s"u"), -, T 3.16)
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or w(x | 5) = 1, and then by (3.11).we get again (3.16). This implies that

n(u ju") = Y, n(su| s"u") = Y n(xsu | x"s"u") = n(xu | x_"u") .

and therefore again (3.13). o ‘
LemMa M2. Ifu" € Ty(U") and 5" € Gx(S" | u"), then
(@) |G(X" | sum)| = exp (H(X | S)n -+ O(v/m},

(b) Prob (X(s) € Go(X" | s u) =1 — o(-;—)

Proof. By Lemma G5 (5%, u") € Dsy(S", XM. This, (3.7) and Lemma
Gl (a) imply |G&" |s)| = exp {H(X|SU)n + O(y/m)). ~Since by the.
Markov property H(X|SU)=H(X|S), (3) follows. Lemma G1 (a) implies
that Prob (X(s", u”) e Q’a(X;'ls", u) =1— O(%—Z) By the Markov pro-
perty for all x" & X" 4 7

Prob (X(s", u") = x") = Prob (X(s") = x")
and hence (b).

LeEmMMA M3. Iffor every (s, u) € SX CUl q(- |5, u) € Po(n(su | s"u™), X,
then B ‘

. 0 . )
g n n’ n .‘X’ . s, my| — { ’ .
l o ]S u.) N Xolg( | s™, u ))l or exp {H(X(S") + 0(\/”)} .
Proof. By the Markov property H(X(s", u™) = H(X(s"). With this
observation the result follows from Lemma G3.
84 CRoss-SEchsz

The results of this paragraph are needed in Sections 6, 8,9. Let
(P(-, |sM:s" € SP7 be an AVCS as defined in §3 of Section 1. - X7,
Y™ are RV’s with conditional distributions -

Prob (X" = x", Y = y"|s") = p(x™, " | s7), (x", )", s") € X" X Y" X S".
Again we use RV’s X(s"), Y(s") with distribution
 Prob (X(s) = X", Y(s") =) = p(", ¥ |-
The cross-sections Gy(X", Y |$%)jxn, %" € ¥, are defined by
G, Y| sn = 070 O ) € QX7 Y7Ly (BT
LeMMA CS. For all x" & X" '
|GX", Y7 | )en | < exp {H(Y (") | X(7) + O(3/m)}.

Proof. (x",y") € Gy(X", Y"|s") means by definition: that for all
(x,7,)€XxYXS ' ' .

In(xys [xmys™) — n(s | spCx, v [ 9)] < 8 [n(s | sp(x, » [ )1 = plx, y [ NI
T € B €Y
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- This implies that for all(x, e XxS
In(xs | x"s™) — n(s | s")p(x | $)| < 8 ? [n(s | s"p(x, y | (L — p(x, y| N2

< Sifn(s | sp(x | 5)]'2, 8; = 8,(5) suitable. (3.19)

Thus x” is not necessarily (X”|s", §)-generated in the sense of definition
(3.4), instead we have a slightly different’notion of generation here. This
alternation is necessary, .because the case p(x|s) =1 causes a technical
difficulty. - However, denoting the set of sequences x” generated in the
sense of (3.19) by &*(X"|s") one readlly shows with Stirling’s formula
for instance that

1G* (X7 5 | < exp {(HX(") + 0(v/m)}. (3.20)
Now, since p(y | xs)g(x l-s) = p(y, x| 5), (3.19) implies
|n(xys | x7y"s") — n(xs| x"s")p(y | x5)| N
]n(xys | x"pns") — n(s | s")p(x ¥+ 81[11(5 | s”)p(x | $)] ” p(y | xs5) -
which by (3 18) is smaller than
8n(s | s"p(x, y | )12 + iln(s | sp(x | 5] 1'2p(x | x5).
Smce p(x, y | 5) = 1 implies p(y | xs) 1 there is a constant §, such that
Ineys | xmys™) — nGes | X5p(y | x8)| < Saln(s | Py | x)]H2. - (3.21)
This, (3.19) and Stirling’s formula yield
|GX™, Y7 | sen] < exp {H(X () | X(7) + Oy} (3:22)
T Q.E.D.

§5 CARRIERS _
In Sections 6 and 9 we make use of the

CARRIER LEMMA. For an AVCS

(@ U G Y"|s)C U T (X"(5), Y"(5))
S" (= Sn ) } :E: ZPisiaP = sPO(": S)

for a suitable constant 8, = 8,(9).

) | U Gxm ¥7| 5] < exp { max HX(5), Y()n + 0(y/m).
ste St : se s _

Proof. Since |Po(n, S)| < (n + ])[5l (b) 1s a consequence of (a) and
. Lemma T1 (c). ‘ '

To show (a) is again a routine matter. If (x", y") & Gy(X*, Y| s") then
(3.18) holds and hence for § = Ii ;1; and all x, y '
InGx, » | %% ) — mp(, y | )| < 8 X (s | s9pCx, 1) — pCx, 3 [ DI
Now realize that p(x, y | 5)=0 implies np(x, y| §)=Y_ n(s | S")p(x., y15H=0
and hence that the right side in (3.23) equals 0. s
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Also, if p(x, y | 5) = 1, then for every s either p(x,y|s) =1 or-n(s|s™
—0 and again the right side in (3.23) vanishes. Therefore there ‘exists a
§; such that for all x, y o

IMLylfhf)—nmxuwiﬂsé&wmed5X1-pbayl@ﬂm,GJM
which means that (x", ) € Za,(X"(5), Y"(5)) and the proof is complete.

SECTION 4. PROOF OF THEOREM 1

That Rp > H* = max H(X(s)) follows from the source coding theorem

SES _ .
for the standard DMS, the heart of the matter is to show the opposite

inequality. For tutorial reasons we first make the supposition

H, = min HX()>0, 4D
seS S
which we then remove.

Consider the hypergraph [ = (X" (Ge(X "5M)sn e St
We know from Lemma Gl and (3.5) that for all s" € & |
exp (Hn + 0(/m)} < |Go(X" | 5] < exp (H*n + 0(vm)}. - (4.2)

Choose X = A(n) = exp {—3cy/n} and L(n) = exp {H*n + Tca/n}, then,
as in example 1, (2.5) and (2.6) hold and Lemma 3A guarantees the exis-
tence of a coloring @, with L(n) colors. Therefore for every s" € §" the

set Go(X™| 5™)ine OF incorrectly colored elements in Gy(X" |s") satisfies
. |G (X" | 8Minel < 20 Go(X" | 57 ~(43)
This and (b), (c) of Lemma Gl imply ‘

Prob(X" € Gy(X" | Mime |57 < exp {—3ey/m} exp (HX(™) + ev/m-
- exp (— H(X(") + cy/n} < exp {—ev/n}. (4°4)

" This, and (a) of Lemma Gl imply that the decoder, knowing s", can

reproduce X(s") for every s” with an arbitrarily small error probability for
large n, if he uses the decoding function

Fl, s = {Q’B(X" \ s") n St if this set contains exactly one element
any decision otherwise
: ’ 4.5
Here, , Ju = D

Now we remove the assumption H, > 0, that is, we allow conditional
PD’s to be concentrated on a single letter. An information theorist may
feel that this is just a small technical point. However, we know from §4
in Section 1 that for AVCS this point is crucial. Since edges with ver)
small cardinality—even with cardinality l—now occur, (2.6) is no longei
satisfied. This is not only due to the bounds, but lies in the nature of
random coloring: the probability of coloring a small edge essentially
correctly is not large enough to cope simultaneously with all the edges
Of course in problems for which colorings, which are good in average, car
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be applied, this difficulty does not arise. - The situation is similar to the
fact .that in channel coding for small rates random coding performs
poorly. -

We overcome the prescnt difficulty with the help of Coloring Lemma 2.
Define ‘

Ss(n) = {s": s" & §" with lQ’a(X” | sM)| < exp {log? n}}. 4.6)

Then the hypergraph
(fX’" (QG(X" l sn))s" € St — (n))

can be colored, with the same choice of A() and L(n) as before, appro-
priately, because for s” € §" — Sy(n)

hQ() + (). Jog (|Gy(X" | sHILE™H< — 1, @.7)
as before, and clearly
|§* — Ss(n)] exp {—elog*n} < 1 for n > ny, suitable. - (4.8)

We color now (X7, (G5(X"|sM))sn < Sas(n)) Strictly by applymg Colormg
Lemma 2. What is the maximal vertex -degree D of the associated graph ?

Define H, = min {H(X(s)) s € S, H(X(s)) > 0}. _
Ifk(sm) = {s:1< < H(X (59).> 0, then by definition (3.4)
| |Go(X™| 5™)| = exp {H  k(s") — eV k(s™)}
and for s" € Ss(n) ' o ,
‘ exp {log? n} > exp {H+k(s”) — V(M) | ('4.9)
This implies '
k(sM) < 0(log n) for 5" € Sy(n).

Therefore two connected vertices x” and x" in the graph necessarily have
Hamming distance less than 0 (log? n). This implies that

deg () < (0(log n))lif’i"“”’ D (n XN, (4.10)

The graph can therefore be colored strict]y with (n] X])°1°8*™ colors.
Denote such a coloring by 4 and define the encoding function by

LET) = (Pnx"), do(x), X" & X" @.11)

Finally, define the decoding function by
| [G(X" |5 N DR (L) if 5" & §* — Sy(n)
'and this set contams exactly 1 ‘element

l G(x"|5") N o () if 5" € Sy(m)

any decision otherwise.

n((lls lZ)a (412)

Smcc ||f,,|| [|<15n|[ ]h//oll exp {H*n ++ Tcq/n + O(log® n)}, the proof is
complete.- S S :
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Remark. An alternate proof based on Coloring Lemma 3B can be
given. The argument is carried out in detail in the proof of the more
general Theorem 3 in Section 8. Here we outline the proof to make the
reader familiar with the idea, which we also use in Sections 5, 8 and 9.
Let us consider the case H, > 0. Define the 2-hypergraph

Ha= (Y, &, (Egn)sn g gm) With CY = X", & = (G(X"|sNym € s
and  Eun = {G(X" |5 N X3(p(- [5) 2 p(-]5) € Loln(s |57, - (4:13)

Choose L(n) as before and keep A constant:. Lemma 3B can be applied,
because by Lemma G3 the cardinality of the non-empty subedges is not
smaller than exp {Hn — cy/n},

R + A log (1G(X7 | HILY) < BQ) — Aey/n < —1 (1 > no),
and because ¥ &, < |81 + DIFNSL Since the subedges partition
sn ; , ’
the edges and since Prob (X" = x"[s") is the same for all x" in a subedge
of Gy(X"|s"), we conclude that o _,
Prob (X" € Gy(X" | 5inc | 5") < 2. . (4.14)
Define f, and F, as before, then (4;;'14) and Lemma G1 im'ply that the
decoding error probability is smaller than 0(-31-2) + 2X uniformly for all s".

The case H, = 0 goes essentially as-in the previous proof. Here small
subedges make difficulties for random' coloring, but if if they are small,
then by Lemma G3 their edge is of the same magnitude. The proof can
be completed as before. '

" SECTION 5. PROOF OF THEOREM 2

§ 1 THE CONVERSE: Rpp C R™

This is a simple consequence of the results of [17]. For let (fy, gn, Fn)
be a code with error probal‘)ility_)‘, the uniformity in the Ier'ro'r,concept
(1.8) implies that also for any RV'S” with valuesin S* ‘

" Prob {Fu(/u(X"(S™), 8(S") # XS} < e(fun gus F) S A (5D
Let us use: this fact in the "Special case S" = ((S,))1, - - - » (Sp)n), wWhere
the (S,),s are independent with distribution p. - = ! Lo

Now we apply the converse to the source coding problem with side
information of {17] and obtain:

‘There exists a RV U,, [|Ul| < |S| + 2, U~ S, — X,,, such that

log ||/l n(H(X,| Up) — h(2) — A log P 4)) (-2
and log Jigal| >nI(S, A U,). (5.3)
Since these inequalities hold for all p, p &€ P(S), the inclusion Rpp C R**
follows. L . _ o -
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(Obviously, if one applies the strohg converse for the above source
coding problem of [19], one gets also the strong converse for the present

problem.)

§2  THE DIRECT PART: Rpp D R**

This more difficult result is derived with the help of out coloring
techniques (Lemma 3C) in conjunction with the Covering Lemma of
Section 2. After we have those tools, we just have to set up the appro-
priate 2-hypergraph. For this we need the deﬁmtions and results of

Section 3. z
Step 1. Partitioning of §~.

Fix a p, p € Po(n, S), and a RV S, with distribution p. Let U, be
such ‘that U,—S,— X,. By the Covering Lemma there exist

U5 < qyUn) with
N, =exp {I(U, A\ Sy)n + 0(+/n)} (5.2)
such that '
(G(Sp | up))iim covers T(Sp).
From this covering we pass to a partition
,, (D of TySH
with @, < G(Splup) for i=1,..., N, : . (5.3)
Clearly,
(D 1 < i< N,, pE Po(n, S} is a partition of 7.
Step 2. Definition of the 2-hypergraph 9(,.

Choqse
IH=CV, AU B, (Fr)eeaygh AN D=0, asfollows:
I v ="

@ Partition Po(n, X) into 2 sets, P,(n, S) and Py(n, S), where
Pun, S) = {p:p & Po(n, S) with H(X, | S,)n < 2¢c+/n}.  (5.4)

Define now for Ej, = U  Gy(xp | " uh)
st € .‘Ix"p :
— (B0, (5.5)
N P € Lo(n, S)
B = (Epimr,...,n, | (5.6)
P € EPb(”Q kS’)

(3) Finally choose for 1<i< N, pe P, S),s" e g, and
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q(- | s, u) € Po(n(s, u|s", 7)) fdr all (5, y e Sx U
Fo(s™) = Go(Xp | 5" up) N Xo(g(- | 8" up)) (-7
as subedges of edge E5. :

Step 3 The parameters of the 2-hypergraph.
In order to apply Lemma 3C we need suitable upper bounds on the

size of the edges and on the maximal vertex degree D of (CV, 4%,
and a suitable Jower bound on the cardinality of the subedges in

(V, B, (FpE e 9 .
It follows from Lemmas MI, Gl(c) and (3. 7) in Section 3 that for
pE Pon, §), 1< i <N, ,
|5 < exp {H(X, | Upn + O(v/n)}. (8
We now show that

D<exp{ max H(X,|Uy)n 4 civ/nlogn}. 5.9
p € Po(n, S) - - '

Recall that H, = néin (H(X(s)) : HX(5)) > 0}.  Now (5.4) and (3.7)

imply that for p € P,(n, S) an 5", 5" € Jo(S}), has fewer than H_12cq/n
components ¢ with H(X(s)) > 0. Therefore an x" € X" can be contamed

n Hy 201/71 nyoon
in at most T = (H;‘ZC\/n)I |7 sets  Gy(X%| s ub), 5" € D,
1< i< N, pe& Pn, S)- . : ‘

This implies that x" is contained in at.most T edges in i, and (3.9)
follows from this fact and (5.8), if constant ¢, is properly chosen.

Fmally, it follows from.(5.4), Lemma M3 and (3.7) in Section 3 that
the non-empty subedges satisfy for p € Pyn, S) :
loFo(s™)| = exp {ev/n}- (5.10)
Step 4 Application of Lemma 3C.
For any A, 0 < A < }, choose

L(n) = exp {n max H(X,| U, + 2c;+/n log n}. 5.11
() pi b€ Tun, S) (pl p) 1v/n log n} { )

Certainly (2.20) holds, and (2.21) holds, because the left side of it is

- smaller than

Ny :
2. X Y 2-exp i} (5-12)
p € Pp(n, S) i =1 st € 1', q(- | u, .s) € P, (n(s uls", u ), x)

~ with
P = |oFisMIAQ) + A log (21Gy(X} | 5™, up)|L(n)™)
< ee¥(h(d) — Acyy/n log n) < —ec V" '
for n sufficiently large. '
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The expression in (5.11) is smaller than
(n + 1)l5l[51n(n'+ I)IEX“Sl(ISI—I-Z)Z exp {—e},
which of course is much smaller than 1 for n large.

(Actually, by a more careful calculation and a slightly different defi-
nition of P,(n, S) one can see that the term.2¢;-+/n logn can be
replaced’by c34/n). '

Step 5 The code and its error probability.
Set fu(x") = Pn(x"), g(s") = (i, p) if 5" & D).
Thus clearly, '
I1/ull < exp {max H(X, | Upn + O(y/n log n)},
. Pt ‘ A

lgnll < exp {max I(U, A S,)n + 0(+/n)}.
P
Define the decoding function F, by

E;, N X)) if this intersection contains exactly I element
any decision otherwise , y
' 4 ‘ (5.13)
The decoding error probability is readily calculated. Given any s”,
s" & §", then there is exactly one ), containing s".

F G o) =

From Lemma M1(b) we know. that

Prob (X(s") &€ Gy(X, | 5", ul)) = 1 — 0(812). C(5.14)

Since Go(X, | 5™, up) = U Fi(s™), and since every ,Fj(s") is colored proper-
q

ly in at least (1 — A)]qF,’;(s;')[ elements the probabilities of wrong decoding

are less than 0(515) 4+ A _ Q.E.D.

SECTION 6. THE DECOMPOSITION PHENOMENON AND EDGE COLORING
' OF BIPARTITE GRAPHS VIA VERTEX COLORING

§ 1 THE DECOMPOSITION PHENOMENON .

We recall the reasoning which led us to find the capacity region of the
multiple-access channel (MAC) in [9]. Since the results of [3] are in-
complete (see [34]) this is the first coding theorem in multi-user communi-
cation (see also [29]). Suppose we have 2 senders and | receiver, and the
senders send independent messages. If the two senders were at the same
terminal and could cooperate, then we would have an ordinary DMC with
input alphabet X x 4] and output alphabet &, say. The capacity of

this channel is C = max I(XY A Z).
(X.1)
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If we require now that only “rectaﬁgular codes”
(wipDiy) 1 < I< My, L <j< M}
with wij = (U, v)s 4 € X" v; € ar

are permitted (which is the case in the original problem !), then the ““capa-
¢ity” does not exceed mea;cd I(XY A Z).

The question then was whether I(XY A Z), X,Y independent, can be
achieved by R, + R, with encoders at different terminals and if so, how
I(XY A Z) decomposes into rate pairs.

A guide for the answer was the simple identity

KXY NZ)=IX N 2)+ I(Y A Z | X). 6

The analogous question for two correlated sources was asked subse-
quently in [15]. Here the source can be encoded by two separate encoders
such that the total rate needed is the same as if both encoders were at one
terminal. The decomposition of the total rate into the rate pairs can here
be understood from an even simpler identity :

H(X,Y) = H(X) + H(Y | X). - (6.2)

The identities are closely related and so are the coding theorems for
the two problems. :

After Shannon had initiated multi-user communication theory with
his [3] many years no progress was made. The decomposition phenomenon
made certain problems tractable and accounts for recent activity in the
field. (cf. [29]). : '

Let us pursue the similarity between the two coding problems for the
MAC and the DMCS a little further by looking at their proofs. In [9]
the following approach was chosen. Select code words Uy, ..., Umys
Vi ..., Va, independently at random, the U;s (resp. V;’s) being identi-

cally distributed. This is a standard random coding approach, used
" already in [3]. The question is: “‘How do we choose the decoding sets?”

Maximum likelihood decoding (MLD) is symmetric in X and Y but the

formula (6.1) isn’t.

The answer given in [9] was to decode the U;’s against the ““average of

the Vs and then use the knowledge of U; to decode, conditionally on

“this, the V’s with MLD. Ina strict sense this decoding rule is suboptimal,

but it turns out to be still good enough. The capacity region is then found
by exchanging the roles of X and Y and time-sharing.

This approach was extended in [9] also to the case of 3 senders. The
proof t_hen becomes awfully complicated in the converse part, because of
those time-sharing arguments. Subsequently Liao [25] announced those
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results, with the same description of the capacity region, also for an
arbitrary number of senders. Since our 3-case was so complicated, we
are curious about his proof, which until now has not appeared in print.

Because this complication seemed unnatural and also because we were
unable to do the 2-sender-2-receiver problem of [11] (“‘compound MAC”’)
with this approach, which is due to lack of symmetry in (6.1), we gave in
[I1] an alternate proof for the standard MAC, which is symimetric in X
and Y and also simpler and easier to generalize (see [27]).

The idea: use MLD, the best decoding rule. Originally we had
doubts whether the error probability calculations could be done., A

But they are even simpler, once one frees the mind from thinking in
terms of equality (6.1) and passes on to inequalities instead. Then for
X, Y independent

Ri<IXNZ|Y)
R <IY AN Z|X) - (6.3)
Ri+ Ry <I(XY A Z)

is achievable.
Denoting this set by R(X, Y), the capacity region equals
' conv ( U R(X, Y)).-
X, Y ind.
That it is really necessary to take the convex hull was recently shown
in [28]. ' ‘ ’
Once one has these two characterisations of the capacily region it is

" easy to show directly their equivalence.

We know of 4 proofs for the DMCS-coding theorem ([15], [14] includ-
ed in {17], [16], [22]), not counting the new ones of this paper.

They all have one part in common: one source, say X, is {irst coded

completely with rate H(X) and the rest is coded conditionally on X with
rate H(Y | X).

Our proof consists of an iteration of Feinstein’s maximal code cons-
truction ([4]) until one source, say X, is up to a set of small probability
partitioned into systems of code words. This approach has been fre-
quently used and extended by Csiszdr, Kérner, and Marton (cf. [21], [24));
and also by Sgarro [25]. A drawback to that proof is that it does source
coding via channel coding. The other proofs use a random selection
argument. In all 4 cases the regions are obtained by time-sharing. With

some abuse of language let us call those proofs ‘“‘asymmetric’>. The

corresponding proof for the MAC coding theorem is our original proof
of [9]. Where is the source coding parallel of our “‘symmetric”’ second
‘proof of [11]? We have mentioned that the “symmetric” proof for the

. MAC-coding theorem is better suited for extensions to more complex
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situations. The same should be true in source coding, and as a matter
of fact the AVCS-problems (§3 and §4 of Section 1) seem non-tractable
with “asymmetric” proofs of this kind.

§2 A ‘SYMMETRIC” AND ABSTRACT VERSION OF COVER’s PROOF ([16])

Let Ci) and 9/ be- finite sets and let C be a subset of Y x .
(CV, 9, C) is a bipartite graph.

If Pis a PD on C)/ x 9y concentrated on C, that is, P(v, w) # 0
implies (v, w) & C, then we call (CV, Y, C, P) a stochastic bipartite

graph. Let ¢ (resp. i) be a coloring of C/ (resp. q)). Then p = (p, ¥) is
an orthogonal coloring of CJ7 x 9§/ and colors in particular all edges in C.

Clearly, if for (v, w) & C .

p(v, w) # p(v', w') for all (v, w') € C — {(v, W)}, (6.4)
then knowing p(v, w) we can identify (v, w). Conversely, if (6.4) does
not hold, then (v, w) cannot be identified or decoded correctly. Suppose
(v, w) occurs with probability P(v, w), then the average error probability
e(p) is given by : ‘

| e(p) = P({(v, w): Ip~!(p(v, w)) N C| > 1}) (6.5)
We call p = (p, ¢) an L; X L,-coloring if
_ lpll < Ly and gl < L
Finally, C,,. (resp. C|,) denotes the cross-section
{v:(v, w) € C} (resp. {w: (v, w) € C}).
Given L; and L, let us now color CJ/ at random in the standard way.

with X1Vl = X, ..., X|cp; (i.i.d. with Prob (X; = 1) = _]f- <l <L)
1

and independently of this also ¥ with YIiWMi=vy, ..., YI‘WI
2
The expected average error probability Ee(X!Vl, ¥IWl) can be upper-
bounded as foilows:
Prob ((X,, ¥,) = (X, Yw) for some (v', w') & C — {(v, w)})
< Prob ((X,, Y,) = (X,, Yy) for some w & C|, — {w})
+ Prob ((X,, ¥,,) = (X;r, ¥,,) for some s € C;, — {v})

+ Prob ((X,, ¥) = (Xy, Yw) for some (v', w') € C, o' % v, w' % w)

|Cl ul lCI wI ICI
SOt Lot : (6.6)

Therefore,

Ee(X!VI, YIWly < Cv , Ciw . I
( ) (L‘.ZW)p(’U, u)) L2 + Ll + Lle )

Vol. 4, No. 1 (1979)



108 ' COLORING HYPERGRAPHS FOR MULTI-USER SOURCE CODING
With N; = max |C),|, Ny = max |C},], and N = |C|, we can write
v EeCY w e ‘W

E XICV] [ N
e( X ) < + + .- [2
T'hus we have proved.

COLORING LEMMA 5 The standard orthogonal L, x Ly-color ing of the
bipartite stochastic graph (CV, 9, C, P) has an expected average error
probability less than

N
+ LT Loy | .
where N = |C| and Ny, NZ are the respective maximal cardinalities of
cross sections of C.

Notice that only the parameters of the carrier C are important and no

AEP-property is used. :

Also, if P is an additive set function with P(C) < 1, the above result
holds.

§ 3 APPLICATION TO AVCS WITHOUT SIDE INFORMATION

We now denve Jahn’s result, which is for randomized encoding ([26]).
~ He uses the standard random L;x Lz-colormg, however, he computes
error probabilities in a non-symmetric way and this is the main reason for
the fact that his proof is so complicated. As stochastic bipartite graph
choose Cf/ = X, ) — ar,

C= CJ GyXx=, Y"|s) (6.7)

sn g St
fProb (X" = x", Y" = y"| s")
Pa(x™ y") = <{if (x",yme C (6.8)
10 otherwise
Clearly, PL(C) < 1
By Lemma CS and the Carrier Lemma of Section 3

N < exp {max H(X(5) | Y(5)n + 0(y/n)}
N2 < exp {max H(Y(5)| X(5))n + 0(+/n)}
5
N < exp {mi_.x H(X($), Y(5)n + 0(y/n)}.
Let e (V1VI, W) be the expected error probability of the standard

L{x Ly-coloring with L; > N,-n, L, > Ny-n, Li-Ly; > N-n.
Then .

en(VIVI, wIWl « 1—3; for all s" = §". (6.9)
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Iy

Since by Lemma G, and definition (6.7) C carries -for all s” the PD
P(-,-|s)uptol — 0(-5-12), the total expected error probability satisfies

EAgm < ?—1 -+ 0(51—2) for every s".

Now make use of the elimination technique of [13] to obtain a code
with independent randomisation at the encoders only. Since this has been
done in [26] in the canonical way, we save our space for the proof of the
mathematically deeper Theorem 4.

SECTION 7. ORTHOGONAL COLORING OF ‘RECTANGULAR
: HyPERGRAPHS (CV X H/, &)

Again C|7 and 9G¥ are finite sets. £ is a family of subsets of C{/ Q.
We call (C}/ x 9, £) a rectangular hypergraph, because the vertex set is
a general rectangle. If |€] = 1 we get the case discussed in the previous

; section. We denote U E by C and call it the carrier of the hypergraph. '
i EE¢

We denote by P = (pa, ) an orthogonal. coloring. of (C{/ X CW) for
which in every edge E, Ee &, at least (1 — A)|E| colors occur, which
occur only once in C. o ; .

Use random coloring ¥y, ..., Vi Wi, ..., Wqp asin the previous
Section. Order the elements of CJ/ x 9¥/ lexicographically. We proceed
similar as in the proof of Lemma 3B.

Write £ = {Ey, ..., E;} and define for j= 1, ..., Jand (v, w) € CV
X G RV’s :

1 if ()V,,, W,) #= (Vy, W) for all
@', w) € E; — {v, w} with (v, w) < (v, W)
LYl wIWl) = { and for all (', w') € C — E;

L0 otherwise

(7.1

We upperbound now

Prob{ Y. fl.<({—=XNE]:
(v, W) € Ei )

Use the notation

Ej = {(v, Wiy +« - » (v, Wipg,}s
where (v, W); < ... < (v, Wy, (9, W), = (v, W),
Prob (£, wy, = O 1S wies = s = 1>+ -+ So, wy, = <8}

lCI ‘Clvs‘ lCI ws| o ~
<pLtote o 02
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By the arguments which led to (2.9) or (2.19), we obtain now

Prob{ min = fle<1— ,\l(
i=t,.... 7 \Ejl . #7e E,
3 £ a0y + 2 tog -2 (7.3)
<% exp | ,-\[z(/) +atog 72|} :

with g = |C| + L, max |C},| + L, max |Cul.

Thus we have proved

COLORING LEMMA 6. The rectangular hypergraph (CV X CW,‘ &) witl
carrier C has an orthogonal Ly X Ly-coloring P, if

- Lf B 1———7 e , (7.4)

I - /> .

and 3 ex {151[/1@) + Alog -B—]} < 1. (1.5)
j=1 P / : LiLy ’

We shall also need a slight generalisation of this result to orthogonal
2-hypergraphs, that is a 2-hypergraph with rectangular vertex set. Denote
such a 2-hypergraph by (CV x W, &,(&))}=1). We denote by w; = (g2 )
an orthogonal coloring of (CVx W) for which in every subedge
Erm=1,..., M j=1,..., J) at least (1 — A) |Ep| colors oceur, which
- occur only once in E;. . )

Define ,Bj == B}'(Ll’ Lz) by

By = (Ej| + Ly max |Ej | + Lz max [£ju])- (7.6)
. v w
Then by the same arguments which led to Lemma 6 we obtain now

COLORING LEMMA 7 The rectangular 2-hypergraph (CV X W, €, (€);.))
has an orthogonal Ly X La-coloring wz if

B 1—-A_

e 1 1.7

max R A < (7.7)
J M; ﬁ

and Y. Y exp {ET[[/)(/\) -+ A log ——’~]} < 1. (7.8)
j=1 m=1 LILZ

This is of course also a generalisation of Coloring Lemma 3B, the
analogue of Coloring Lemma 3A is contained in it as a special case.
SeEcTION 8 PROOF OF THEOREM 3

This theorem is a generalisation of Theorem 1. Again there are also
the two slightly different proofs: one using the almost uniformity of PD’s
and the other based on counting alone.

We now choose the second one. Define the 2-hypergraph as follows:

(a) (:V — 1,", sz an

Jr. Comb., Inf. & Syst. Sci.’
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(b) G Y"|sHN(X X Aog(- » - | 5M)s
where forallse S g(. .. | 5) € Pon(s|5"), X x ), are the subedges of
ga(X", Y" l S").

(Let us keep in mind that by our notation ¢(.,- | s =q(,-|s)
if 5, = s¢.) -

By Lemma Gl(c) and Lemma CS of Section 3 this 2-hypergraph bas
the parameters

|Gy(X™, Y| sM| < exp (HX(s"), Y(s) + cy/n} foralls"€ & (3.1)

| Gy(X", Y| s™)am| < €XP {H(Y(s") | X(™) + c+/n}
' foralls"e §", x"e X" (8.2)

GUK", T | 5yl < exp {HXG™) | YD) + ev/n)
foralls"e &, x" € X, (8.3)

Given a constant A, 0 < A < } choose Ly(n), Ly(n) such that
L(n) > exp {max H(X(s) | Y(s))n + 2c4/n}, 3.4)
sES

L(n) > exp {max H(Y(s) | X(s)n + 2c»\/i1},
seES

Ly(1)- Ly(n) > exp {max H(X(s), Y(s)n + 2¢/n}-
s€S

Let K = K(n) be a number less than’—zl- to be fixed later.

Define Sx(n) = {s" : H(X(s)), Y(s9)) > 0 for at most K indices ¢}.
Then for s" € §* we derive directly from definition (3.4) that
1GX™, Y7 | s < () 1 YDF @®.5
and for s" & §" — Sk(n) by Lemma G3 _
|Gs(X7, Y7 15" 0 (+ X YNag(- 5 - |5 > exp {H.,K —eyK}, (8.6
if the subedge is non-empty and
H, = min {HX(s), Y(5)): s € S, H(X(s), Y(5)) > 0}

Inequalities (8.1)—(8.4) and (8.6) make Lemma 7 applicable for th
2-hypergraph obtained by restriction to the edges with 5" € §" — Sk(n).

It says that there exists an L,(n) X Ly(n)-coloring pz = (P2n, P22 witl
el < Li(r), gl < La(n) if K satisfies '

exp (MK -eVK(ey/n — OO} > ST + DIF] sl (8.7
Clearly (8.7) holds for K = n!?(|X| | Y| log n)™".

Now we find a second orihogonal coloring of X" x 4" which is stric
for the small edges (5" &€ Sk(n))-
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For this define the prOJectlons of the edges.on X" (resp. YY) by
Proj. oen(Gs(X™, Y™ | s™). = {x" : exists p" thh (x” ) & G(X7, Y| s}
(resp. Proj. q}n(g’a(X", Yn [ s7). . (8.8)

Those projections give rise to hypergraphs (X7, 4) and (Y", B), say.
Their edges are by (8.5) again smaller than (|| |4|)¥ and the maximal
degrees of the corresponding graphs (X", A*), (4", $*) are by deﬁm-
tion of Sk(n) smaller than

() max a2, 0y <o (8.9)
and have, by Coloring Lemma 2, colorings po resp. Y, with |jpol < ezV"
Hlsholl < e2vn

Now, py = (pq, o) colors all the small edges correctly, and r = ((p, ¢1),
(0, ¥1)) is an orthogonal coloring with all the desired properties. The

total worst case error probabllxty is bounded by A + 0(512> ) Q.E.D.
SECTION 9. PROOF OF THEOREM 4
§1 THE CONVERSE '

The proof of the converse is trivial. Suppose we have a code (f, g, F)
with Prob (F(f(X(s"), g(Y(s")) = (X(s), Y(5")) = 1 — MsM =1 — 2 for
all s" & S

Puta PD ¢" = ¢gx ... xq on §" and define
s =Y q(s)s, s"=(5,..., ).

Then Prob (F(A(X(5"), g(Y(5")) = (X(57), Y(5") =1 — A

We have now a code for the standard DMCS of Slepian-Wolf. There-
fore by Fano’s Lemma

log |If]l = nH(X(3) | Y(5) — 1 — " log | X|
log ligll = nH(Y(5) | X(5)) — 1 — A log | %]
log |1 -+ log llgll > nH(X(5), ¥()) — 1 — An log | %] |9].

Since those inequalities hold for all 5, the converse part of Theorem 4
is proved. :

§2 THE DIRECT PART OF THEOREM 4

In the last section Coloring Lemma 7 was used. Here we need only
Coloring Lemma 6.

Define an orthogonal hypergraph with Ci/ = ¥", 9 = QJ", and as
edges choose all the subedges of the 2-hypergraph of Section 8 (see (b)
there). The carrier C is simply defined as. the union over all the edges.

Jr. Comb., Inf. & Syst. Sci.

-




RUDOLF AHLSWEDE o S . 113

Choose L(1) and La(n) such that the inequalities in (8.4) hold also if the
maximisations there are over ,5 “We know from Lemma -CS and the
Carrier Lemma in. Section 3 that

B < exp {max H(X(s), Y(s))n +c \/n}

+ Li(;::)sexp {max H(X(3) | Y(5)n + e/}
+ La(n) exp fmeaf HEYE) | X+ ey O
Therefore, e .
'I??E; < exp (—ev/) B 2

and (7.4) holds. ,

Since here all non—empty edges have cardinality bigger than
exp {H,n — cy/n}, and since V] < S+ 1)‘351 Wl IS, (7.5) holds also.
Now use as encoding functions,the colorings pz. and ¢n, which exist by
Lemma 6. Define as decodmg function

(en (), Y31 (1y) if this set has exactly 1 element in C
Fu(ly, ) =
any decision otherwrse :

9.3)
Since for all s" & S" .
Prob (X(), Y € Q) =1 = O(sl‘)
the code (pa, P20 'F,,) has an error probabiliity less than 22+ 0(%5)
_ | : ‘ - Q.E.D.
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