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I. INTRODUCTION ST
We continue to develop the approach to source coding taken in*Part I,
which consists in viewing coding problems abstractly a‘scoldring and
covering problems for hypergraphs. The coloring problems, which atise,
are usually of a nature where it suffices to have good colorings in ‘a high
fraction of cases under considération. This distinguishes them from
coloring problems, which are usually studied in the Theory of Hyper-
graphs (see [47], [48]). Source Coding Theory is a rich source for new
problems of this kind. We strongly believe that an emphasis 6n the
connections between those two theories will result in a fruitful exchange
of problems, methods, and ideas and wi]l be to the benefit of both
subjects. -

The paper contains several results on colorings and coverings for
hypergraphs, which g0 beyond those presented in Part 1. They are all
obtained again by elementary, often probabilistic arguments. Some of
them are stated in Sectjon 2 (Coloring Lemmas 6-9), others are given in
other Sections in conjunction with a coding problem in which they arise
or for which they are needed for the solution (Covering Lemmas 2, 3 ip
Section 6, Coloring Lemma 3A* in Section 7). ‘

Let us now briefly indicate the new results on source coding. -

(@) Our first result is a pseudo-new result, because it consists ‘in
correcting an error, which we found in Section 7 of Part I. The inequal-
ity (7.2) is wrong and this effects the validity of Coloring Lemmas 6, 7
and the proofs of Theorems 3, 4 in Sections 8, 9. We apologize to the

_ reader of Part I for this mistake. Fortuﬁatelyihis error opens new doors

(it corrects the theory): it turns out that orthogonal coloring of hyper-
graphs is a mathematically more serious and also interesting matter than
we originally expected (see Section 2). In Section 3 we give a rigorous
proof of Theorem 3. An example shows that the original Theorem 4 js
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not true. However, the conclusion holds if we replace the condition

min H(X(s), Y(s)) > 0 by the somewhat stronger entropy positiveness
seS§

condition
min H(X(s) | Y(s)) H(Y(s)| X(s)) > 0. (1.1)
SES
(Theorem 4")

(b) 1In Section 4 we consider again an AVS ({X(s") cshe 5"}>w
n=1
where X(s") has distribution P( | s) as defined in Part I (1.1), of Section

1,§ 1. In Theorem 1 we obtained the optimal rate of an AVS with side
information about s" at the decoder. We treat now a more general prob-
lem for this source, which is analog to the coding problem for correlated
sources solved by Slepian and Wolf [15]. Notice that in their model of
a source the joint distributions are known, whereas here only conditional
distributions are specified. For encoding functions f,(resp. g,) defined
on X" (resp. §%) a decoding function F,shall be a mapping of the cartesian
product of the ranges of f, and g, into X” x §". The error probability
of the code (f,, g., Fn) is defined by '
e(fus &ns Fo) = max Prob {F,(fa(X(s")), gu(s") # (X(s"), s™)}. (1.2)
sn

In Theorem 5, Section 4, we characterize the region R 5 of all achiev-

able pairs of rates (R, Ry).

We explain now how this result relates to results obtained previously.
The difference between the present problem and the partial side informa-
tion problem described in Part I, Section 1, § 2 and solved in Theorem 2
is that now s" has to be reproduced by the decoder.

Theorem 1 determines the optimal Ry, if R, = log |S|, that is the case
in which the decoder knows the S-outputs. However, this rate pair lies
in general not on the boundary of Rqs. '

Choosing ¢ = S and p(x, y|s) =p(x|s)8(y|s) we see that an AVS
is a special case of an AVCS. However, Theorem 5 does not follow from
Theorem 4’, because the condition (1.1) does not hold.

() In Section 5 we present the general robustification technique,
which we announced in Part 1. This method in conjunction with the
elimination technique of [13] makes it now possible to reduce coding
problems for arbitrarily varying sources and channels to those for com:
pound sources and channels (see [6]) provided that randomized encoding i:
permitted for sources and channels or the average error concept is used for the
channels. That this can mean a restriction is explained in [13]. We thinl}
that an important aspect of the arbitrarily varying channel problem
which has puzzled several mathematicians for so long, is now understood
The method makes use of the fact that for stationary, memoryless source:
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222 COLORING HYPERGRAPHS FOR MULTI-USER SOURCE CODING

and channels the probabilities occurring are invariant under permutations
of the time components. This property has not beep exploited yet in
Information Theory and has led us to the next result,

(d) It has been realized a long time ago by Ahlswede/K&rner (see
[39]), aud likely also by others, that the direct part of our MAC coding
theorem ([9]) can be derived from the Slepian/Wolf source coding theorem.

A new link between source- and channel-coding, which we found, is

given by the mathematically rather simple Covering Lemma 2 in Sec-

tion 6. It uses the idea of permutations mentioned in (c). Applying
random permutations to a maximal error code one can obtain our o]d
decomposition into maximal error codes ([14], presented in [17], [39], used
in abstract graph theoretic set up in [44]), which is g (slightly stromger)
version of the Slepian/Wolf Theorem. Thus we have the implications:

DMC Coding theorem = DMCS Coding theorem
= MAC Coding theorem (without converse).

Extensions of Covering Lemma 2 should be investigated. We think
that this new link will help to greatly simplify multi-user communication
theory and also lead to new results.

(e) In Section 7 we present a candidate EA(()) for the rate-distortion
function R%(6) of an AVS in the case, where the decoder has complete
knowledge of the states s*. We can actually show that R4(6) > R%(0).
However, since we have not yet proved the opposite inequality, we just
state Ry(0) = R%(6) as a conjecture. The validity of R 4(0) < R¥(6) depends
on the validity of another conjecture concerning a natura] generalisation
of the result of Wyner/Ziv [20]. Our approach can best be explained by
giving a new proof of the direct part in [20]. The AVS-problem is harder.
We present here one essential tool (Coloring Lemma 3A*) because it is
also useful otherwise for obtaining **direct”’ coding theorems. There are
a few techniques to prove ‘‘converses’ in certain Cases, but there is no
general method to prove “converses”. To find such a method js probably
the most important and challenging task in multi-user coding theory.

(f) In Sections 8, 9 we analyze how our techniques relate to the
Graph Decomposition Theorem (GDT) of Lovasz [36], which was recent-
ly used in source coding by Csiszar/Krner [38]. In Section 8 we show
that the results of [38] can also be derived by our methods, which turn
out to be even more general for the kind of balanced coloring problems
studied in [38]. '

In Section 9 we explain that the GDT itself is essentially equivalent
to our decomposition into maximal error codes (CDT). Another equiva-

y —_—
TFor recent program see ““The best known codes are highly probable and can be
produced by a few permutations® by R. Ahlswede and G. Dueck (to appear in the JEEE
Trans. on Inf, Theory)
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lent result is in terms of hypergraph coloring (HCP). Also a related
hypergraph coloring problem (HCP,) is formulated, its coding theoretic
significance is explained and some open problems are stated. We also
investigate the question of obtaining a converse to the GDT. It turns out
that for this question the other formulations are more suitable. Qur
conclusion after the analysis is that the GDT is an elegant formulation
of something which we already know in coding theory. Its proof is
closely related to, but not identical with, Feinstein’s [4] maximal coding
method. We -explain how one can use the type of proof for channel
coding (Minimal Error Lemma).

(g) In PartI we promised results on the two helper side information
problem, which originated in [41]. Suppose in (X, ¥, Z) Y and Z are the
helpers, then we solved the case where ¥ and Z are independent. This
case is fairly easy and our attempt to get from here the general case by
some kind of approximation has not been successful. We therefore decided
not to write about the problem here. A very special, but very instructive
case has been solved in [42]. This case shows that the decomposition
phenomenon (see Part I, Section 6) does not occur for the helpers.

2. ORTHOGONAL COLORING OF RECTANGULAR
HYPERGRAPHS (T} X G, &)

§ 1 INTRODUCTORY REMARKS

We recall ‘that the pair (CJ X 9, &) is a rectangular hypergraph,
if ¢, 9 are finite sets and £ is a family of subsets of U x G
C= U Eis the carrier of the hypergraph.

Eee :
If p (resp. ¢) is a coloring of CJ/ (resp. 9Y), then p = (p, ¢) is an
orthogonal coloring of Ci7 x Y. The following two types of colorings

are needed in coding an AVCS with and without side information at the
decoder. '

We denote by p) = (p), 4;) an orthogonal coloring of (CY/ x 94) for
which in every edge E, E & &, at least (1 — X)|E] colors occur.

A stronger notion of orthogonal coloring, denoted by p3, is defined by

the requirement, that in every edge E, E = £, at least (1 — N)|E] colors
occur, which occur only once in C,

More generally one can consider an orthogonal Z—Eypergraph
(UVx 9, &, (gj)jL,)', that is a 2-hypergraph with rectangular vertex set.

We denote again by p? = (2> ¥») an orthogonal coloring of (/) x )
for which in every subedge Ef'(m =1, . .. s My j=1,...,J) at least
(1 — X)|E}"| colors occur, which occur only once in E;.

- We study first hypergraphs with one edge E only. Using standard
random coloring (VIVI; WMy = (v,, ..., Vi), Wiy« - ., Wigyp with
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224 COLORING HYPERGRAPHS FOR MULTI-USER SOURCE CODING

L, L, colors we are interested in :éstimating the probability P, ; of not
obtaining a coloring p,. '

In applications to coding we have sequences (VX 9., Enyy eN=
(X" x Yn, g,,)neN of hypergraphs with |&,| growing exponentially in

n, and if for every E € &,P; g is superexponentially small, then we know
the existence of a coloring of type py for (7 x A, &,).

Now notice that for an edge of the form
E=A4xB,4C X" BcC Y with [4] =2

for instance

P;, ¢ is only exponentially small and the inequality (7.2) and the bound
(7.5) in Part I are not valid. We shall see in the next Section that
for the AVCS with side information at the decoder this “ine type” edge
occurs. However there the collection of all such edges has some addi-
tional structure, which makes a combined random-maximal coloring
approach possible. For the AVCS without side information we need
colorings of type p> (coloring edges within the carrier) and it can be seen
from Example 2 in Section 3 that *line type’ edges become a crucial
obstacle. Condition (1.1) in Theorem 4’ excludes exactly those edges.
For them orthogonal random coloring performs poorly, because there is
a strong dependency among the RV’s {Vi, W)): (i, j) € E}.

It is important to notice that this is not the case for ‘“diagonals” and
that therefore ““long diagonals’ have a very small Py g.

Fc QY x9gpiscalled a diagonal, if no two elements of F have the
same first or second component. We analyze now random coloring for

certain types of edges by decomposing them ‘into diagonals. - This leads us
to Coloring Lemmas 6, 7, 8, 9.

Other approaches are conceivable and we propose the

ProsrLemM 1. What can be said about the RV s {(V,, Wy):(i, ) = E}
for a general set EC ] x &? Which probabilistic inequalities or laws
can be established? In particular, given N, for which sets with |[E|=N
does random coloring perform most poorly?

§ 2 TyPEs OF EDGES AND PARTITIONING INTO DIAGONALS

We define now four types of edges which occur in the coding problems
for AVCS’s. Let {, {;, L, be reals with 0 < bl O+ L

Anedge ECCY X G = X" x Y is said to be of {-point type, if for
D = [E|

D < . 2.1
Define now d; = min {{E,,|: E},, £ ¢, w & W}, dy = min {|E,| : E,, + ¢,

Jr. Comb., Inf. & Syst. Sci.
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v€ V), Dy=max {|E,|:w € G}, D= max {|E,|:v & )}, that is,
the minimal and maximal sizes of cross-sections of E.
E is said to be of (¢, {1, {»)-diagonal type, if
' Dy < nfs, Dy < nbsy, D =08, ' 22
and of (¢, {1, {)-rectangle type, if '
dy > n%, dy = n¥, D > nt, ' (2 3)
Finally, E is said to be of (,, {3)-column type, if for CJ/(E, v) = {v
with (v, w), (v, w) € E}
|CV(E, v)] <n¥ forall ve ¢ and d, > nbs. 24

The (¢4, {3)-row type is deﬁned analogously Those two types may be called
line type.

Our first result concerns partitions of an arbitrary edge E into dia-
gonals. With E we associate a graph G(E) with vertex set E : the vertices
(v, w) and (v, w') are connected, iff v =" or w= w'. deg (v, w) counts
the number of vertices connected with (v, w).

ProrosiTioNn 1. Let E C CY x Y satisfy max deg (v, w) — 1,
, WIEE
then there exists a partition {F,..., F}of E mto diagonals, such that
(@) t < Tand (b) |F| < IﬂL <igt

Proof. Clearly, by Coloring Lemuma 2 one can color the vertices with
T colors such that adjacent vertices have different colors. A set of verti-
ces with the same color forms a diagonal and we bhave a partition of E
into ¢ << T diagonals.

To show (b), let us choose among the partitions into T or fewer dia-
gonals one, {F, ..., F;} say, with a minimal number of diagonals having
IE|
2T

0<a<i. From‘z |Fi] = |E| we conclude that for some i # 1, |F}] }]EIT“.
i<l

a cardinality < Suppose now that for instance |F\| = a|E|T"! for

Let A; be the set of vertices from F;, which are conpected with a vertex
from F;. The structure of G(E) is such that |4;| < 2|F)| = 2a|E|T".

— -

Choose a subset B; C F;\ 4; with |B;| = (1 — 2&)|E|(2T)"! and define two

new diagonals Fi = F,U B, F{ = F\B,. Then |Fi| > |E|(2T)™! and |F{|

B - - -

> |E|2T)™ — |E|2T)~! + o|E|T7! > |E|(2T)~1. This contradicts the defi-

nition of the partition {F|, ..., F;} and (b) is proved. Q.E.D.
Our next result is for edges of rectangle or diagonal type.

ProPOSITION 2. E C CY X GY = " X Y" can be partitioned into dia-
gonals {Fy, ..., F}} such that

Vol. 5, No. 3 (1980)
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(@) t < 2JE|nminGe ) |F| > 4~ nminGe &) for 1 <i <, if E is of
(&, L1, Lo)-rectangle type. '

(b) 1 < 2™ G 8 |F| > 4-Intmax € 8) for 1< i<, if E is of
(L, &1, L2)-diagonal type. ,

Proof. Apply Proposition 1 with:

- (@) T= D, + D, Since |[E| > max (D,n’:, Dné:), we have D, < |Eln2.,
Dy < |Ejn~%: and therefore the bound on r.  Also |F| > |E|QT)™! >
(208 4 mt))t > 4T G5, -

(0) T=nb% + n%s. Obviously, t < T implies 1 << 2n™* ¢, ¢ and |Fi
= 2718 (b 4 nd)t > 4-lpt-man G 8y, Q.E.D.

§ 3. CoLORING MosT Points CORRECTLY IN THEIR NEIGHBOURHOODS

If in addition to a hypergraph (C7, &), C) = {1,..., |V}, & =
{Ei,..., Ejywearegiveny; € E;, 1 < i<d, u; < u; for i < j, then we .
speak of a neighbourhood system or matching system (NS). Here E, is
the neighbourhood of u;. '

We are interested in colorings of the vertices €}/, denoted by u,, such
that for at least (1 — A)d u;’s

p(u;) = po(v) for allv € E;, v £ u;. 2.5
Let VIVl — Vi.. 'VICVI be a standard random L-coloring of C}/. For

1 < i< ddefine
L if ¥V, # V;forall j<u andje€ E

0 otherwise

gV, ..., V)= { (2.6)

- and

| |r1 if ¥, # V; for all
Gi(Vup Viyarts -+ 55 Vigpp =< J>mandjE L (2.7)
10 otherwise.

' d d
Clearly, if 3 g; > (I —X)dand ¥, G; > (1 — \)d, then we have a gy,
i =1

=1

coloring.
Now observe that for 1 <i<<d
Prob(gi=1lgii=¢_1,...,81=¢)

L—\E| _L—t
L == = max g, @8
and by the usual arguments (see the derivation of (2.14) in Part T)
d
Prob (E gi<(l— /\)d) < exp {[/1(/\) + A log Ti]d},
i=1

if t(L — 1y~}(1 — X) < 1 or, equivalently, if L > £\-1,

=

Jr. Comb., Inf. & Syst. Sci.
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Since the same inequality holds, if g; is replaced by G;, we have prove

COLORING LEMMA 6. For an NS (CV, (Ei, u)1<i<a) Standard random 1
coloring leads to a coloring py, 0 <A < §, witha probability greater thar

"1 —2exp {{h(/\) 4 Alog ﬂ d}, if L > max [EA = L.

l<l

§4 ONE SIDED BALANCED COLORINGS OF RECTANGULAR HYPERGRAPHS

Let E C CIV x GY/ be arbitrary, let L be any positive integer and |

D, = max |E,]. For an L-coloring ¢ of C{/ we consider
veECY

bo()= Y, |E| and by = max be(l).

tEq)_l(l) 1gi<L

CoLORING LEMMA 7. If VIVl denotes the standard random L-colois,
on C\), then for any a« > 0

Prob (b yIcv| > « max (‘EIL—ls D,))
< L-exp {— 5 max ([E[L7'D3", 1) + |E|[L'D3 }

Proof. Define forve CV, 1 <I<L,
1 ={l ifvV,=1

, 0 otherwise.
Then fory >0

Prob ( ;:"CVIEIUl ! > a max (|E|L™!, Dy)

exp {—ay max (\E|L7!, Dy)} J] Eexp {V|E.|f}.
ey
Now

f} E exp {ylE,;] = ﬂ(}j exp (V|E| + L Z""'l) v

=1+ (e + 18+ )
< exp {}1; }—J(VIElvl + g‘Eluiz + .- )}

< exp {z %'y\Elul(l 4 yD; + DR £ .. .)} .

v

For y = $Dz! this is equal to exp {1E|L—2D 't and the probability
question is Smaller than

exp {—a } max (|E|L-1D3', 1) + |E|L'D37"}.
Since this bolds for all 1 << I < L, the result follows. Q.E
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Remark 1. 1n applications we choose @ = 4 4 2¢*" and thus get the
double exponential bound L exp {—e*.
§ 5 ORTHOGONAL COLORING OF A LONG DiAGONAL WITHIN AN EDGE

We consider the situation F C E C C) x 9}/, where F is a diagonal,
|F| =

We use the standard orthogonal random L, X L,-coloring (V1Vl; w1 Wl
Ly = yX'D;; Ly > yA-le max (|E|LTY, Dy). (2.10)

Here 0 <A< i,a>2and ¥y >1. D,, D, are-the maximal sizes of
- cross-sections of E.

We estimate now

Prob (VIVI, wIWly is not a p2, éoloring of F within F)
from above by a sum p; 4+ p, + p; of three probabilities.

Step 1. Denote the elements of F by (a;, b,), 1 < i < d, and consider
the NS sysfem (CV, E|(,,-, ai)lg,'sd).

Coloring Lemma 6 gives a bound on the probability pi that PIWl s
not a ua coloring of this NS system.

Step 2. Coloring Lemma 7 gives a bound on
b2 = Prob (by|cy| > a max (|E|L1, Dy)).
The property ‘
bVlCV,l < amax (|E|L[, Dy)
implies that for all , 1 < I < L4,
: H;:= \J E,, satisfies

=

|H| < a max (|E|L{1, Dy).
Define the NS system (Y, (Gy, b));<:<q), where G, = H, iff b, € H,.

STEP 3. Apply now Coloring Lemma 6 with L = L, to the NS system
(W, (Gi, bi)i<i<q) in order to obtain a bound on pP3, the probability that

WMl is not a py, coloring of (g, (Gi, b)i<i<a)-
L, and L; are chosen in (2.10) such that -

P11 P2+ p3 < 2exp {[lx()«) + A logf ]d} .

+ Ly exp { 5 max (E[L7'DyY, 1) + lElL:‘D;‘}

{2 exp{[ 1) + A JOO_J }

Jr. Comb., Inf. & Syst. Sci.
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where Dy = a max (|E|L"!, D;), and such that the right side expression is
smaller than

4 exp {[h(/\) + A log 3]} + Ly exp {—(% — 1)}

We thus have proved

COLORING LEMMA 8. Let E C O X Y/ be an edge with D,, D, as maxi-
mal sizes of cross-sections and let L, L, be integers with L; > yA~'D;,

Ly > yx- ’a max (]E[L, , D)), where 0 < A< 1, a>2andy>1.

Then the orthogonal random L; X Ly-coloring (VIVI, wIWlyis a pd of a
diagonal F C E with a probability larger than

1 — 4exp {[lz(/\) + 2 log - ]]FI} — L; exp {—(% ——‘1)}.

As an immediate consequence of this'Lemma we get

COLORING LEMMA 9. Let (VX W, &, (E))]=1) be a 2- llyperg)aph and

let D} = max Dy;, D% = maxj D,;, where D;;, D,; are the maximal sizes
Isj<t 1<j<

of cross-sections of E; € £. . .
For integers Ly, L, with Ly > yA™! D,, Ly > yA~'a max (max |EJ[L1“, Dz)

0 <A<}, a>2,y>1)the orthogonal Ly x Ly-coloring (VICVI WIWI) is
a p}, of the 2-hypergraph with a probability greater than

_ N(4 exp {[h()\) + 2 log ] d*} Liexp {_(% — 1)})

if every subedge E! can be partitioned into diagonals of length > 'd* and if
N> Y |E.

ivJ

3. THE AVCS WITH AND WITHOUT SIDE INFORMATION AT THE
DECODER REVISITED

'§ 1. STRUCTURE OF THE HYPERGRAPH (X", Y~, (Gy(X™, Y7 | S"snesn)
The coding problem for the AVCS with side information at the .deco-
der was formulated in Section 1, § 3 of Part I. Its rate region .(RJZ is
characterized there in Theorem 3. For its proof we need a cla351ﬁcauon
of the edges of (CV, W, &) = (X", Y", (G(X", Y| 5"\ nesn) according
~ to their ({, g, {3)-types introduced in Section 2. This requires estimates
on the sizes of edges and their maximal and minimal cross-sections. We

denote those by D(s"), D\(s"), Djy(s™), di(s"), da(s") (see Section 2 for the
definitions) and frequently we write E(s") instead of G, (X", Y"|s").

1t follows from Lemma G(c) in Section 3 of Part I that
D(s") = exp {H(X(s"), Y(s™) + 0(+/7)} for all 5" & S, 3d)
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From Lemma CS in Section 3, Part I, and.the fact that we actually have
equality in (3.22) of Part 1 it follows that

|Go(X", Y™ 5™ pn] = exp {H(Y(s") | X(s7) + O(+/m)}
for all x" with Gy(X™, Y| s = D, (3.2
|Gy (X", Y75 ynl = exp {H(X(s)| Y(s) + O(+/7D)}
for all y" with Gy(X", Y™ | ") yn F @?. (3.3)
(3.2) and (3.3) imply that
Dy(s") = exp {H(X(") | Y(s") + O(v/m)}, 14
Da(s™) = exp (H(Y(s") | X(s7) + 0(/A)}, 4

and that
di(s™) exp {0(+/ 1)} = Di(s") = di(s™) for i = 1, 2. (3.5)
The inequality min {H(X(s)| Y(s)): s & S, H(X(s) | ¥(5)) > 0} > 0 and
{(3.4) imply '
1< e<m HX(5) | Y(5)) = 0} = n — 0(3/7) — O(log Dy(s™). (3.6)
Similarly one shows
11 < £<my H(Y(5) | X(5)) = 0} | > n.— 0(y/7) — O(log Dy(s™), (3.7)
[t 21 <t < ny HX(s), Y(s) = 0}] > n — 0(+/7) — O(log D(s7). (3.8)
Now we start with the classification of edges. Choose (¢ {9, Z9)

= (5+/7i'log n, /7 log n, +/7 log n) and denote by Cpoint (T€SP. Eer) the
set of edges in & -of (£ L, {2)-point (resp. rectangle) type. If now
(") ¢ EpointU Etect.» then by (2.1) and (2.3)

lE(sn)l > nSVﬁlogn and d;(S") < n\/r_zlogn
fori=1lorfori=2orfori=1,2. (3.8a)

If di(s™) < nV#1s" for i = 1, 2, then, by (3.5), E(s") is of (5¢/7 log n,
24/7 log n, 24/7 log n)-diagonal type for nlarge. Write &, for the set
of those edges.

If just di(s™) < nY#leen and therefore by (3.5) Dy(s") < nValogn for p
‘large, then (3.6) implies for the Hamming distance:

dist (x", x™) < ¢4/ log? n, if x", x"" E(s7)yn (3.9)
for some »". ¢ is a constant.

Therefore
IV (E(s™), x| < n*V3ioe* = forn > |X], x" € X (3.10)

and we have a (2c4/7 log? n, /7 log n)-column type, because also dy(s")
> nYnleen Denoting the set of those edges by &2, and. correspondingly
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by €L, we can state
PRroposITION 1.

6 = egoim U Egect. U ggiag. U 5301. U grzow'

Write (S” = Sgoinl U S?ect. U Sgiag. U 5301. U Sfow for the corresponding sets
- indices s”. »- -

Notice that (3.9) holds for a/l E(s") & €2, and therefore the siiong
statement follows:

U{CP(EG™), x7) @ 5" & S2)| < n2eVi log*n, (3.1

Also, since only D;(s") < n2Y#loen was used to derive (3.9), we have ©

Epoint U Eat. . -
U{SVE™, x7) & 5" & ShointlU Soer)] < n5eVilog?s 3.1
for all x" & ¥,
Correspondingly for ef,’oi,,tu 5‘,20“, _
JU{TVE", 37) : 5" € SpoimU Starl] < n*Vitogts 3.1
forall y» € yn. '
§ 2. CoLORING THE HYPERGRAPH

The graph (27, ), where (x", x'") & ] exactly if x™ & U{SV(E(s"
xMis"e SgointUSZO.,}, has by (3.12) a maximal degree less than n%#lce
Coloring Lemma 2 implies therefore the existence of a strict coloring -
for this graph with

llpol] < meVitogra | 1. (3.1¢

The corresponding coloring on @J" shall be Po. By definition of CY(E, x
(resp. HW(E, y™)

Ejgn nqx,;, =@ for x"¢CY(E, x)
(resp‘ -E']y"nEly'" = ¢ fOl' y'n ¢ W(E) yn)).

Therefore py = (po, o) is a strict orthogonal coloring of (X, UY*, £9eint
Moreover,

Po(x") = po(x"") = E(s")1n N E(s")on = @ forall s" & SZyp, (3.1¢
Yo plays the corresponding role for SZ .

We now use'standard orthogonal random L, x Ly-coloring on X¥"x QJ
In order to achieve a coloring p! = (g', ¥, which is of type p, fc
(X", Y, E4,, UEL,), and at the same such that ¢! (resp. ') is of typ
Dy (resp. ) for

tg[row = (%n, {E(S")]y" - yn 1= QJ"’ s" e Srzow})
(resp. Heot. = (Y {E(")m 1 X" € X7, 5" € S )
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(3.15) implies that then ((po, '), (Yo, 1)) is of type py for (_‘X’", g, £).
_STEP 1. For an edge E(s") € Etiag. We know that Dy(s"), Dy(s") <
nVAleen D(sm) > noVeioen and for E(s") € &Y ... we know that
’ dl(S”), dz(Sn) > n\/;logn’ D(S") > nS\/z_llog \/:7.
Proposition 2, Section 2 implies that in both cases E(s") can be partition-
ed into &™) = {F1(8"), - - F,(Sn)(s")} such that
|Fi(sm| = 4~ tnVPleen, 1 < i< U(s"), $" € St U Shing..  (3.16)
Apply now Coloring Lemma 9 to the 2-hypergraph
(7, G, (B 5" € S USkiedh E6Vn e g0 st )
with . '
| A=A, = exp {—}4/7 log n}, @ =2 + 2%, d* = 41pviiogn,
y = e, N = (] |Y] IS (3-17)

Then for sufficiently large n
N(4 exp {(—(1 — ) log (1 — X) — A log ¥)d*} + Ly exp {—(‘% — 1)} |

< 401 1Y S exp {—Xd*} + | X" exp {—17}
< exp {—1+4/7 log? n} < § for n large enough.
The conditions for L;, L are
L, > exp {3 + +/7 log n + max HX(s) | Y()n + O(v/m)}
Ly =2+ 2n2) exp {3 + /7 log n} max (L7 exp {max H(X(s),

Y(s))n + 0/} exp {max H(Y(s)| X()n + O(v/m-

s

They are fulfilled, if '
L, = exp {max H(X(5)| Y(s)n + 24/ log n}
SES '

Ly > exp {max H(Y(s)| X(s)n + 24/7 log n} (3.18)
SE ) ' .

L,L, > exp {max H(X(s), ¥(s)) + 24/n log 1n}.
' seS .

Step 2. By Coloring Lemma 3A already the standard random L;-
coloring of " leads to a Py, of Hrow With probability > 1 — }if

Ly > XI[E(s")| ] for all 5" € Sy» " € Y (3.19)
and if -

Y exp {|EGETml() + A log (EGM-LiDy <1 (3.20)
E(sn) 7 0 , -

Jr. Comb., Inf. & Syst. _Sci.
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From (3.3) and dy(s") > 4/7 log n we know
exp {max H(X(s) | Y()n + 0(v/7)} = [E(s")yn| > nv?loen  (3.21)

if E(s")ym # @ and 5" € Sk,

For A = A, = exp {—}+/n log n} and L, as in (3.18) therefore (3.19)
holds. The left side expression in (3.20) is smaller than-

(Y| |S])" exp {nV™ 18 "(h(\) — A,+/7 log n)}.
Since h(A,) < §4/7 log n exp (—}+/7 log n}, this is smaller than
(Y] |S)" exp {—3+/7i log n n? V1B 1} < exp {—ev7} < 1 forn > || |S]-

For 9{, the argument is symmetncally the same. We have proved
that there exxsts an L; X Ly-coloring p! = (qo 1) which is of type p,_ for
(X", Y, Elg. U EY,) and such that p'(resp. ¢!) is of type @,  for

Sli(resp. K3). By the foregoing explanations ((pq, p,), (o, ¥1)) is a Color-
ing of type p, and by (3. 14)

|

”(51107 l)b )l
with L, L, as in (3.18).

1-€xp {5cy/n log® n},
La-exp {Scv/7 log® n}

//\//\

(3.22)

§ 3. THE ERROR PROBABILITY OF THE CODE

Define now the code (fy, gu» Fy) With f,, = (po, p'), g, = (b0, ¥!) and
F (I, I, s™) = Gy(X™, Y| s")N(f (L) x g1 (1)) (3.23)

Lemma G (a), (b) implie's that the worst case error probability is
bounded by

— /1 | - :
Aq exp {0(4/n)} + 0(5—2) < exp{———\/n log n} + 0(—12)
for n large enough. From this and (3.22) the direct part of Theorem 3
follows by choosing § sufficiently large.
~ The converse part is immediate, because for every s
Ry = H(X(5)| Y(5)), Rz > H(X(s)| X(s)),
Ry + Ry > H(X(s), Y(5)) has to hold. ‘ Q.E.D.
§4. PROOF OF THEOREM 4

After the foregoing analysis it is now easy to derive with the help of
Coloring Lemma 9 the

Tueorem 4'.  If an AVCS ] satisfies the entropy positiveness condition
H(X(s) | X(s))- H(Y(s) | X(5)) > O for all s = S (3.24)
then its rate region R equals R.
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234 COLORING HYPERGRAPHS FOR MULTI-USER SOURCE CODING

@={(R), Ry) : Ry, Ry satisly (a), (b), ()}, here
@) R, > sup HXE)|Y(E)

=
(b) Rz = sup H(Y(s)|X(5))
sES
(©) Ry + Ry sup H(X(3), Y(5))-

ses
(For the necessary definitions see (1.2), (1.3), (1.14) in Part L)

Proof. The converse has been explained in Part I. We now consider

again the hypergraph
(X7, Y7, (G X", Y™ | Mgnsn) = (Vs W, (B ynes7)
with the carrier C: '

C= U E(s"). (3.25)
sneSst

We know from Lemma CS and the Carrier Lemma in Section 3, Part ],
that

|C| < exp {max H(X(5), Y(5)n + 0(v/n)} (3.26)
&S
|Cjyl < exp {max H(X(5) | YE)n + 0(v i)}
ses :

|Cixn| < exp {max H(Y(s) | X(s)n + 0(+/ 1)}
sges

for all (x", y) & X" x Y.
Condition (3.24) and (3.2), (3.3), (3.5) imply that

dis") = exp{cn},c>0,fori=1,2,s"&€ §" (3.27)
This means that all edges are of (2cn(log n)™!, cn(log n)™, cn(log n)~ -
rectangle type. Proposition 2 in Section 2 implies that £(s”) can be parti-
tioned into diagonals £(s™) = {Fi(s"), . - . » Fysn)(s™)} such that

|F(s)] = 47" exp {en}, | <J < ("), "€ S (3.28)
Apply now Coloring Lemma 9 10 the 2-hypergraph {9, 4, {C}, ),
where

&C) = Us &%), (3.29)

‘ - sne n
with A = A, = exp {—+/7 log n}, @ = 2 4 2%,

d* = 4V exp {en}, ¥ = &, N = (] |9 1S)"

Then N(dexp{(—(1 — ) log(1 —A)— Alog¥)d*}) + Lyexp {—(g — 1)}

Ir. Comb., Inf. & Syst. Sci.
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< exp {—4cn} < 1 for n large enough. The conditions on Ly, L, are satis-
fied if the inequalities in (3.18) hold also with S replaced by S.

The L, X Ly-coloring obtained is of type Par, = (Par,» ¥4,)-  Siace.
all diagonals are colored properly within C also alf edges E(s") are colored
properly within C.

Define the code (f,, g,, F,) by f,, = P4r,» &n = Y4y, and
‘r ®an,(I1)> P25 (1)) if this set has exactly

Fo(ly, ) = 4 1 element in C
rany decision otherwise.

32
Lemma G; that the worst case error probability is bounded by
4, exp {O(\/ﬁ)}—}—o(é%) and this can be made arbitrarily small by
choosing 8 and n large. , Q.E.D.

Since for all s"&&", Prob ((X(s”), Y(s")eC) = 1 — 0(—1-)., it follows from

§ 5. A COUNTEREXAMPLE

We now show that condition (3.24) in Theorem 4’ cannot be replaced
by \
H(X(s), Y(5)) >0 forallse . (3.30)
For this we modify the Example on page 82 of Part I. Recali that there
X=Y={0,1,2}, px,y|5) €{0,1} for all (x,y, s)e XxYx S.
Furthermore, the AVCS is such that the matrix M, which has a 1 as entry
exactly when p(x, y | s) = 1 for some s € Sand a 0 otherwise, is of the

form ,
1 10
M=(O 1 1). ‘
1 0 1/ -

Replace now Y by Y* = x {1, 2} and build M* by replacing in M
every 1 by GZ) and every 0 by (8) The original row i is thus replaced

by the two identical rows (i, 1), (i, 2). An elementary calculation shows
that now

R ={(Ri, R)) : R, >10g 2, R, > log 4, R, + R, > log 12}
and that min H(X(s), Y(5)) = log 2 > 0.
We show that (R, R;) = (log 3, log 6) € R is not achievable. For
Rz = log 6 the 47*-outputs are known exactly at the decoder.

Suppose now that (f;, ga, F,) is a code for the AVCS without side: in-.

Vol. 5, No. 3 (1980)
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formation with e(fn, gn Fr) < A<} and that ||f,|| < 3" Then there
exists a pair (x", x'") with f,(x") = f(x"*). We now derive a contradiction
as before. Endowing X with a vector space structure GF(3)" one sees
that there are vectors € = (e;, ..., €, and €” = (e, ..., &), ¢, & & {0, 1}
for 1 < t < n, with

x'n + e = x" 4 €". (331)

The n-th Kronecker product of matrix M has a 1 exactly in the positions
(x", y*) with y* = x" + €*", ef = {0, 1} for 1 <<t < n and has therefore a
1 in both positions (x", x* 4 €%, (x, x4 €").

This implies that the nth Kronecker product of M* has a (§)" in all
positions (x", ((x" + €, &™), a" € {1, 2}", and all positions x, (x4 €,
M), B {1, 2}".

"Since by (3.31)
(" + e, e are{l, 2 ={(x" + 9, B : pre{l, 27

and since f(x") = fu(x'"), for a suitable s" the error pvrobability is > 3.
Q.E.D.

§ 6. SoME REMARKS

1. Consider the AVCS with € = ¢ = {0, 1, 2}, S = {0, 1} and
Cp(x, 010) =p0,y| 1) =1 forallx,ye{l, 2}

Suppose the decoder knows the states s”. By Theorem 3 or also directly

one sees that the region equals {(R;, Ry) : R; > logz 2 for i =1, 2}. Now
the channel is such that both encoders know the states s” also. Suppose
s"=000...0 111...1, then it suffices that the Y-encoder (resp. Y-
encoder) encodes his received sequence in the O-block (resp. 1-block). If

s" has t 0’s as components, for this the rate pair (R,(s"), Ry(sM) =

t n—t .
(E’ — ) suffices. Notice that R,(s") + Ry(s") = log; 2 for all s" € S
-~ Now imagine that the decoder wants to forward the outcome of the
source to another person, who also knows the states, then here only a
total rate log; 2 is needed. One may therefore distinguish between
potential and actual rate. '

2. The problem to find optimal orthogonal colorings of rectangular
hypergraphs has some basic meaning for science. 1f one takes different
projections of an object in an optical sense or “projections” of measure-
‘ments, then one is interested in the question of reconstructing the original
picture or measurement with a minimal amount of information about
the “projections’.
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4. THE RATE REGION FOR ARBITRARILY VARYING SOURCES (AVS)

-§ 1. THE RATE REGION
The coding problem for the AVS under consideration has been defined
in (b) of the introduction. The region of achievable pairs of rates was
denoted by Roc. We adopt the following notation: S is a RV with
values in S and X is a RV with Prob (X =x|S=3s)=p(x|s),
Prob (X = x) ES p(x|s) Prob (S = s).
sE

THEOREM 5. The rate region of the AVS can be characterized as follows:
Ry = {(Ry, R2) : Ry, Ry satisfy (a), (b), (c)}, here

(2) Ry > max H(X|S) (b) Ry > max H(S| X)

©) Ri+Ry > mgx H(X, S)
and the maxima range over all RV’s S with values-in S.

We know from Theorem 17 that for R, = log | S|, that is the case in
which the decoder knows the S-outputs, the optimal value for R, is
max H(X(s)) = max H(X|S). In the other extremal case, in which the

s S

decoder knows the X-outputs, the optimal value for R; is max H(S | X)'.
S

We would like to thank I. Csiszar for poiating out to us that this
case can be solved by the Graph Decomposition Theorem (GDT) of
Lovasz [36]. This is simply due to the fact that our decomposition into
maximal error codes (CDT) ([14], included in [17], [39], for an abstract
graph theoretic version, see [44]) follows from the GDT. In Section 9 it is
shown that the GDT and the CDT are essentially equivalent.

It should be noticed that both rate pairs (max H(X|S), log |S|) and
S
(max H(X), max H(S | X)) lie in general not on the boundary of R .
s T s 3

§2. A ““MIXED SOURCE-CHANNEL’’ CODING PROBLEM

From the poini of view of classical source (resp. channel) models with
completely specified joint distributions (resp. conditional distributions)

3. Wolfowitz kindly pointed out an error in the calculations of the original proof
for Theorem I in Part I. This can be corrected by replacing (4.6)-(4.8) by (4.6")-(4.8"):

Sym) = {s" 15" € S with [Gy(Xn | sn)| << exp {4cy/n}} (4.6")
h(M(n)) + A(n) log (|G(X™ | s™)|L(A) ™) < —2cv/n exp {—3cyn} fornzn, (4.7)
[Sn — S, (m)fexp {=2cy/ne= VAN 1 forn > n,. (4.8

In order to color (X, (Go(X™ | s™))in s (n)) strictly now (n[_‘{'l)o("’") colors are needed.
E)

Thus || /5l < exp {H*n + O(log 2- v/ n)}.
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238 COLORING HYPERGRAPHS FOR MULTI-USER SOURCE CODING

the AVS is a mixture of a source and a channel coding problem. Even
though we try to avoid channel coding in source coding (see Introduction
to Part 1) for problems of the present type this may not be possible in a
simple way. Our proof of Theorem 5 uses the CDT in conjunction with
colorings of 2-hypergraphs. The CDT was originally used to.prove the
Slepian/Wolf source coding theorem ([15]). For that theorem an average
goodness is enough and Cover’s nice proof ([16]), compare also Coloring
Lemma 4 in Part I, Section 2, §2 for an abstract version) is much simpler.
However, for the present problem the CDT finds a natural use. We include
here a new proof of i, because it is so simple and contradicts a common
belief. It is often believed that random codingis linked with the average
error concept and that maximal coding is linked with the maximal error
concept. In [43] we showed how to do random coding with maximal
errors and here we show how to do maximal coding with average errors.

§ 3. AN ABSTRACT MAXIMAL CODE METHOD FOR ““AVERAGE ERRORS’’
Let (%€, 4, F) be a bipartite graph and let
| W =ped:xne T +0.
An abstract (M, o)-code is a family {uy, ..., un} C X with

M

i=l j#i

'1%4 Y 3 16) N Gl 1G)™ <o @1

In[43]1 %] [z(iu,-) 0 G(u))| |G(w)|~* was used as measure of performance for
J .

code word u;.

MaXIMAL CODE LEMMA. For every a > 0 there exists an (M, o)-code for
the bipartite graph (X, Y, F) with

1 PP -1
Mz ey T lE@neeliomt) @)
\ |x, xeX _
Proof. If N is the maximal integer for which an (N — 1, o)-code
exists, then for all vectors (X, - . . 5 xy) € XV

$ 5 16 NG| 1GE) = oN

i=1j#i

and therefore

¥ ¥ Y I6ENGE G0 = oV X

(Rpy o ey B EXN =177

Since for every x,x' € X the term |GEINGEN)] |G|~ occurs
N(N — 1) ||"-2 times in the sum, we conclude

NV — DI R 6eINGE [0 Z oN X ()

k4

which implies (4.2). Q.E.D.
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In order to analyze the quantity
1 /
"} = et Gx)NGE)| |G
we define the vertex-vertex degrees
deg () = |(x: (x, ) € T}, deg () = |G},

and
Deg (1) = 3, deg (). (44)
Observe that : .
Deg (x) = Y, |Gx)NGE), - 4.9
xeX

and that for ' ‘
g = min |G(x)] and D = max Deg (x)
xeX xeX
1

L B GENGE) 6™ < Dg. (4.6)

Thus we have the

COROLLARY. For every o > 0 there exists an (M, o)-code for (X, Y,

F) with
o |X| gD 4.7

Remark 1. For comparison let us repeat Feinstein’s [4] argument.
Fix a positive A < % and consider a system {(u;, 4;) : 1 < i< M} with

@) u,eiX’,A,Cq}forlgigM;A,-nAj_—_(Z)fori;éj.

(b) A,CGu), 1<i<M.

© iz —-N[6wW)1<i< M.

(d) M is maximal for a system with properties (a), (b), (c).

Set 4 = U A;. Then for all x € X, |G(x)N 4| = A|G(x)] and therefore
2 lG(x)ﬂAI E G| = A Z |G(x)|. This implies

xeX rye

4] = (maX G~ Z |G ()|
and from (b) we obtain || < M max |G(x)[
xex

Therefore _
M > G G LA G(x)].
((x, y;‘;g e |G NGO xé‘lxl 63]

Remark 2. (Application to the channel graph). For a DMC with in-
put (resp. output) variable X (resp. Y) the triple (Zy(X™), D, (Y™,

U x"x Gy(Y"| x") forms a bipartite graph. Using the decoding rule
xre IyX™) |
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B = Gw) ~ U G(uy) we derive from (4.1) 1 3 |B| [G@)™ > 1 — .
#1 i=1

This and the properties of the generated sets Gy(Y"|x") as stated in
Lemma Gl, Part I, guarantee that {(#;, B)): 1 < i << M} is a code for the

DMC with an average error ~probability A<o+ 0(515)
Moreover, in this case
D = exp {(H(Y|X) + HX | Y))n + 0(v/n)}
g = exp {H(Y| X)n + 0(v/n)}
| 2| = exp {H(X)n + 0(v/m)}
and therefore by the Corollary, M > o exp {I(X A Y)n + 0(4/n)}. This is
the coding theorem.

§ 4. DECOMPOSITION OF X into Copgs (CDT)

For (¢, Y, ¥) and 4 C ¥ define Dy = max Deg (x) and g4 =
min |G(x)]. Of course
B =

Ds<D and gi>g. (4.8)
Denote the restriction of (X, 4, F) to A by (4, Y, F4). By the

Corollary and (4.8) there exists an (M, c)-code for this bipartite graph

with :
My > old| gaD3' = old] g DL (4.9)
Now we describe the iterative construction of codes. Abbreviate og D!
by a and set X, = X.
By the Corollary there exsits an (M;, o)-code U, with a|X| = M,
> a|¥|—1. (Throw unnecessary code words out). Then |25} = | X1— U]
> (1 — @) |X] and there is an (M3, o)-code Uh:
a(l —a)|X| =M= a(l —a)| X — 1.
We show inductively that the construction can be repeated such that for
allt > 1
e U e [ (4.10)

Now ’%“}:"x Ui> % - ¥ a\fxm_a)s 1361(1 :Z:oc(l _a)s)

= |2 (1 — )’ and therefore we can find an (M4, 0)-code Uy, with
e|X(d - > M 2a|X|(1—a)f — L

If now fora 7,

ali’lé (l—a) =T |X|-T—1, (4.11)

2 M, > li?El — 1.

t==-l
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In this case the remaining elements can be trivially partitioned into T'4 1
codes and ¥ is then partitioned into at most 2T + 1 codes. Equivalent
with (4.11) are 1 — (1 — )T > 1 — |¥|™! or Tlog (1 — a)™' > log |X].
Sufficient for this is _

T>allog |X]|=o01Dg™! log |¥].

From every (M, o)-code one can extract a subcode of length

M > (l — %)M and worst case performance yo, ¥ > 1. Choosing in the
i 1 . L.

iteration a = (1 — )—/)ogD“ this leads to a decomposition into

T = y(r — 1) le~1Dg!

“codes of wbrst case performance yo, ¥ > 1. Thus we have proved the
Code Decomposition Theorem (CDT).

For the bipartite graph (X, Y, F), G(x) = @ for x € X, there exist
partitions of X into

(@) 20¢7'Dgllog || + 1 codes with (average) performance smaller
than o.

(b) 4o 'Dg'log ||+ 1 codes with (maximal) performance smaller
than 2e.

ProBrLEM. Can one achieve those results also with codes of essen-
tially equal length? One may call this a balanced decomposition. In
Section 6 we show how to get this result for the channel graph, which
has a nice product space structure, by a simple argument using randomly
chosen permutations from I7,, the symmetric group on {1, ..., n}.

The random method of [43] gives this result for more general classes
of graphs. The Hamming distance used in [43] is to be replaced by
abstract graphic parameters.

§ 5. PROOF OF THEOREM 5

The converse follows immediately from the converse for the standard
correlated source [15] and the fact that for any code (f,, g, F,) with
error probability A definition (1.2) implies that

Prob {F,(f(X"(S")), g(S™) # (X"(S"), SM)} < A
for all RV’s 8" with values in $” and in particular for all S = (Sy, ..., S,),
where the S;’s are independent and identically distributed.

For the direct part we make use of the CDT in conjunction with
Coloring Lemma 3C. In the proof of Theorem 2 we used the Covering
Lemma of Section 2, Part I, in order to get a suitable partition of &7,
and then we defined a 2-hypergraph based on this partition, which could

be properly colored with the help of Coloring Lemma 3C. Now we get a
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suitable partition of §" from the CDT and then we define a 2-hypergraph
based on this partition and color it. Again there are the two slightly
different proofs: one using the almost uniformity of PD’s and the other
based on counting alone. We choose the first one.

STEP 1  Partitioning of S"
Fix a p & Py(n, S) and a RV S, with distribution p-X, is a RV with
Prob (X,=x)= Y p(s)p(x|s). From the CDT and Remark 2 we know

se s
that for every 3,0 < A < 1, thereexists a partition C(p, L,) = ..., C}l;p}
of Jy(Sy) with

Lp< exp {H(S, | X n + 0(y/n)}, (4.12)
ICh| < exp {I(X, A Spn + 0(v/i)}, 1 <i< L, (4.13)

and such that Cj} is the set of code words of a code for the DMC with
transmission matrix (p(x | 8y e %, se s This code has maximal error

probability less than A. The decoding sets can be chosen as follows:
G(s™) = GX"|s") — U{G(X" | s™ :s" & C), s # 57} for all s" = CL.
' . (4.14)
For any integer /, = exp {r,n} with 0 < r, <J(X, A S,) we can find a
refinement of C(p, L,):-

Cps Ly 1) ={CJ: 1 <i< L, 1 <j< 1} (4.15)
with the properties
CClcChfor1 <<, I<i<L, (4.16)
and
ICYl <exp {I(X, N Sp) —rpn+ 0(/m)}for 1 <j< 1, 1<i<L,
4.17)
Clearly,

C={CJl:1<i<L,1<j<l,pe Pn, S)} (4.18)
is a partition of §". | ' '
STEP 2. Definition of a 2-hypergraph 9,
Choose I, = (CV, AU B, (Elgeaya) AN B =@, as follows:
1) =%
(2) Partition Py(n, S) into 2 sets P,(n, S) and Py(n, S), where
P, S) = {p € Po(n, S) with H(X, | S)n < 2¢+/7}. (4.19)
Define now ' A

EY = U{Qs™ s e CYy, (4.20)
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A={EV:ipe P, 1 <i<Lp,1<j<l} (420
B={E):pe€ Dpm, 8, 1 SIS Ly 1<) 4.22)
Finally define for Ef &€ 1 U B the set of subedges
Epii = {4(sM) 15" € Cy). (4.23)
Step 3 Choice of ther,’s
Suppose that (R, R,) is given and that

R, > max HX|S), R, > mgx H(S | X), Ry 4+ Ry > m?x H(X, S).
S .

Define for p € Po(n, S)

r, = min (IS, A X,), Rz — H(S, | X,), (4.24)
R2p=H(SplXp)v—|— rp< Rz, . (425)
and Ri, = H(X, | Sy + (S, A X,) —r). (4.26)

Now also Ry, < R, holds. In case r, = I(S, A X)) this is obvious, because
Ry > H(X,|S,). In case r,= R, — H(S,|X,) we have R; > H(X), S))
— Ry =H(X,, S;) —r,— H(S, | X,) = HX, | Sp) + (S, /\‘Xp) —rp) =
R,,. Since the S-encoder can encode the type p at a negligible rate, it

suffices to show that for -fixed p the ‘rates R,,, R, as defined in (4.24),
(4.25) are achievable for 0 < r, < I(S,AX)).

StEP 4. The parameters of the 2-hypergraph. Inorder to apply Lemma
3C we peed suitable upper bounds onthe size of the edges and on the
maximal vertex degree D of (CV/, _1*), the graph assigned to the hyper-
graph (C1/, ) (see page 84 in Part I), and a suitable Jower bound on the

cardinality of subedges in (CV, B, (€g)peg)- 1t follows from definition
(4.20), (4.17) and Lemma G1 (c), page 94 of Part I, that -

|EY| < exp {(H(X,|S,) + I(X,AS,) — r)n 4 0(+/n)}
: for 1 <i<Lyyl<jg,. 4.27)

We now derive an upper bound on D. Recall that an AVS is defined by
a set {p(-|5) : s € S), which means that

p(-18) #p(-ls") for s +# s (4.28)

Now for p & P,(n, S) an 5" & To(S?) has fewer than Hy'2cq/7 compo-

nents ¢ with H(X(s") > 0, if H, = min {H(X(s)) : H(X(s)) > 0}. Here we
seS .

used Z"] H(X(s)) =nH(X,|S,). Keeping (4.28) in mind we see that any
=1 _ ;

X" e X" can be contained in at most T=( )[S]H;lzc‘/'_’ sets

g™, s"e CL1<i<L,pe P, S).

This implies that x" is contained in at most T edges in .{. Using

n
H;"2¢y/7
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(4.27) we get
D < exp {(H(X,|S,) + I(X,AS,) — rp)n + 0 (cy/7 log m)}. (4.29)

Finally, it follows from the definition of G(s"), 5" € C}, Lemma GI1 on
page 94, Part I, and the definition of Py(n, S) that for ¢ = log? n and n
sufficiently large

|G(s™)| = exp {y/n log?n} for s"€ C),, 1 <i< L, peE P, S).

(4.30)
Step 5. Application of Coloring Lemma 3C.
Choose

Ay = exp {—+/7 log n}, L(n) = exp {Rln + +/n log?* n},
v d(n) = L(n) — D — 1,

and apply Lemma 3C (pages 89, 90 of Part I) (2.20) there is equivalent-
with

\EJ| < Ad(n) for a]lz], p. (4.31)

Sinee D < exp {R,,n + 0(+/7 log? n)} and since R{ > R,,, we have for n
large

d(n) = exp {Ryn + 1/ log* n}. | (4.32)
This, the choice of A, and (4.27) imply (4.31). It remains for (2.21) to be
verified. Using (4.30), (4.27) and (4.32) we see that for n large the left
hand expression in (2.21) is smaller than
(n + DISHSP exp (o= (kD) — A,3/7i log* m)} < 1.
By Lemma 3C there exists an L(n)-Coloring @n of 9(,, which is strict on
(@, A :
STEP 6. The code and its error probability. Define the encodmg func-

tions f,(x") = @2;\ (x™) for x" & ¥", g&:(s") = (i, j, p) if s" € C}, and the
decoding function F, by

(om0 @) B nfa'() = {(x")
F.(l, (i, j, p)) =< and (b) x"& G(s") for s"& C;j
rany decision otherwise.

Thus clearly,
fall < exp {Rin + /71 log* n},

ledl < (n+ DISlexp ( max Ry, n+0(y/7)} < exp{Ron-+0(/ )]
PEPy(n, S) :

The decoding error probability is readily estimated:

By construction of the C}’s Prob (X(s") & GQ(s") = 1—A for all s e S
Our coloring is such that every subedge G(s") is properly colored within
its edge in at least (I — 2A,) |G(s")| of its elements. Denoting this set by
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K(s") ¢ G(s™) we conclude from Lemma G1 that

Prob (X(s) € K(s")) > 1 — A — 2\, exp {0(v/n)} = 1 — 2 for n large.
| Q.E.D.

Actually by bothering about several constant factors of 4/7i-terms one
can also achieve || fol] < exp {Ryn + O0(v/n)}.

Remark. The assumption p(-|s) # p(-|s") for s # 5" in the definition
of an AVS can be dropped. The proof of Theorem 1 does not use this
condition. We used it in the present proof in order to get the bound on
D and also in the proof of Theorem 2. There one can replace every s by

- its equivalence class without further modifications. In the present proof
we can make the code constructions for the equivalence classes and encode .
the elements within an equivalence class separately. The formula for the
rate region remains valid.

5. A GENERAL ROBUSTIFICATION TECHNIQUE
§ 1. INTRODUCTORY REMARKS

In this Section we assume that the reader is familiar with [13]. There
we introduced a general method, called elimination technique, to obtain
from a correlated code for arbitrarily varying channels (AVC) with error
probability A; < e~ € > 0, an ordinary code of essentially the same rate
and average error probability A, = o(l) (Actually, by a more careful
analysis one can achieve A, < e™", § < 1). Since for correlated codes
the capacity was known ([8], called Random Code Theorem in [13]), we
thus obtained the ordinary capacity. More precisely, we obtained this
result, if the ordinary capacity is known to be positive.

Jahn ([26], [49]) has applied this technique to several multi-user source
and channel coding problems. The approach is always as follows:

(2) one establishes a Random Code Theorem for correlated codes,

(b) one eliminates the correlation.

 Here we are concerned with step (a). The method described below
makes it possible to derive from a Capacity Theorem for compound
channels ([7], [6]) or sources a Capacity Theorem for arbitrarily varying
channels or sources, which are the more robust models. We describe the

method right away abstractly and recommend to look at Example 4 below
for the motivation to our concepts.

§ 2. TH RoBusTiFiIcATION TECHNIQUE

Let 17, be the symmetric group (the group of permutations) acting on
{l,2,...,n}. We consider functions f: [T, x S"— [0, 1], where Sisa
ﬁmte set For §" == (sl, -y Sa)E S"and 7 & II, we denote (s5,¢), - - - 5 Sum)
by #(s"). «’m is the permutation obtamcd by multiplying = from the left
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with »'. We say f is invariant, if
f(a'm, @'(s)) = f(=, s") for all m, #’ & I, and 5" & S". (5.1)
The following sets were defined in (3.1), (3.2) of Part I:

Po(n, S) is the set of PD’s on S with p(s) = :’7 n, integral, for s € S.

Clearly,
|Po(rn, S < (n + . (5.2)

So are the (p, 0)-typical sequences in S" We need three elementary pro-
positions.

. PrOPOSITION 1. Let p € Po(n, S), s"€ S" and A < SXp) be fixed,
4] > ol Si(pl, then
tr € M0, w76 € A = 4| T]_(pon)! = ] = el
. ses
Proof. Notice that for 5" £ 5™, {m : a(s"") = 5"} {'rr (s ”) = s"} =
and that

frim(s == [] (po)! for all s, » & Si(p).
se8

This proves the first equality and the last one is obvious. The inequality
follows now from [Se(p)| = n! ( [] (pn)!)~! and the assumptlon on 4.

ses
- Q.E.D.
For the PD P I‘[* p on §" one can show with Stirling’s formula that

P(S3(p)) = const. n‘”z. We use here a weaker inequality, because it can
be verified by a short calculation.

ProrpositioN 2.
P(SY(p)) = (n+ D7 for all p & Py(n, ).

Proof. Show that P(S§(p)) = P(So(q)) for all g € Py(n, S) and use
(5.2). This argument and the details can be found in [39], Chapt. 1.

ProposiTion 3.. If for BC S"P(B)>1 — B(n + 1)“5’, 0 <‘B <.1,
then
P(BNSo(p)) = (1 — BYP(Si(p))-
Proof.
PBNSHPY) = P(SKP) — Bn + DI > (1 — B)P(Si(p))
(by Proposition 2). Q.E.D.
We now have all tools to prove.

- TheoreM 6 (Robustification technique). If an invariant [ IT, x §"
— [0, 1] satisfies

28 f(a*, sYP(s") > 1 — 7,0 <y < 1, for a fixed »* & IT, (5.3)
ﬂe 7
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and all
P =[]*p, p € Pon, S),
1

then
% Y S ) >1 =32 DSl forallsne S, (5.4
rnell, ‘ v
Proof. For 0 < § <1 define B = {s*": f(«*, s*) > (1 — §)(1 — »)}.
From (5.3) we obtain

(I —=PB)YA — &) —»)+ PB)> 81—y

CPBY(L— (1= )1 =) > 8(1 — ).
S(1 — )
d+v
Y21 — )
PP T 7
With the choice B = ¥'*(n + 1)IS! Proposition 3 implies P(BN S p):
= (1 — B)P(Si(p)), and since the elements in Sj(p) have equal probabi.

lities also '

or

Therefore P(B) > and with the choice § = U2 this yields

P(B) > —1—yl2=1 5.

IBNSKR) = (1 — B) 1SHP)-
Now apply Proposition 1 with 4 = BN S3(p) and @« = 1 — B in order tc

estimate l’ Y f(m, 5") from below.
ni WGH”

Clearly, for any s" € So(p)

Ly fmm=1 v fm, s (1T, is a group)
n. ar n n. ﬂenn
= _IT Y. f(=*, a~1(s")) (by invariance)
n. .”enn b
2 __l__ f(ﬂ*, ,n,—-l(sn)).

n! mIa-l(sM)EA

From the definitions of B and 4, f(z*, v7'(s") > (1 — 8)1 — y) fo
@~ !(s") € 4, and by Proposition 1 {{= : 7!(s") & 4}| > (1 — B)n! There.

fore —1,— Y S0 =81l—»1—=8=>1—-B—y—8>1—
1 ﬂ'enﬂ

Y2((n 4 1DISI 4 yY2 4 1) and (5.4) follows. " Q.E.D

§ 2.  APPLICATION OF THE METHOD

We now show for a typical example how the method works.
Let K = {w(-|-|s) : s € S}, |S| < o0, be the transmission matrices o
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an AVC. Define the convex hull
= (X w(-|"l)g(s) : g PD on )

and consider a compound channel with K as class of matrices. Let

{, D;) : 1 < i< N} be an n-length block code with average error pro-
bability y for thlS channel:

.N'):x wD;lw) >1—y forallwe J. (5.5)
. i=
This implies
i}_} ):S w(D, || s)P(s) > 1 —y forall P=[[*p, p PD on S.
= 5" . 1

(5.6)
Define now

f(m, s") = % ﬁ w(ﬁ(D,) |7(u;)| s™) where #(D;) = Ub =(y"), (5.7)
i=1 »yeb; ‘

and let =* be the identity in 11,.

The function f is invariant, because the channel is memoryless, and
(5.6) implies (5.3). Therefore Theorem 6 implies

1 1 &
2 T 3 B D ln)s) > 1= 391 4 DS =1 — 3, say,

forall s" € §". (5.8)

The system {(#(D), #(u)) : 1 < i< N; n € 11, p}, where p is the uniform
distribution on I7,, is a correlated code for the AVC with an average
error probability less than A, :

For y < e™", ¢ > 0, the elimination technique [13] can be applied.
The invariance of f is the crucial property for the present method to work.
All discrete memoryless multi-user sources and channels have this pro-
perty. If {(u;, v;, Dy;) : 1 < i< N3 1 <j<< N,}isa code for the MAC
for instance, simply define

S, s7) = Z Z w(m(Dyy) [n(ur), w(v))] s)  for all 5" & Sm.

In source codmg nhas tobe applied to all encoding and decoding functions.
There the elimination technique leads to randomized encoding functlons
and a deterministic decoding function (see [26]).

This approach does not give our Theorems 1-5, which are for deter-
ministic encoding and for a more robust model (see [13], Section 8, and
[6], [39]). The main purpose of the present Section is to make a general
phenomenon in Information Theory understood.
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In conclusion we propose some

ProBLEMS.

(1) Find techniques to eliminate randomisation in the encoding,

(2) Given M < nl, what is the minimal number (M, n)such that for
every A C 11, 4| > M, there exist ¢ permutations Pis couy, P
with{pm: 1 <i<t,n e A} =11,

(3) Given M < |S3(p)l, what is the minimal number k(M, n, p, €
such that for every B C Sj(p), |B| > M, there exist permutations
Pis ... P with  [p(s"): 1<i<<k,5"€ Bl > (1 — ¢)|Sap)
O<<eg).

6. A New LINK BETWEEN CHANNEL AND SOURCE CODING
§ 1. THE LINK
As in Section 5 we consider the set of sequences Si(p), p € Po(n, S).
and the symmetric group I7,.

COVERING LEMMA 2. For any A C So(p) there exist permutations =,
s T & I, with :

k
U () = Si(p),

if k> A S| Tog |SH(P)I- (6.1
Proof. The hypergraph (S3(p), (w(4)),<pr.) has the property that

deg (s7), the number of edges containing s, equ’éls :

4] n! |S5(p)|~" _ for all 5" & S§(p). |
The result follows therefore from the Covering Lemma in Part I
Section 2, § 3. Q.E.D.

It has been realized a long time ago by Ahlswede/Korner (see [39]), an¢
likely also by others, that the direct part of our MAC coding theorem (91
can bederived from the Slepian/Wolf source coding theorem.

The new link between source and channel coding is given by Covering
Lemma 2. We explain in the next paragraph, that with its help one car
casily derive from the coding theorem for the DMC the CDT (see Section 4),
which is a stronger version of the Slepian/Wolf theorem. Thus we have
the implications:

DMC coding theorem = DMCS coding theorem = MAC coding theorem
| (without converse

§ 2. THe DecomposITION INTO CODES

Consider a DMC with input alphabet S, and let {(, D) :1<i< M

be a code such that qJ = {uss - o5 U} T So(P), p E Pon, S). We know
from Covering Lemma 2 that for

k> |UI7Sa(p)| log |S5(p)] 6.2,
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k
permutations 7y, ..., 7 exist with U 7,(U) = Si(p).
=1

From the covering {7-,(‘—"U) : 1 <1<k} wecan pass to a partition of
So(p) by choosing for instance '

A= V)= U (U 1< ISk
~The codes ' :
{(n@), (D)) : 1 <i< M, ru) €43, 1 <1<k
form the desired decomposition into codes. ‘ ,

If |U| = exp {I(S A X)n + 0(+/n)}, S has distribution p, then we see
from (6.2) that k = exp {H(S|X)n + 0(4/n)} codes suffice for the de-

composition. Since p € Po(n, S) was arbitrary, we immediately get the
CDT for the DMC and therefore also the Slepian/Wolf Theorem

It can’t be emphasized ehough that we now have a quite general tool to
pass from Multi-user channel coding theorems to Multi-user source coding
theorems.

§ 3. BALANCED COVERINGS AND PARTITIONS

‘The iterative construction in the proof of the CDT in Section 4 is such
that codes become shorter and shorter. However, most of X is covered
by long codes. We show here that for the channel graph one can achieve
that all codes are long. This result follows from a general statement
about coverings of hypergraphs (Covering Lemma 3) by random parti-
tioning. ' ,
We call a covering C = {£|, ..., E} of a hypergraph (C{/, &), CC &,
c-balanced if - |
(EeC:veEl<c forallve G, (6.3)

CovVERING LEMMA 3. A4 hypergraph (C/, £) with

D = max deg (v) > min deg (v) =d > 0
recy veE

has a c-balanced covering with k edges, if

@) k >8] d"\(log | V| + 1)

(b) ek L )& D!

(c) exp {(h(A) + A log D|E|"Hk + log |V} <} for A = ck™1
(In case (a) holds and ¢ > k the result is trivially true).

Proof. Choose edges EM), ..., E® independently at random accord-
ing to the uniform distribution on £. Condition (a) guarantees that with
probability > } this leads to a covering of C{/. (See proof of the Cover-
ing Lemma on page 2 in Part I). :

It suffices now to show that Prob ({EW, ..., E®} is not c-balanced)
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i 0]
< }. Define gj = {(1) :g vig(i) and observe that the probability for v to
)] ) .

be covered by more than ¢ edges is given by
ko ko , c
Prob(}j g < k— c) — Prob (_}j gh < k(l _ /E))

With A = ck~! and the choice p = D|E|™! condition (b) insures p << A. By
the very same arguments as used on page 86 in Part I we can now upper
bound this probability by exp {(i(A) 4 A log D|&|™Y)k}. Since there are
|CV| vertices, (c) and (a) guarantee that with positive probability we
obtain a c-balanced covering. Q.E.D.

L}

CoOROLLARY. The hypergraph (So(p), (n(A)),em,, 4 Si(p), 14] >
has for ¢ = 8 log, |Se(p)| + 1) -and k = l&,(p)] [A|“c a c-balanced covermg .
with k edges.

Proof. Recall that D =d = |4||E]|V] ™.
First observe that k satisfies (a) and that therefore the result follows
in case ¢ > k.

In case ¢ < k (b) holds by the choice of k. It remains for (c) to be
verified.  We have to show that ’

h(ck~Ok + ¢ log D|E]™! + log |V < —1
or that _| -
h{(ck Yk — c log k + c log (log [CV] + 1) + log |TV| < —1. (6.4)

Since A(ck D)k < ¢ log k — c log ¢ + 2¢, ¢ log ¢ > c log (log |CV| + 1) +
log |V| + 2¢ + 1 is sufficient for (6.4) to hold. Since Ci/ = Sy(p), this
inequality holds for

¢ = 8(logz |Sa(p)] + 1. QED.

Next we show how to obtain from a c-balanced covering with edges of
equal sizes a b-balanced partition:

= {By, ..., By} is b-balanced, if
' |Bi| |Bj|"' < & forally,j. (6.5)
Let C={Ey, ..., E} be a c-balanced covering of (C}/, &) and let

degr (v) ={ECC:ve E}|. Define independent RV’s X, ..., XICVI
= XVl by

Prob (X, = i) = (deg, (v))™! ifve K. (6.6)
With every set E; & C associate a random set E;(X!V]) = {veEE;: X, =]}
{E;X|Vly: 1 < j < K} is a partition of CY with EXIV) cE,, 1 <j < k.

1ifX,=j

0if X, £ j , then

Prob ([E;(X!Vh| < (1 — )|Ejf) = Prob ( L o< =NE)D.
ve Ly
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By the usual arguments (page 86, Part I) we see that for (1 — ) < ¢! this
probability is smaller than

exp {(h(N) + Alog (1 — c™)IES]-
Therefore, if »

é“l exp {(hQ) +Alog (1 — cHEP} < 1, (6.7)

then there exists a partition {By,..., B;} of U with B;CE; and
|B;| = (1 — MIEj| for 1 <j < k. In particular, forl <i,j<k
| IBI1B"t < (1 — N4, if |Ej| = 4] for 1 <j < k. (6.8)
Evaluation of (6.7) and the Corollary lead to
| THEOREM 7. The hypergraph (Si(p), (m(A)),em,) 4 C Sa(p)s |4l = 1
has for ¢ = 16(log,|S8(p)| + 1) and k = |So(p)] 4]t
L 1 ;

(a) a c-balanced covering C = {i(4) : 7 € I, 1 <i<k}and

(b) a c?-balanced partition {By,.. ., By} with B; C 7i(4) for 1 < i
<k <k.

Proof. (a) restates the Corollary and we now show (b).

Case 1. 1< |4] < 2.

From the covering C = {E\, . . . , E;} pass to the partition

(Bi=E — UE:1<i<k:.
j<i

List the non-empty sets among the B/’s as By, ..., B, k' < k. Thus
lB‘l lle—l < lAl < 23C << C2.

Case 2. |4| = 2%.

Choose 1 — A = ¢2 < ¢! and verify (6.7) for |E;| = |4], k = |S3(p)]
x |4|~'c. It suffices to show that (h(c™2) + (1 — c™*) log (1 — c~MNi4|+ log ¢
+ log |S5(p)| — log |4] < 0.

Forthiscalculate i(c=2) + (1 — ¥ log (1 — ¢!) = 2c"2loge — (1 —¢73)
xlog (1 + ¢ < 2c2logc — (1 — ™27t

For ¢ > 25 this quantity is smaller than —273, and for |4] > 23
—2734| + log ¢ + log |S5(p)| — log |A4] < 0. Q.E.D.
7. ON THE RATE-DISTORTION FUNCTION FOR THE AVS WITH .
SIDE-INFORMATION AT THE DECODER
§ 1. THE RESULT OF WYNER/ZIV

We describe the result of [20], because we need all the definitionsany-
how. Let (X,, Y= be a DMCS with alphabets ¥ and -0 : X X s
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— [0, o) is the distortion function. A code (n, M, 4) is defined by a
pair of mappings (f, F), where f: X" —{l,..., M} is an encoding func-

tion, F: Y x {1, ..., M} - ¥ is a decoding function, and

z"; O(X,, X) < 4, where £r= (&, ..., %) = E(Y", f(X™). (71.1)

3!'—-‘

It is clear from these definitions that they are for the case where the
decoder has complete information about the @J-outputs, and based on

this and a coded version of ¥-outputs tries to reproduce the X-outputs
within a fidelity 4.

A pair (R, 0) is said to be achievable, if for any y > 0 there exists for
all sufficiently large n a code (n, M, 4) with
log M <(R+9)n, 4 <0+ 7. (1.2)
It follows from these definitions that R, the set of all achievable pairs
(R, 9), is closed and convex, and that R is known, if
R¥(0) = min {R: (R, §) € R} (7.3)
is known.

One is interested in characterisations of the rate-distortion function
R*, which are such that the function can in principal be numerically
evaluated. The characterisation found in [20] is as follows:

Let U be an auxiliary RV with values in U, |U| = |¥| + 1. Denote
by M(f) the set of those U’s: U — X — Y, which satisfy for some func-

tiong: Yx U—sX

EO(X, X) < 6 with X = g(¥, U). (7.4)
Finally, define for § > 0 the function
R = min IUAX|Y). (7.5)
: ve (0) ‘

R(6) is non-increasing for § € (0, ) and therefore R(0) can be defined
as lim R(6).
0->0

THEOREM WZ [20]. For 6 > 0: R*(6) = R(0).

The result can be looked at as follows: a covering of the ¥-source is
described with the help of a test channel (auxiliary RV U) exactly as in
Shannon’s classical [2]. (In Part I this was also used in the proof of
Theorem 2). Now the Qf-source plays two roles: it is (obviously) used in
the decoding, but it also can be used to reduce the rate I(UAX) of the
covering to (UAX| Y). For this reduction the Markovity is needed.
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§ 2. THE RATE-DISTORTION FUNCTION FOR THE AVS WITH SIDE-
INFORMATION AT THE DECODER

w

Recall the definition of an AVS {X(s") she S”} given in (1.1') of
’ : n=1

Part I. The alphabets are now € (as before) and S instead of J. The
difference to the previous source model is that now no distribution for the
S-outputs is known. With @ as before, a code (n, M, 4) is now a pair
of mappings (f, F), wheref: X" >{1,..., M} is an encoding function

(as before), F: S"x {1,..., M} - Frisa decoding function, and

E }1 Y, 0(X(s), £) < Afor all s & &, (7.6)
i=1
where o v
(= (X5,..., B = Fem, f(XG).

The set R4 of achievable pairs (R, 0) is again closed and convex, and is
characterized through its boundary

RI®) =min{R: (R, 0) Ry} (7.7
For the formulation of our results we adopt the following notation:

(S) is the set of all PD’s on S, S, is a RV with values in S and dis-
tribution p. X,, takes values in " and has the distribution ¢,, where

g(X) = 3. p(x|5)p(s)- (7.8)
: s&S

Denote by . ,(6) the set of those RV’s U: U — X4, = S, which satisfy
for some function g, : S x U — ¥

EO(X, , X) <0, where £ = g(S,, U). (7.9)

Set Q(X)={g:9 =g, for some p & P(S)}, F(S) ={p:q,=q}, and
define for ¢ &€ Q(X)

T O = N M. _ (7.10)
PED(S) .

Finally, define for 8 > 0 the functions

R(@= min  max IUAX,|S,), g€ Q). (.11
UETL0) pEPLS) !

Ra(0) = max R, 0), Ru0)=lim R(0). (7.12)
9€A(X) 0->0 ,

Coniecture 1. For the rate-distortion function R%(6) of the AVS
with side-information at the decoder

RY(0) = R4(6), 0> 0. (7.13)
CoNJECTURE 2. For the conjecture R%(6) > ‘A(()), 6 > 0, to be true it

d Jr. Comb., Inf. & Syst. Sci.
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» . [» e}
is sufficient to prove the following Conjecture: Let (X,, Yi, .. ,Yc,) be
(=1

- a discrete memoryless correlated source with ¢ 4 1 components. Assume

: n
that there are ¢ decoders, that the j-th decoder observes (Y,-,) , and that

te]
the value f(X”) of the encoding function is known to all decoders. Based

on this they want to reproduce X" with a certain fidelity 8. The distor-

tion function & : ¥ x L — [0, o] shall be the same for all decoders. The
rate-distortion function R¥(6) is defined in the canonjcal way. Denote
by M(6) the set of those U’s: U— X — (Y}, ..., ¥,), which satisfy
for some functions g; : Y; x U — %, 1 <Jj< e EOX, A/>,-) <8 with
X, =g)(¥;, U), 1 <j<c. We conjecture that R¥(§) equals

R(f) = min -max I(UAX|Y).
Ueddl(d) 1<j<e

The inequality R¥(8) < R.(0) can easily be proved with the approachof § 3.
It is perhaps surprising that no converse proof seems to exist until now for
this natural generalisation of the case solved by Wyner/Ziv.

§3. A NEw PROOF OF R*(f) > R(0), § >0

The argument below is based on Covering Lemma 3 (Section 6) and
Coloring Lemma 4 (Section 2, PartI). There is no need for using codes

Jor this type of problems. Let U—X — Y and g: Y x U— % be such
that '

EO(X, X) <0 for X =g(¥, U).

Since max O(x, X) < « it suffices to show that there are functions

X, X

St X {1, .., M}, F,: Y x{l, ...,M}——>f§€"’ such that

1 A
( n )EB T_l ‘Z‘ @(xh -xt) < 0’ (7-14)
X ’ y" n =

where Prob (X", Y*) ¢ B,) = o(1), X" = (X4, .. ., Xa) = F(", f(x"),

and ML exp {IIUANX | YVn + 0(y/n)}. ' (7.15)
By the Markov property we have
KUAX|Y)=IUAX) — I(UAY) >0 (7.16)

and hence also H(U | Y) > H(U| X).
Consider now the two hypergraphs

Il = (V1, &) = (To(X7), (GX" | u)yme Efa(‘U"))

and

Iz = (V2 €2) = (p(Y"), (GHT™"| W) une Ty(Un))
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with
GH(Y"|u) = U G(Y™ | x", u").
xX"EGH(X" | u™)

Since both edge sets are indexed by the same set <,(U") we can choose ‘
M elements of (U™ independently according to the uniform distribution |
and thus have a random selection of edges, as described in the proof of
Covering Lemma 3, in both hypergraphs. 1f M is properly chosen we
get with positive probability coverings Cy, C, with properties stated in that
Lemma. Its application is a now routine matter. By the properties of
typical sequences and generated sequences stated in Section 3 of Part I: i

16 = exp (HW)n + 0(v/i)} = [€4
|V )| = exp {H(X)n + O(v/n)}, |CVa| = exp {H(Y)n -+ 0(y/7)}
D, = exp {H(U | X)n + O(y/7)}, Dy = exp {H(U | Y)n 4 0(y/71)}
dy = exp {H(U| X)n + 0(v/n)}, dz = exp {H(U| Y)n + 0(+/n)}.
With the choice
| M > &) di '(log |V + 1)
and
M =k = |&| d '(log |V,| + 1) exp {(04/7)} = exp {I(U/\X)n + 0(v/m)}
(a) holds for both hypergraphs.
With the choice ‘
= MD, |8y = exp {({{UAX | Y)n + 0(+/71)}
(b) holds for 4(,.
Since
Alog D, |Cof ™! = ek~ log D5 | &)1 |
= — (UAY)n + 0(/ 1) exp {I(UA Y)n 4 0(/7)}
(c) is also satisfied for 90, if {UAY) > 0. In case ([UAY) = 0 by (7.16)
I(UNX|Y) = I(UAX); and there is no need for using .9(, at all (this is
the Shannon case). Covering Lemma 3 implies therefore the existence of
coverings C) = {G(X"|u): 1 <i< M}, Co ={G*(Y"|u):1<i<< M},

where C, is c;-balanced. From C; we pass to a partition {4;: 1 < i < M},
A; € Gy(X"|u)), in any way. We can define for instance

4= GO ) — Y GX"|w), 1< i< M. (7.17)

If now X" = x" & A, is the output of the X-source, then by Lemma My(b),
page 97 of Part I,

Prob (Y" € G(Y"|x", ) | X" =x") =1 — O(blz)

VO = {u: <M, y € GHY" | u)} (7.18)
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We know that |U(y"| < ¢, and also that u, € U(y") by definition of
Gy (y" | u").

32
ing situation: the decoder having observed y" & 3(Y") knows that x" lies
in one of the sets A4;, y; &€ U"). If he would also know the set A4,
x" € A;, then (y;, x", y") would lie in Jy(U"X"Y"). In this case for
X= g uy)

With a probability greater than 1 — 0(l) we have therefore the follow-

12 ~
. Z @(X,, xt) <

n (=

| -

’Z‘,_l O(x, g(y, Wp(u, x, y) + n~'0(+/n)
< 0 + y for any ¥ > 0 and n large. (7.19)

Now we apply Coloring Lemma 4 in order to provide this knowledge with
high probability. Choose the weighted hypergraph (CV, &, (@))j-1» 9),
where

YV ={uy,...,un} E={UQ: y" € (Y},

Oyn(;) = Prob (X" € 4,| Y" = y") for y" € Iy(»")

~and

u € U, @ = (Prob (Y" = y"))yng qy(vny

Then for L > c,\~! there is an L-célo_ring @ of this hypergraph, which is
erroneous with probability less than A.

The encoder uses the encoding function f(x") = &(u;) for x” & 4;, the
decoder having received y" € I,(¥") knows now u; with probability

greater than 1 — X — 0(%) and defines

Xe=g(W),y)fort=1,...,n. (7.20)
| Q.E.D.

§ 4. UNIVERSAL COLORINGS OF INTERNALLY-WEIGHTED HYPERGRAPHS

We give a generalisation of Coloring Lemma 3A to internally-

J
weighted hypergraphs (CV, &, (Q,) ) Y ={,...,1},6={E,..., Ej}
=1 .
family of subsets of CY/, Q;: E; - R,, 1 < i < J. For a coloring @ of C}/
definefori=1,...,I;j=1,...,J
ol = {1 if (i) = &(i") for some i’ & E; — {i}
' 0 otherwise.

We say that @ has goodness X* for the internally-weighted hypergraph, if
Y g0 S MQ)E) forall j=1,...,J. (7.21)
ieL; .
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(Compare also Coloring Lemma 4 on page 91, Part 1),

<1W denotes a coloring @ of goodness A*. If Q;(i) = |E;|~! for all
1<i<<I, 1< j<J, then we are in the situation considered in Colormg
Lemma 3A. Clearly, in this case a coloring @** is the same as a coloring
@)\ for A = A*,

COLORING LEMMA 3A*.  Assume that the internally-weighted hypergraph

J
(CV, &, (Qj) ) satisfies the uniformity condition
j=1

0,() < bQyE;)forallie E; and j =1, , J. (7.22)
Then it has for L > max |E;| an L-coloring ®3*, 0 < /\* < %, if for some
1<j</
a<<0
J
5 o {a0% — IEIL08) + 5§ b0,EF} <4 (.29

Proof. We use standard random L-coloring of C{/ and define for an
edge Ee &

‘ 1 if X; £ X forallz<l,zEE
filXy, .. -X-)={ :

0 otherwise
and

ifX;# Xiforalli’ >i,i' € E

’ ]
F(X;,...,X))=
i ) {0 otherwise.

If Q is the weight on E, then
E Q)i = (1 — A*)Q(E) and Z QOF; = (1 — MQE)

implies that the weight of the correctly colored vertices in E is greater
than (1 — 2A*)Q(E). Clearly, fora << 0

Prob (EE Wi < (1 —AQO(E)) < exp {—a(l — X )Q(E)}
X';QEE exp {«Q(i) S}

and

I[1 Eexp {aQ()fi} < 11 (I_E_I + L—IE] eaQ(i))
[{=¥ 2 i€E L

L
< I (1 + £ (1 + 200 + 2Z0))
_ ,.QE(I n _;,lEI( (i) + (aQ(l))2)) _

= exp :é\_‘;'z log (1 + -L—:l—El (aQ(i) + &Q@X»

< exp {aQ(E) L—IE, ¥ (aQ(l))z}

i€E
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Since ¥, Q(i)? < bQ(E)?, and since the same estimate holds for Y Q(i)F,,
i€E : iIEE
summation over all edges gives (7.23). Q.E.D.

8. BALANCED COLORINGS AND GRAPH DECOMPOSITION

We need here an easy consequence of Coloring Lemma 7, which we
state for the ease of reference as

CorLoriNG LEmMA 10 (Balanced colorings of hypergraph). Let (C}/, &)
be a hypergraph and let L be an arbitrary positive integer. If for o >0

L‘é exp {—% max (|E{L, 1) + IE,-IL—-I} <1, (8.1)
then there exists an L-coloring @ of C{) with
| IE;N 0| < @ max (EAL™Y, D) for 1 <j<M,1<I<L.
Proof. Apply Coloring Lemma 7 with D,=1, E=E; and sum
over j. Q.E.D.
Rer;zdrk-l. Using in (2.9) and (8.1) the exp-function to the basis 2
and y = 1 one easily verifies \th_at in (8.1) ; can be replaced by «. More-
over, then (8.1) can be replaced by
LM 2% < 1 for e > 1. (8.3)

Koselev [37] and Gallager [22] have derived a ‘‘random coding™ error
exponent for the Slepian/Wolf network in case the decoder is informed
about the outputs of one of the sources. ‘ .
Using Lovasz’s Graph Decomposition Theorem [36] (GDT), Csiszar/
Korner [38] recently improved on those results by establishing what might
be considered as the counterpart of the expurgated bound for source
coding. We now explain that one could use Coloring Lemma 10 instead
of the GDT, which we now state. For a detailed analysis see Section 9.

GrapH DEcomposITION THEOREM (GDT) Let G = (CV,E,r) be a
graph with a weight function r on the edges:

0 < r(a, b) =r(b, a), r(a, a) =0 for all a, b & C).
If@Q Y r(ab)<tforallacCy,and
bey :

(b) 2 tl > t, tl > O:

i<isL
then there exists an L-coloring of C{) such that

r(a, b) < t for allaec o7, 1 <I< L. 8.4)
bed1(I)
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In [36] r is assumed to be integral. Using rational approximation the

present form of [38] is readily seen to be equivalent.

We now formulate the key result for the derivation of the error
exponents in [38], which follows from the GDT.

Let w denote an ¥ x ¥-stochastic matrix. Recall the definitions of
Poln, ), X3(p) and XG(w(-|x™) given in Section 3, § 1, 2 of Part I. (In
the notation of [38] X5(p) = Tp, XiW(-[x7) = Lu(x").

Key LemMAa 1 (Lemma 2 of [38]). Given any finite set X and a
. p& Po(n, F). For any positive integer L there exists an L-coloring @ of

Xo(p) such that , _
12550 (- 1) N D] < LK | 2] (n + DIFF - (3.5)
for every x" & &V(), every 1 <1< L, and for every X i{’-stoclzdstic
matrix unequal to the identity matrix.
As a consequence of Coloring Lemma 10 we obtain

Key LemMA 2.  Given any finite sets 2, 4. For any positive integer
L < |¥|" there exists an L-coloring @ of X" such that

[225w(- | N NE~I()] < max (| XG(w(- | NI L7 D2X] [Y|n (8.6)

for every y" & ", every 1 < 1< L, and every U X X-stochastic matrix.

Proof. Consider the hypergraph (CV, &)= (", (Xaw(-] ym):
e Yr, w G x K-stochastic}). '

By definition of X8(w(-|y") cleartly M =|&| < (n + DIXI¥jqgp,
For a = 2 || |4| n (8.3) bolds and Coloring Lemma 10 applies. Q.E.D.

Remark 2 (Comparison of the Key Lemmas). The assumptions in
Key Lemma 1:

(a) w not the identity matrix

(b)) x"e o7!(I) in (8.5) _
are without information theoretic significance. They are made to make

the GDT applicable. If one allows (artificially) L to exceed | X", they
are needed to insure x" & XG(w(-| x")) and

1Eaw(- | x)N@- (D] =0 for x* € DI(I).
In our Lemma all edges are colored in a balanced way for all colors and
not just every edge with respect to the color of its ““center” x".

Key Lemma 2 makes a statement for 4 x X-stochastic matrices (and
not just for ¥ x ¥-stochastic matrices) and is therefore a more appro-
priate tool for deriving error estimates for more complex source coding
problems. There seems to be no immediate way to obtain it from the
GDT.

In case X = @, |¥| = 2 we have 2|1 < (n + 1)IXI" and (8.6) gives

Jr. Comb., Inf. & Syst. Sci.




RUDOLF AHLSWEDE 261

a somewhat sharper bound than (8.5),if | 208(w(- | x™)] L~! > 1, that is, for
relatively few colors. Incase |XG(w(-|x")] L~! < 1 (8.5) can be sharper
than (8.6), but never by more than 2|¥| |Y|n.

Remark 3. (Concerning [38]). Inspection of the proofs of [38] shows
that a factor or summand growing polynomially in n can be added in
(8.5) without effecting the error exponents.

Key Lemma 2 can therefore replace key Lemma 1 for the purposes of
[38]. - ‘

SECTION 9. AN ANALYSIS OF CODING METHODS

- The Graph Decomposition Theorem (GDT) of Lovasz [36], which we
stated in the preceding Section, has recently been used by Csiszar/Kérner
[38] to derive channel and source coding theorems. Since one aim of our
paper is to present and understand basic methods in the subject, we now
analyze the proof of the GDT and then its structure and its impact for
coding theory. -

§ 1. A LooK AT THE PROOF OF THE GDT
We repeat first the argument, which can be found in [38].
Clearly, every vertex L-coloring @ of G = (C}/, &, r) is equivalent to
a partition '
A=1{A4y, ..., A of OV : 4; = {v: D(v) = i}.
Consider now any partition (4 for which the functional
Y 4ldl—3% Y Ka, b)is maximal.
I aE€A4;, DEA; '
If we now exchange for any a &€ 4, and any j the set 4, with 4; — {a} and

the set 4; with 4;(J{a}, then the functional’s value changes by a neces-
sarily non-positive quantity

4+ t4+ Y @b — Y ra, b) <O.
beA; bEA,'

Summation over j gives
0> Lt t; + r(a, b) — r(a, b)
1+JE} ;béﬂ( Ej:‘b A,-(
> —Lt;y+t+ L Y, r(a b)—1,
bEA; '

and hence
E' r(a, b) < t; fOI' all a e A,‘. Q.E.D.
b .

Remark 1. As a minor observation we mention that the assumptions
onr:r(a a)=0,r(a, b) = r(b, a) for all a, b & C}/, which are made to
describe the multi-graph situation in [36], can be dropped, if one formu-
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lates the Theorem' asfollows: Assume that

(@ ¥ r@b<t and Y r(a, b)<t foralla be V),
bECY agcy '

L
b Lu=t,,>0 (as before),
i=t

then there exists a partition A = {4y, ..., A}, such that 3 Y, (r(a, D)
. bed
b, a) <t forallac 4,1 <I< L. ’

In graphic language this means that we have directed edges and permit
loops. (For the proof use the same functional and the same exchange
argument as before!). The role of the functional can best be understood
in the special case f; = f, for 1 << L (which is the case used in [38]),

because then one has to minimize the functional ¥, ¥, 3. r(a, D).
i a€Ad; bed

This means that one minimizes the total number of ‘‘inner connec-
tions.”” The proof described is elegant and of a combinatorially simple
nattre, because one uses “local optimisation”’. It reminded us right away

of Feinstein’s maximal code construction [4], and we shall see soon that
this is not just a vague analogy.

We now investigate what this type of argument means for channel
coding.

§2. A MNIMAL ERROR CODE CONSTRUCTION

In Feinstein’s construction, which was explained in Section 4, the
maximal error probability ), say, is fixed in advance, and then the code
length N is maximized. In our version of this construction the average
error probability is fixed in advance (sce Section 4).

The argument above is such that the “global” parameter L is fixed in

‘advance and the individual performances Y, r(a, b), 1 <I< L, are

beA;
minimized. The natural question now is “Can one give the analogue

argument for channel coding, that is, ix N and minimize the individual
error probabilities ?” We now show how this can be done. As in
Section 4 an abstract channel is a bipartite graph (X, 4, &F). G(x)
={yeY: (x,y) € F}+# Q. An abstract (M, (6:)1<i<m)-code is a family
{u,, ceny uM} C anh i

]}; G NG| Gt =0, 1<i<M. (9.1)

Set r(x, x') = |G(x) NG(x")] |G
(Recall Remark 1)

In analogy to Lovasz’s proof of the GDT we now fixany M and mini-
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mize the functional

M M
Y. ¥ r(x;, xi) over all fumilies X ..., xppC X
I=1 k=1 ‘

Assume that for all x &

Y rx, x4+ Y (K, x) <t 9.2)
xXex xXEX '
Let now {uy, ..., tp} minimize the functional. Then, by exchanging u,

by any u; € ¢
e 2 I'(ll,', llj) — 2 r(uj, u,-) —-—l'(ll,', u,-)

j#Ei J#i

+ X rui u) + Y r(uy, ub) 4 r(ui, ug) > 0. 9.3)
Jj#i i

J#I
By definition of r we have
r{u;, 1) = r{ui, uj) = 1. ‘ - (9.4
(Notice that this property is not needed in the case discussed in Remark 1.)
It follows from (9.3) and (9.4) that

2. X Qi w) + rup, u)) XY (r(us wy) + r(uy, w),

u;E Xj7i J =i
and therefore by (9.2)
(M —1) > ¥ j;: (ruz, u;) + r(u]_, up)) > |X| ,-; r(u, u;).  (9.5)
This and (9.1) imply '
o<|XM(M-—-1), 1<i<M. (9.6)
Thus we have arrived at the

MiniMAL ERROR LEMMA. Given an abstract channel (&, Y, 9),

v G(x) # ¢ for x € X, with _

X 16ERNGENIGEIT + Y G NGE) |GH)|! <
xXeEX x'ex

Jorallxe X, 9.7)

Then for every M > 1 there exists an (M, (o)) 1<i<nr)-code with
o <|¥UM,1<i< M. B (9.8)
Remark 3 This result shows that we are on the right track. The
Lovasz type argument differs from Feinstein’s argument only in so far as

different parameters are optimized. One might also look for a proof of
the GDT (in case 1; = #,) by minimizing L subject to the constraint

Y@ b <tfoforallac 4, 1<!<L.

bEA,

. M
Remark 4. With o = A—lz{ Y. o; this result implies

=1
M > o|X|t71, 9.9
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and from (9.7) we conclude that

1 ' -
= Y GeNGEN G < L

lxl x,xex .
This means that (4.2) in the Maximal Code Lemma is a little bit sharper
than (9.9). This is due to the fact that in the present approach we could
have used instead of o; also

3 16@) NG| (Gl + 33 166) NG| [G6)™
Ea ] JEi

as performance criterion. (9.5) shows that we had to give something
away. Since for the channel graph G| |G|~ = exp {0(+/n)} for all
x, x' the difference noticed is not essential (see Section 4, Remark 2).

Furthermore, in this case it is sufficient to use Y |Gw) NG| as perfor-
JFi

mance critérion. We can here use r(x, x') = |G(x) N G(x)| = r(x’, x) and

the previous argument gives then (9.8) under the assumption
Y, IG(x)ﬂG(x')\ < tforallx' € X. 9.7)
XEX
We shall see that this criterion is the one most suited to understand the
structure of the GDT.

§ 3. GRAPH DECOMPOSITION ImpLIES CODE DECOMPOSITION

Let (X, 4, £), G(x) # @ for all x € X, be a bipartite graph. Recall
that Deg (x)= Y deg(y), that Deg )= Y |IGx)NGE), and
YEG(x) =>4 ‘

X

that D = max Deg (x).
x€X

Clearly, a partition of X is equivalently described by a coloring. .By
Remark 4 it is thus clear that the CDT can be formulated as follows:

CDT* For every L > 2(log |¥|)De*~! there exists an L-coloring @
of X with

[Gx)NGE) < o* forallx & -, 1 <IL L
x'€P-1I), x' #Ax

(9.10)
If we define
, {lG(X)ﬂG(x')\ for x # x’
r(x, x) = s
0 for x = x
then
Y @ x)= ¥ 16eINGKE) — 16w
xeX XEX

= Deg (x) — deg (x) < max Deg (x) — min deg (x) < D.
X x . )
Choosing t; = o* for 1 <I< L, the GDT says that for L > Dg*-1

Jr. Comb., Inf. & Syst. Sci.




RUDOLF AHLSWEDE - 265

there is an L-coloring with
r(x,xy <o*forallx e &-'(I), 1 <I< L. (9.1D)
x Ed-1(1)
This is exactly inequality (9.10).

Remark 5. Our factor 2 log [¥] is the prize for the iterative cons-
truction. For the channel graph log |J5(X™)| = 0(n) does not eflect
exponential error bounds. Instead of the GDT the CDT could have also
been used in [38].

‘Remark 6 Our Théorem 7, Section 6, says that for the channel graph
one can also achieve that |@~*(/)| |®-!(J")|~! is small for all /, I’. This
sharper result does not follow from the GDT.

§ 4. TuHe CopeE DECOMPOSITION PROBLEM AS A HYPERGRAPH COLORING
PROBLEM

T:(X, Y, F)—> (X, T(F)) with

CT(F)={G):y<Gx),xe %} 9.12)
transforms bipartite graphs into hypergraphs and
T": (X, &) (X, &, T'(&))
with .
T'E)={xE):xe X, Ec withx E} (9.13)
transforms hypergraphs into bipartite graphs.

Clearly, TT': (2, Y, F) > (X, Y, F), T'T: (¥, €) - (¥, &) and
therefore 7" =71,

We now interpret the code decomposition problem for bipartite
graphs as a hypergraph problem.

Let &: X —{l,..., L} be a coloring (or code decomposition) of
(¥, Y, F) with performances

gi(x, &) = ¥ IGx)NG(X)| for x € &71(1), 1 < I < L.
XEPD—{x} |
'- (9.14)

Oune readily verifies that

g% ®)= ¥ %" € E— {x}, O(x") = d(x)}. (9.15)
E:xEE, EET(F) ‘ :
Therefore g,(x, ) means the following: count for every edge E,
X € E, the number of elements in E — {x} with the same color as x and
sum these numbers obtained for these edges. (In list code terminology this
means that the numbers of code words occurring in all lists containing x
are added. The lists are exactly the edges of the hypergraph,)

HCP, suggests the fol]owing concept: for any hypergraph (,8) a
coloring @ is of type x, if every x € % is colored correctly within at least
a fraction (1 — }) of the edges containing x.
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Another measure of performance would be the number of edges E contain-
ing x with the property:
O(x") = @(x) for at least one x' € E — {x}.
Denoting this number by g,(x, ®) we can write this formally as
gx, D) =[E€ I(F): 3 x" € E — {x} with (x") = O(x)}|. (9.16)
Notice that | :
gi(x, D) > go(x, @) for all x € I and all colorings . (9.17)
Therefore an upper bound on g; gives also an upper bound on g,. For
the bipartite graph (2, &, ¢(&)), g2(x, P) can be written as
g2(%, D) = [GX)N U{G() : () = D(x), X £ %} (9.18)
This corresponds to the maximal error concept for ordinary (non list)
codes.

Summarizing our findings we can state: The code decomposition
problem (CDP) is equivalent to the hypergraph coloring problem (HCP))
with g,(x, ®) as performance measure. We have raised another hyper-
graph coloring problem (HCP,) with go(x, @) as performance measure,
which has also a coding interpretation.

§ 5. COMPARISON OF THE GRAPH DEcomposiTION ProBLEM (GDP)
AND THE HYPERGRAPH COLORING Prosrem (HCP))

A graph with multiple edges is a hypergraph (X, JIZ) with edges of
size 2. In this case clearly

gi(x, ®) = go(x, P) for all x & X and all CD (9.19)

and therefore here HCP, and HCP, are identical. Since r(x, x') counts
the multiplicity of edges (x, x"), we have for every x & X the identity

rx, X) =[{E€ I : E= (x, x), P(x) = O)}|
= ga(x, D) = gu(x, D). (9.20)

We have observed in § 4 that the CDP and the HCP, are equivalent. In
§ 3 we saw that the CDP is a special case of the GDP and now we have

x B(x)=D(x)

- explained that the GDP is a special case of the HCPI (and also the HCPy).

Therefore we have the

EQUIVALENCE LeMMA. The three problems HCP,, GDP, and CDP are
all equivalent. ' :

Remark 7. 1t is instructive to see the equivalence between the GDP
and the HCP, directly. Given a hypergraph (2, &) define

, Ee€ &:x,x € E}| if x#xX
r(x, x') = {l{ i . , (9.21)

0 if x=x".
Then

gi(x,0) = ¥ |{x 1 x"#x;x, X' € E; d(x') = (0}
. Ece
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- ; HE € & : x, x' € E; 9(x") = d(x)}}
= Y HEE &:x,x € E}| = b r(x,x").
X #Zx: dx)=P(x) X B(x)=D(x)

Conversely, given (2, r) choose for instance the graph with multiple edges
as hypergraph (¢, M), M = family of all edges {x, x'} C ¥ taken
r(x,x’) times. The weighted graph (2, r*) associated with it according
to (9.21) is again (2, r). However, instead of (5, ) we could use any
decomposition of (2, r) into cligues. -This fact is important, if one wants
to prove a converse to the GDT or the CDT. There is this Jreedom of .
choosing a suitable hypergraph representation (or, equivalently, bipartite

graph representation) in order to obtain upper bounds on L. (¢, )
itself is usually not suited for this.

Since in the CDT the sets 4; = @~1(/) are codes one can obtain a lower
bound on L from an upper bound for the code length.

Suppose that U = {u;, ..., uy} C ¥ satisfies Y, |Guan Gyl

| PRLIE
<oc*foralll <i<<N.
Then

N

Z_:‘ (Deg (u) — o*) < Y, |G(x)|
and hence

. . |
N< - G(x))(min Deg (x) — o*)1,
< 12](j2g; X 16D (min_Deg (x) ~ %

Therefore

e (L -
L2 |81 > (min Deg (9 — o)y TI6) . ©22)

Deg (x) is determined by r, but Ele—l ). |G(x)| depends on the representa-
x
tion as CDP. The bound is best if this quantity is minimal.

Remark 8. The CDT (and also the GDT) is based on a ““two code
words” performance criterion. We therefore know how far those results
can carry. Inderiving bounds for error exponents for instance one there-
fore has to use the “union bound”. It is therefore not to be expected
that improvements of the expurgated bound can be obtained this way.
For progress in this direction one has to get better results on HCP,, which
is generally not equivalent to HCP;. We therefore propose the

ProBLEM. Find better results on HCP,, that is for colorings of type
Xy, in general hypergraphs and especially for the channel hypergraph.

Final Remark. In extremal hypergraph theory ([47], [48]) usually
strict colorings, packings etc. are studied. Coding Theory can be viewed
as extremal hypergraph theory for colorings, packings etc. where the
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268 COLORING HYPERGRAPHS FOR MULTI-USER SOURCE CODING

“strict” is replaced by “almost strict”’. 'We expect that an interchange

of concepts, problems and methods available in those two areas will lead
to progress in both of them.
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