Reprinted from JOURNAL OF COMBINA'I;ORICS, Vol. 5, No. 1, 10-35 (1980)
INFORMATION & SYSTEM SCIENCES Printed in India

A Method of Coding and an Application
to Arbitrarily Varying Channels

RUDOLF AHLSWEDE

Fakultat fur Mathematik,
Universitit Bielefeld, Universititsstr, 1
4800 Bielefeld 1

1. INTRODUCTION

In the standard Shannon random coding method ([1], [2]) one derives
bounds on the expected average error probability and then concludes
that at least one code must be as good as the ensemble average. For
high rates this leads to asymptotically optimal results (see [15]) and
therefore in this case “most’ codes in the ensemble must be close to the
optimum. In the study of complex channel systems such as arbitrarily
varying channels (AVC) it is useful to have good estimates on the pro-
portion of codes in the ensemble which are good.

A first step in this direction was mentioned on page 174 of [5], where
the following property of random coding is stated: '

Selecting a code with positive rate below capacity at random for the
discrete memoryless channel (DMC) fails to lead to a code with average
error probability bounded by any constant A, 0 <A < 1, with a probabi-
lity which decreases double exponentially in the block length. Since our
present results, which are for maximal errors, go considerably beyond
this, we leave the proof of this earlier result as an advanced exercise.

For standard channels such as the DMC a simple application of the
pigeon hole principle leads from an average error code to a maximal error
code of essentially the same rate. This argument fails for big systems of
channels such as the AVC and for the most robust model of such a
channel {[9], [11]) one is forced to use the maximal error concept (see the
discussion in Section 8 of [5]). It is therefore not just of academic
interest to have a random coding method which leads directly to a code
with small maximal error probability.

In this paper we present such a method (Theorem 1).

The key idea is to set up the random experiment in such a way that it is
guaranteed that any two code words have at least a certain Hamming
distance. This can be done in many ways and for the DMC there is also
some freedom in the choice of the decoding rule. Here we use threshold
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RUDOLF AHLSWEDE 11

decoding (TD), because we need it anyhow for the treatment of the AVC.
For those channels we use TD in conjunction with cther two-code word
decoding rules such as maximum likelihood decoding (MLD) or, more
generally, maximum support decoding (MSD), a rule which we introduce.

TD makes certain saddle point arguments applicable, which enable
us to determine the maximal error capacity for the AVC under a dis-
jointness condition (S) (Theorem 2). Originally we used an I-divergence
type regularity condition (L) (Theorem 3).

We can now derive Theorem 3 from Theorem 2. Both Theorems
include the only known result in this direction ([11]) and they both
completely settle the binary input, arbitrary output case. Without any
regularity condition on the AVC the maximal error capacities are known
([17], [4]) for list codes of relatively small list size and in the presence
of complete feedback. The results of [8], [10], [16], [5] are for average
errors or randomized coding.

We draw attention to the solution of the famous zero-error capacity
problem in the case of the pentagon ([12]) and the observation of [7] that
this is a special case of the AVC coding problem for maximal errors.

Here our regularity conditions do not hold.

We would also like to draw attention to the forthcoming paper [6].
There it is emphasized that Information Theory deals essentially only
with packing (channel coding), coloring (source coding), and covering
(rate-distortion theory) of edges in certain hypergraphs. This way of
looking at the basic combinatorial structures in abstract also enabled us
" te find the present method.

2. STATEMENT OF RESULTS
§ 1 Tue COBING METHOD

, Let us consider a DMC with alphabets X, ¢ and transmission
matrix w with distinct row vectors.

w(y | x)
q(y)
formation, and p* is a probability distribution (PD) on ¥ such that

Itp, w) =Y p(x)w(y | x) log , g = p-w, denotes the mutual in-
X,y

I(p*, w)y = max I(p, w) = C.
p

Let Uy, ..., Uy beiid. RV’s with distribution

Prob (U; = x") = p*(x") = Inl p*(x0),
1

t=

where x”v= (xls AL} X,,) & z’n_
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12 METHOD OF CODING APPLIED TO ARBITRARILY VARYING CHANNELS

Those U;’s describe the selection of code words in Shannon’s random
coding method (1], [2]). .

They are now used to define a new sequence Vy,..., V, of RV’s as
follows

(2.1)

V {U,- if d(U;, Uj) = en for all j 5= i

x_  otherwise.

-]

Here € >0 and d denotes the Hamming distance. The equation
V; = x, is to be interpreted as ‘‘the i-th word selected is dropped”’.
Define for x" € X*" = {x": x" € X", p*(x") > 0}and y >0
B(x") = {y" ;% log %’)‘—) > C— y}. 2.2)
M={i:V;# X0, | < i< M}isarandom set of indices.
. We choose {V; : i € MU} as set of code words and define the decoding
sets {D; : i & M} by the rule
Di=D(U, ..., U)=B¥F)— U _B¥). (2.3)
- jesn—{i}
Finally for i & MU
' N=XU, ..., Uyg)=wDi| V) (2.4)
denotes the error probability for code word V.

THEOREM 1. There exists an €y = €o(w) > 0, an positive function yy(e),

and a positive function 7(e, v) with lim =(e, ¥) = O such that the coding
i €, v>0

method described in (2.1)-(2.4), with M specified by
M = exp {(C — 7(e, V))n},
has the property ' ~
Prob (|.H| = 1M, max ) < A) = 1 — exp {—eptorMn (2.5)

i Cf

e M
for 0 < e < e, 0< v < vo(e).
Here, p(e, ¥, A) > 0 for any A & (0, 1). |
Remark. In order to achieve the superexponential bound (2.5) one
cannot use the U;’s as code words, because already the probability that
two code words are equal is only exponentially small.
§ 2 AN APPLICATION TO ARBITRARILY VARYING CHANNELS

A discussion about the channel model can be found in Section 8 of [5],
in chapter 6 of [14] and also in [13]. Here we consider the most robust
mode] of an AVC in which the choice of states may depend on the word
sent. In this case one is forced to consider the maximal decoding error
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RUDOLF AHLSWEDE 13

(see [5]). A first attempt to find the capacity of this channel was made in
[9]. There a necessary and sufficient condition for the capacity to be
positive is given in case there are finitely many states (see Lemma 8 in
Section 4). In [11] the binary output case was completely solved, that is, a
computable formula for the capacity was found.

We give now the formal description of the channel, the codmg problem
and the results.

Let S be an arbitrary set and let C = {w(-]-|s) : s € S} be a set of
stochastic || x |4f|-matrices. For every s" = (s, ..., s,) & S" = || Swe
1

define transmission probabilities W(-|-|s") by
W(yxlsy = I wivdxs) (2.6)

forallx"=(x;, ..., xp € X4,y e Y, andalln=1,2,..
If C"={W(]|-]s"): s" € S, then we call the sequence (C’”) an

=1
arbitrarily varying channel (AVC) and denote it by (1.
An (n, N, A)-code for _f is a system {(u;, D;): 1 <<i<N}, where
uef‘f”DCq}"fort—12 . N; D;N D; = @ fori + j, and

max max W(DC [u]s™) < A (2.7)
ISIKN stesn

A number C is the capacity of _, if for any € > 0, any A, 0 <A <1,
and for all sufficiently large n there exists an (n, exp {(C — e)n}, A)- code
and there does not exist an (n, exp {(C -+ (e)n}, A)-code.

R(x), x € X, denotes the closed convex hull of the set {w(-|x[s): s & S}

of probability distributions (PD) on 4. The set of matrices
C={wO | Myex, yeq : W %) € Rx), x € %) (2.8)
is called the row-convex closure of the set C. It shall be parametrized by

an index set S.

Denote by P the set of all PD’s on X’. Since & and C’: are compact
in the supremum-norm topology and I(p, w) is continuous in both Vanables
the definition

E: max min I(p, w) (2.9)
PEPwWEC

is meaningful. Also, since I(p, w) is convex in p and concave in w by the
Min-Max Theorem

C = min max I(p, w). » (2.10)
wel peP

Vol. 5, No. 1 (1980)



14 METHOD OF CODING APPLIED TO ARBITRARILY VARYING CHANNELS

Let (p*, w*) e P x C be a pair for which I(p*, w*) = C

TueoreM 2. If the AVC A satisfies the condition

R(x) N R = @ for all x, X' &€ K with x #+ X, (S)

then its capacity C equals C.

One readily verifies that in case X = {1, 2} R()N 91(2) = () implies
C = C=0. This and Theorem 2 imply

COROLLARY. The capacity of an AVC. with binary input alphabet
equals C. '

THEOREM 3. If the A. VC  satisfies the condition

' min Z-w(y|x)log~*—((;’—|l—@ > 0 for allx x e X* wzthx;éx
wel y

| L
then its capacity C is given by ‘
¢c=C. (2.11)

Observe that (L) 1mplles
R(x) N R(x") = @ for allx x' Ei{”‘ with x # x'. (S*)

Since the letters X'* determine already C and since CL C (see [11]),
substitution of - in Theorem 2 by ZX’* gives Theorem 3.

Remarks. 1. We have not completely analysed condition (L), but we
have found three important AVC’s for which it holds:

(a) For a w with distinct row vectors and e = e(w) sufficiently small
st C={w:w|x)—wplx<exe X,y YL
(b) ¥ = {1, 2} and C such that R(1) N R(2) = O.

(c) C contain an “information-extremal” matrix wy, that is,

I(p,w) <I(p,w) forall pe P, we C’ and w; has positive capacity.
Notice that by the data-processing theorem this includes the case where

one matrix in C is a degraded version of all the others.

2. In[l11] the binary output case was solved. The case |X'| > 2 was
reduced to the case || = 2 by the elementary idea of using 2 “extremal
letters””. The idea works because of the special geometric properties of
PD’s on a 2 element set. Then the case || = |Y| = 2 was solved with
the idea of a worst channel. This case is now a special case of the
Corollary.

Theorem 3 also directly settles the case | | > 2, || = 2 because there

exists a p*, I(p*, w*) = C, concentrated on the 2 extremal letters.

Jr. Comb., Inf. & Syst. Sci.
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It is interesting that the coding scheme of [11] is universal, that is, the
decoding sets for a given set of code words can be defined without using
the channel ([19]). For our more general cases no universal decoding
‘method exists. The proof for this negative result is somewhat lengthy
and therefore omitted here. ‘

3. For the AVC . C is positive exactly when the following condition
holds: (SP) there exist x, x" € X with R(x) N R = Q.

This was proved in [9] for the case || << . This restriction can
easily be removed (see Lemma 8 in Section.4). |

We give now 2 examples of channels for which (SP) holds, but (2.11)
doesn’t.

ExameLe I X' =Y ={0,1, 2, 3,4}, C= {w(-|-|1), w(-1-]2)}, where
wilxl) =l<y=x
wrx[2) = 1<y = x + 1 mod 5.
It was shown in [7] that for this channel C = C,, the zero-error capa-
city of the pentagon. Lovisz has shown in [12] that Cy = i log 5. By

an easy calculation C — log § > 4 log 5. That this is not just a patho-
logy occurring for 0-1-matrices can be scen as follows:

Replace every output letter by' two letters carrying the same total
probability as the original letter.

The following observation is more interesting: 5, for the C above, is
defined by the sets QR() = {p:p(j)=0 for j=£i, i+ 1mod 53,
i=0,1,...,4.

If one replaces them by g«l(i) ={p:p<s R(), p(j)<1—¢; for all j}
where 0 < ¢; < {, then for this new channel (S) holds and C = log 2.

ExampLE 2 (G. Dueck). |X|= || =6, |S| = 4.

I 0 Oy c 1 0
Forw,={0 1 0), wa=10 0 1]let
0 0 1 1 0 0

T

(SP) is satisfied, C = 2 log § > C = log 2.

The structure of condition (S) indicates that AVS’s are to be classified
according to the intersection properties of the sets R(x), x € ¥. One
classification would be by a graph with vertex set %, where x and x’ are

connected iff R(x) N R(x') % G. Example 1 thus leads to the pentagon.
A finer classification would also consider common intersections of more

Vol. 5, No. 1 (1980}



16 METHOD OF CODING APPLIED TO ARBITRARILY VARYING CHANNELS

than 2 sets. Incase N R(x)7* @ for instance C = 0, and vice versa.
xe X
All this is still to be understood and may be called general zero-error

capacity theory. A nice starting point might be

EXAMPLE 3.

lrolo 0011I
C=J]100,010>.
t\l 0 O %0—5—)'

Here R(1) N RQ2) # @, R2) N RAB) # @, R(1) N RB) = O
| 3. ProOF OF THEOREM 1

§ 1 AUXILIARY INEQUALITIES
For the analysis of the coding scheme described in Section 2 we use
Bernstein’s versions of Chebyshev’s inequality. We give the proofs,

because they are so brief.
Lemma 1. Let Ty, . .., Ty be a sequence of discrete RV’s, then

X K
(a) Prob {% Y. T = a} < e~k [ max E(exp {7} | -,
i=1

j=1 1%L

Here (T;_y = ti_y, - . ., T =t,) is abbreviated as =1 and a > 0.

X K ,
(b) Prob {715 }: T; = a} < e—aKI2b H max E(l + b_lT,- l tt——l)

iy pit

if Ty, ..., Tk take values in [0, b].
K _
(c¢) Prob {kl— El (T; — ET}) > a} < exp [(—aa + a?b*)K]
2 .
for 0 < a << min (l, %— e“zb), if Ty,...,Tx are independent and take

values in [—b, bl. Furthermore, the exponent is negative, if & < ab™?,

(d) Prob {71(— Y (T, — ET)) < a} < exp [(—aa + a?bH)K]
=1

2
for a < 0, |a] < min (1, % e‘Z”), if Ty, ..., Ty are independent and take

yalues in [—b, b]. The exponent is negative if a < 0 and la] < |alb=2.
K K
Proof. Prob {—1—[( ST = a} < e~k E(exp {cx Y, T,-})
iz i=1

K
< e %K [] max E(exp {oT3} | #7").

j=1 1%1

(b) is now readily established by using the expansion

E(exp {aT}}| 671 = ¥ & E(T{ | 1Y),

s§=0

Jr. Comb., Inf. & Syst. Sci.



RUDOLF AHLSWEDE , ‘ 17
Since 77 < b*~'T; for s > 1 we conclude that for a = (2b)7!
' O S S bid aal i-1
Y, 5 EdilY ) <14 (20) ZlETE(Tilt )
s=09S: s=1 S
< 14 1B | 7Y = E(1 4 67T [ 7).
We show now (c). Starting with
K K
Prob {2 (T, — ET)) > aK} < e *9KE exp {a 21 (T; — ET, ,-)}
i=1 i=
we upper bound next

0 S 2 o NS
Eexp (T, — ET)} = Y, 7 B(T; — ET)* < 140+ 50+ Y 500y

§=

) ‘
<1+°‘7b2+a3e2” fora <1
. b?
<1 4 a??* for a < min (1, 5 e—zb).
Since the T;’s are independent we get '

Prob {fV_: }(T,- — ET;) > aK} < e~%K(1 + a2b?)K < exp [—aa + a2bHK).
i=1

The proof for (d) is almost identical. Just observe that for a <0

K K
Prob { (T, — ET) < aK} < e~%KE exp {cx Y (T — ET,-)}
1 i=1

and replace in the argument above o by |a?].
LEMMA 2 (Shannon). Let p* be such that I(p*, w) = C, g* = p*-w, then

= C for x with p*(x) >0

Y, w(y [ x) log PO "){

v 7*(») < C otherwise.

§ 2. THE RATE

We derive now an upper bound on Prob (|.H| < 1M), where M is as
defined in Section 2.

Define
~ 1 if V= xe
=1 3.1
0 if V£ xe
and notice that v
M A
Prob (M| < $M) = Prodb ( YViz %M). (3.2)
=1

Let S.(x™) be a Hamming sphere with radius en and centre x". Clearly,

Vi=1lwUe U S(U).
J#i
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18 METHOD OF CODING APPLIED TO ARBITRARILY VARYING CHANNELS

One can view the selection of code words as an iterative prodecure and
: M A M M
upper bound ¥ V; by Y T; 4+ ¥ O;, where

=1 izl i=1

(1 if Uye U S(U))
T, =< j<i (3.3)
L0 otherwise.
(1 if Ue U SU)
e
LO otherwise.

=
~
(O8]
SN
~

M

M
SinceProb(}: > 1 )<Prob(§3T,. 1M)+P10b(20, Z{.M)it
i=1 .

=1 i=1

M M
suffices to upper bound Prob (,2 7 > %M), because Prob (2 T; > %M)
i=]

= Prob (2 0;, > %M). For the Hamming spheres we have

.0 < ()16 < exp (4D + < log [ XD, ()
and if we choose ¢ such that
C — 7(e, ¥) + h(e) + ¢ log || < H(p*) — ¢, (3.6)
then for any {u; : 1 <] M} c X,
D <
This and the source coding theorem imply

(u S(u») exp {—g(e)n}, (3.8)

where g(e) > 0 for ¢ > 0.
It follows from (3.8) that
Prob (T, = 1T,y =t;q, ..., Ty = t) <exp {—glen} (3.9
Now we apply Lemma 1 (a) with & = 1 and obtain

Prob (§ 7, > 10) < exp (—4M)(1 + exp (—g(n + D)
C<exp{—1+ exp{—g©@+ DIM}L  (3.10)

exp {(H(p*) — ). 3.7

Since g(e) > 0, for n > —= this is smaller than exp {—1M} and we have

( )
derived the superexponential bound
Prob (M| < iM) < 2-exp {—sM} (3.11)

§ 3. TwO CODE WORD ERROR PROBABILITIES FOR THRESHOLD DECODING

The following two Lemmas play a key role in the analysis of our coding
scheme. For the proof of Theorem 2 one needs analogous types of results.

Jr. Comb., Inf. & Syst. Sci.
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LEMMA 3. Let Ube a RV with Prob (U = x") = p*(x"). - For X*" and
B(x"), defined in (2.2),

@) w(B(x") | x") = 1 — exp {—Ci(»)n} for x" & X*",
where Cy(y) > 0 for v > 0.

(b) Ew(B(U) | x") < exp {—(C — v)n}, x" &€ X*"

Actually, also the inequality Ew(B(x")|U) <<exp{—(C — y)n},
x" < ¥*n_ holds, but this is not used here.

Proof. (a) For x" = (x,...,x,) € X*" consider the independent
RV’s Yi,..., Y, where Prob (¥, =y) = w(y | x). The RV’s
[ w(Y, | x) .
log — 22 ifwl,|x)>0
z,= | %8 () (Yl x) (312

lL 0 otherwise

are again independent and uniformly bounded by a constant b, say,
- where

b = max (—10g Wmin, —log gikin),
Wmin = min {w(y | x) : w(y | x) > 0}, gmia = min {g*(y) : g*(») > 0}.
By Lemma 2 Prob {Z Z, < (C— y)n} = Prob {Z (Z, — EZ) < — yn}
. : =1 =1

2

probability is smaller than exp {(av + a?b?n} and that the exponent is
negative.

() Ew(B(U) | x") = ¥, p*u)w(B() | x")

=Y W | %) S P s(r").
y’n i

2
and for & < 0, || < min (1, b e, yb“z) Lemma 1(d) implies that this

It suffices to show that for every y" & YY"
Y p*)lsw(y") < exp [—(C — )nl.

1 w(y" | u) } :
Define A(y") = {u i~ lo > C — y; and notice that
O =" 0 08 g m)

¥ p* ()1 (y") = p*(A(™). (3.14)
Let now Z, Ce Z,, be independent RV’s with distribution

Prob (Z, = log ‘%’(Jl;——t)x—)) = p*(x).

Then
p*(A(y") = Prob (Zn; Z > (C — y)n)

t=|

Vol. 5, No. 1 (1980)



20 METHOD OF CODING APPLIED TO ARBITRARILY VARYING CHANNELS

< e~ (En 1] Eexp{Z}

t=1

e f g
=1 x L

Since Y, p*(x)w(y, | x) = q*(y,) the product is 1 and the result follows.
Remark. InSpectionbf the proof shows that Q(B(U)) < e~ ©" for
any PD Q on QJ~,

LemMA 4. If w has distinct row vectors and if x", x'* & ¥ *" satisfy
d(x", x'") > en, then there exists a vo(e) 1 for v <y, W(B(x™) | x") <
exp {— Ca(y)en}, where Cy(y) > 0 for y > 0.

Proof. Let B& (0, 1) be a number to be further specified below.
Consider the sets A, ={y:w(y|xi) =0, wy|x) >0} Since for
y € 4: q*(y) > 0 we can conclude -

B(x"yc [] 4. (3.15)
t=1 :

Write {1,...,n} =1UJ U K, where
I={:1<t<nd, =@}, J={t:1<t<n, x, = xi},
and K={:1<t<n,4,=0,x, + x;}.
Clearly, if |I] > Ben, then by (3.15)
W(B(x'™) | ") < (1 — Wnin )P (3.16)
We can therefore assume that |I] < Ben.

With the RV’s Y1,..., Y, used in the proof of (a) of Lemma 3 we
define now the RV’s v

W(Y,Ixj)
log ——-
P

(0 otherwise.

if w(¥, | x) >0

Ay

Z = (3.17)

They are again independent and bounded by 5.
For 0 < a < min (1,%2 e“‘”’) it folldws from Lemma 1(c) that
Prob { ,=E, Z>(C— ?)n} — Prob { ,5; (Z, — EZ) > ’;1 (C—y— Ez‘,)}
< exp {—a tgl (C—y—EZ) + aszn}. (3.18)
We consider now the quantity 12:1 (C —vy — EZ).

Jr. Comb., Inf. & Syst. Sci.
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. - Y| x)
Since EZ, = - w(y | x,) log W , we have
‘ y: w(y%;) >0 ( l ! qa*(»)
EZ, < b for t & I, because |Z,| < b. (3.19)
EZ,=Cforte J,by Lemma 2 (3.20)

and finally, for r € K,

_ w(y | x;
EZ, = ¥, w(y|x,) log *1 X1
¥y

q*(»)
= % wiy ) log "L 1og e BERD

If D denotes the I-divergence and if we set D,,;, — mm D(w(- | x) || w( ]x ))s

which is posmve because w has distinct row Vectors we derive from (3.21)
and Lemma 2

. EZ,<C— Dy, fortek. (3.22)
The inequalities (3.18), (3.19), and (3.22) imply

Y (C—y — EZ) > (C—v)n — b-I| — CW| — (C — Dar)K]. (3.23)
=1
Since b > C > C — D,,;, we conclude that
Y (C—y— EZ) > (C— y)n — enb — (I — 9nC — (1 — B)en(C — Dipin)
t=1 .

=(—y —Be(b — C)+ (1 — ﬁ)eDmm)n
= f2(v, B, €)n,

where f5(v, B, €) > 0 if ¥ and B are sufficiently small. Now for « sufficient-
ly small (3.18) and (3.16) give the result.

Remark. Instead of this Lemma one could use Lemma § in Section 4
in a very special case (|Q] = |P| = 1) or the result of Section 5.3 in [15],
which is for MLD and has a more elegant proof. This way we also would
not be forced to worry about the right choices of € and ¥ (y small in
Lemma 4, e small in (3.6)), which makes a separate treatment of the
cases C = H(p*) and C < H(p*) necessary. We decided to use Lemma 4
in order to show that for the DMC everything can be based on threshold
decoding alone, which is not the case for the AVC.

§ 4. THE DOUBLE-EXPONENTIAL BOUND

- Since there are only exponentially many code words it suffices to show
that the probability to select a particular code word, which is decoded
incorrectly with a probability > A, is superexponentially small.

The idea which leads to this result is the following:

Vol. 5, No. 1 (1980)



22 METHOD OF CODING APPLIED TO ARBITRARILY VARYING CHANNELS

If V, = vy, then v, has a “territory”” B(v,) such that
| w(B(v) | v1) = 1 — exp [—Cy(v)n]

by Lemma 3 (a). The other code words cause losses in this territory,
which together result in a sum of RV’s % T;, say. Those RV’s have
nice properties: ) ]_2
 ET | Tisi=t_1, ..., T2 =t) < exp [—(C — »)n] by Lemma 3(b) ()
and T < exp [— Ca()en] by Lemma 4.  (2)
Lemma 1 (b) gives the superexponential bound.

We now make this precise. |

Case I. C = H(p*).

In this case for any vy, 0 <y < C, B(x") N B(x") =@ for x",
x'me FEn xm £ X w(B(x") | x") = 1 for x" & X*"; and therefore para-
graph 2 contains the proof of the Theorem.

Case II. C < H(p*).
Now the ¥ in (3.6) can be omitted, we choose e so small that
C + h(e) + € log || < H(p*) —« (3.6")
and then we choose y as small as required in Lemma 4.

We make the following conventions:

Df = B(V;)* = Y if V; = x4, W(F | xa) = 0 for every FC Y". (3.25)
By symmetry it suffices to consider A;(Uy, . . ., Un) which we upper bound
as follows:

A(Uss -, Us) = w(DE| V) < X5 wB(V) 0 BI) L V) -+ w7 | 7)

(3.26)
This and Lemma 3 (a) imply

M . Un) < 3 wBP) V) + xp [=Cim] - (B.27)

Define now RV’s f/\l, e f/\m by

~ (U ifU¢ U S(U))
Vi=x j<i | (3.28)
ER otherwise
and finally RV’s T, . .., Ty by
T, = wB() | V). (3.29)
Notice that
M M A
Z:z w(B(V )| V) < 22 T;, Vi=U (3.30)
j= =
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and that
| E(T)| Ty = ty_ps -, To = t) < EW(BU) | V). (3.31)
It therefore follows from Lemma 3 (b) that
ET| Ty =tits - s o=ty <exp [—(C—p)n]  (3.32)
Since by definition (3.28) (P, ¥;) > en, Lemma 4 and (3.29) yield
T, < exp [—Ca()en]  forj=2,..., M. (3.33)

It is clear from (3.27), (3.29), and (3.30) that the proof is complete once
‘we have a superexponential bound on

M >
Prob(z T,->n>,0<77<1.
=2 ,

But this is now a straightforward consequence of (3.32), (3.33), and
Lemma 1(b). ‘

M :
Prob (2 T, > n) < exp [— -g exp (Cz(y)en)]
j=2 ~,

x T] max E(1 + exp [Ca@)en]T; | 1)
J

. =2 171
Using (3.32) we get
E(1 + exp [Co)en]T; | #71) < 1+ exp [—(C — v — Co(Me)n]

and with the choices (e, ¥) = ¥ + Cz(y)e, M = exp [(C — (e, ¥))]n there-
fore

M
[[ max E(l 4 exp [C;(P)en]T; | ") < (1 + MO < e
j=2 ti-1

and hence

Prob (‘f: T; > n) < exp [——g exp {C2(¥)n} + 1]. (3.34)
Q.E.D.

j=2

4. THe PROOF OF THEOREM 2

§ 1 SADDLE POINTS OF I( p, w) FOR CLASSES OF CHANNELS

We establish now two auxiliary results which go beyond Lemma 2.

LeMMA 5. Let C be the closed convex hull of the set of matrices C.
Fix a PD P on ¥ and let w & C be such that min I(p, w) = I(p, w) Set.
wel
q =p-w. Then

T p(w(y | %) log W%}EJ[)") S Ip W) orall welf &1
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Proof. For every w & Cand a, 0 < a < 1, I(p, aw + (1 — a)w) =
{{p, w) and therefore

lim 9 I(p, aw + (1 — a)w) = 0.
a->0 O .
By an elementary calculation

% ) _
Za I(p, aw + (1 — a)w)

- . - aw(y | x) + (1 — aw(y | x)
= L PO | %) =5 [ ) log = 0oy —a)50)

and hence the result.

LEMMA 6. Consider the row-convex hull C’: of C. If p*, w* & é’: are
such that I(p*, w*) = max min I(p, w) = C, then for w & C:

p wel
* —
Y w(y | x) log KV—%M) > C forx € X*. (4.2)
5 qg*(y)
Proof. 1t follows from Lemma 5 that
Y Py | x) log - 1) S 1o, Wty =C (4.3)
X, ¥ a*(y)
and from Lemma 2 that
* —
Y w¥(y | x) log —wq(TJ()J[)i) =C forxe X* (4.4)
=

Suppose that (4.2) does not hold for some x' € X*, then consider the
matrix

w(-1x") forx=x

i1 -1

wH(.|x) for x s x"’

which lies in a because C__' is row-convex closed. It follows from our
supposition and from (4.4) that

wrrlx) _ &

J?;yp*(X)@(.le) log 0 < C,

which contradicts (4.3).

§ 2 TWO CODE WORD ERROR PROBABILITIES

We establish now two results for the AVC, which play the same role
as Lemmas 3, 4 for the DMC. Notice however that Lemma 4 has no
direct analogue, instead of TD we have to use MSD now.

LemMA 7. With p*, w* & 5, g*, X* and C as previously defined, for

Jr. Comb., Inf. & Syst. Sci.
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xX"e X*and y >0

Bix™ = dpn: L 1ge _ OMIXD S &
B(x)—_{y.ﬁlog 707 = 7}.

Let U be a RV with Prob (U = x") = p*(x"). Then for s" € S"

Q

(a) W(E(x")lx”]s”) >1—exp [—a(y)n], x" € X*, where

’

Ci(¥) > 0 for v > O.
(b)  Ew(B(U)}x"ls") < exp [—(C — »)n].
Proof. (a) Using Lemma 6 instead of Lemma 2 the proof of Lemma

3(a) can be used here with small modifications. For x" = C T
€ X*, "= (sy,...,S,) consider the independent RV’s ¥,,...,7,,
where Prob (Y, = y) = w(y|x/s,). The RV’s
[ wqX,|x) .
log ——2=%  if w*(Y,|x) >0
z,={® ) (¥elx) (4.5)
ILO ’ otherwise

are again independent and uniformly bounded by a constant b*, say,
where ' :

b* = max (—log w¥i,, —log g¥). (4.6)
By Lemma‘6.

Prob { Y Z,<(€- y)n} < Prob {2 (Zi— EZ) < — yn},
t=1

l=

[us

and by Lemma l (d) this is smaller than exp {(—ay + a?**)n}
2

for 0 < @ < min (1, {)2— e, yb“z) and the exponent is negative.

(b) Just replace w in the proof of Lemma 3 (b) by w* and make use of
the Remark at the end of that proof.

LEMMA 8. Let Q and P be two disjoint convex compact sets of PD’s on

a finite set &. Let 6 = ﬁ énin 0 gz |p(z) — q(z)| and
' peEDL, g€0 z
J(®) = min mai)( [(B + O)a — log (Be* 4 1 — B)], f(6) >0 for § > 0.

0<g8<! «

[ o]
One can give a sequence (S,,) » SuC 2", with p(S,) = 1—|Z| exp{—f(bo)n},
’ n==1
9"(S0) 21 — |Z] exp {—fO)n} for all p" € {piX, ..., XpnipE P,
ISti<nhg"€{gix ... xXqu: 9, €0, 1 <t < nl.

Remark. In [9] a slightly weaker form was proved. There Q and @
have only finitely many extremal points and the term exp {—f(6o)n} is re-
placed by a constant ALO< A<,
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Proof. Let n(z|z") count how often z occurs as component in z" =
(Z15 - -+ 5 Zn)-
For a PD p on & define the set of sequences"
Z(p, b0, n) = {z" € Z": n(z | 2") — p(D)n| < bon, z € Z}.
Recalling the definition of §, we notice that | |
Z(p, 0, 1) N Z(g, b m) =@ forpe P, q< Q.
Therefore also : ¥

( U z(pa 90: l’l)) n ( U %(qa 00: n)) - (D
PED 9€Q

Choose S, = U Z(p, 90,:")-
peEP

By symmetry it suffices to show that for any p" =p;X... Xp, p € gf,

)
=
o
<

=)

H
|
4

=

. P(Z(P, bo, 1)) > 1 — |Z] exp {—(Bo)n}.

Now observe that , v
LB, o) = {=": e 1) — 3 )
Denote by Z"=Z4, . . ., Z,a RV with PD .
Fora >0

P(B) < Y, Eexp {a(ﬂ(z | Z") — ti pdz) — 90")}

zeZ

< Ogn, z € %} = B,, say.

n

— ¥ exp {—n(p(2) + bo)a} I Eexp {ad(z, Z))},
e t=1

where (-, -) is Kronecker’s Delta.
Now E exp {a 8(z, Z,)} = p(z)e* + 1 — p,(z) and since log is a convex
function we conclude that
p"(Br) < }:‘.7 exp {—n[(p(2) + fo)a — log [p(2)e* + 1 — P(2)]}}
I€EZ

and by the definition of f(6) that

p'(Bn) < ) exp {—f(0o)n}.
o zeZ ,
That f(6) > 0 for > O can be seen by looking at the slopes for « = 0.
Q.E.D.
The pair (S(x*, x'™), S(x'*, x")), x'*, x" & X", is called an MSD for C”,
if S(x", x") = @ for x'* = x™ and otherwise

(@ S, %) 0 S 3 = @, S, X U S(x', 1) = UG
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(b) min (min w(A4|x"s"), min w(49x"]s"))
st ) st

is maximal for (4, 4°) = (S(x", x'7), S(x'", x")).

Lemma 8 will be applied as follows. If d(x", x'"y > en then there exists
a pair (x,x), x s x', such that |{t: (x,x) =(x,x), 1<t< n}|
= ]%]_zen.

By condition (5)

o* = ——1 min ( min 2w x) — w(y | x')I) >0,
2[4}1 x #=Zx' \w(-|x)ER(x), w(:|x )& R(x") ¥y A
and hence by the Lemma for an MSD (S(x", x'7), S(x'", x™)) and all
Sn e Sﬂ
w(S(x'"7, x™)|x"|s") < | Y| exp {—f(6%)| X 2en) (4.7
W(S(x", x™)|x"s") < Y| exp {—f(0%)| K| 2en). (4.8)
We use the abbreviation C* = § f(6*)| %¢[-2 | ‘

The next Lemma 9, based on MLD, establishes inequalities like (4.7),
(4.8) under condition (L) instead of (S). Since we already know that
Theorem 3 follows from Theorem 2, we state the result for comparison
only and without proof. '

LEMMA 9. Let the AVC satisfy the condition
wH(y | x)

T <Oforallx,x" € X*withx #x'. (L)

max Y w(y|x) log
wel ¥

kN 'n
For MLD-sets L(x'", x") = {y" : log WROR | X = 0} here log 8»20 we

w*(" | x") =
have for all s" & S" w(L(x"", x")lx"|s") < exp {—cen}, if x'*, x" € X*" and
d(x", x™) > en.

§ 3. THE CODING SCHEME

Let M = exp {(C — ¥ — C*e)n} and define independent RV’s Up,...,
Un with Prob (U; = x™) = p*(x") and RV’s Vi, ..., Vy exactly as in the
coding scheme for the DMC. Therefore also the bounds on |<HM| derived
in § 2 of Section 3 apply here. To every Vi, i € M|, we assign now the set

= 1 | V) _ =
-mmrzhwﬁmgﬁﬁ&q)>c—y}

The decoding sets {D} : i & .} are now defined by

DE=DIUy ..., U)=BW)— U (S, V) n BVy),
i€ i—{i}
(4.9)
where S(V;, V) is as defined in Lemma 8.
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28 METHOD OF CODING APPLIED TO ARBITRARILY VARYING CHANNELS

Notice that in the decoding rule described in Section 2 we take
B(V)) NB(V;) away from both, B(V;) and B(V;). Here we have to be
more cautious. : I

We define the error probabilities _

A(s™) = MUy, . .., Upy, s7) = w(DH|Vi|s") for i € M and s" & §*
| | (4.10)
and

MU, o - vy Uy = max A(s™). (4.11)
: ie J,s"e St

§'4. THE PROOF OF THEOREM 2 IN CASE |C] < o0

The converse, that is, the inequality C < 5 follows (also in case
|Cl = ) from the fact that an (n, N, X)-code for C" is also an (n, N, X)-code

for C* (see [11]) and hence the capacities cannot exceed the capacity of the
DMC w*. The crux of the matter is the opposite inequality, which we
now derive from our coding scheme. This proof now follows the lines of
the proof of Theorem 1. One just has to replace Lemmas 3, 4 used there
by Lemmas 7, 8 and has to use the fact that |C" only grows exponen-
tially in n. o

We make the following conventions:

D¥c = BV = Y if Vi = X,
w(F |x,|s") = 0 for every F C Y".

For fixed s” we upper bound now A,(s”).
M(s™) = w(DT|Vils")

M — = =
<}Z=;2W(B(V1) N B(V) N SV, VI Vils" 4 exp [~ Ci()nl.
(4.12)
Here we have used Lemma 7 (a):

W B Vils" < exp[—Ci()n.

?

Define RV’s Il}l, cees I//\M as in (3.28) and RV’s T2, . .., Ty by
T, = wB(P) 0 SV VDIVls™) (4.13)

"Now notice that

M = A i
Ai(s™) <J_§2Tj 4exp [-Ci(Vn), Vi=U, 4.14)

and that
ET)| Tjy = tj_1, ..., Ta= 1) < EwBWU) N S(Uj, UD|Uils")-

Jr. Comb., Inf. & Syst. Sci.
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It follows therefore from Lemma 7(b) that
E(T;|Tj_y = tj_t, ..., T2 = t2) < exp [—(C — Y)n). (4.15)

Since d(I7,-, V) > en, (4.7) implies

T, <exp[—C*en]forj=1,2,..., M and n > no(6*%, €). (4.16)
With (4.15) and (4.16) we have the same properties of the T;’s as in Sec-
tion 3 and therefore also

M
Prob (Z T: > n) < exp {—-gexp [C*en] 4 1} 407
j=2
This means that for 0 <7 <1

Prob (Ai(Ula s e UM’ S") =1 + €Xp [_C—:l(y)n]

< exp {——gexp [C*en] + 1} for all s" & S"and all i &€ M, (4.18)

and therefore
Prob (\(U,, - . . . , Us)>1 + exp [—Cy()n] (4.19)
< | XS exp {—gexp [C*en] 4+ 1} = o(n). Q. E. D.

§ 5. THECASE |C]| =

We make use of an Approximation Lemma [18] in the formulation
of [5]. '

LemMA 10.  Let A > ab?, where a = ||, b = |4|. There exists a set

CaC C,|Cq < (A + 1), such that for every w & C there exists aw & Ca
with

W@ X —Fp Dl <bdLxe Xoyey  (4.20)

w(y | x) <exp 2624~y | x), x € X,y € Y. (4.21)
Let C, be the index set of C, and denote the approximating matrix of
w(-[-|s) by w(-|-|5). By (4.21) we have for s* = (s, ..., s,) € S" and

~

AHZ:(EI’---,En)ESZ

w("x"|s") < w(p|x"5") exp {2b%0 41} for all x" & X, y" & Y
< (4.22)
and with the choice A(n) = n? for n = ny(b)

W(y"lx"ES”) < w(ynlxrzl‘:g’n)z (423)
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and : : o ,’ o :
|S,e] < (% + 1)136’1 Ul = exp {O(log m}. (4.24)

We now apply Lemma 10 to C and call the apnrox1matmg set of matri-

ces C 2 and its index setSn ~ S

We now replace in the arguments of the previous paragraph C’ by
Thus we get instead of (4.19) for the approx1matmg channel '

Prob (A\2(Uy, . . ., Up) = 7 + exp (—Cl(y)n)

< | X]" exp {0(n log n)} exp {— g exp (C*en) + l} =o(n). (4.25)

It follows from (4.23) that for any s* & 57, w(DE“'C[ Vils™) < 2- w(D‘,’-'kCIx”B’”),

5" & Si, and hence the result.

APPENDIX

5. AN ALTERNATIVE MODEL FOR OUR CODING METHOD

We now show how the coding method for the DMC can be described
in terms of typical sequences and generated sequences (see [14]). The
reasons for going through this are:

(a) The method becomes very intuitive for those familiar with I[ 14].

(b) It is of interest to know that saddle pomt arguments can be
avoided.

(¢) This approach -may be of use elsewhere.

§ 1° THE ALTERNATIVE MODEL

Let us consider a DMC with alphabets &, 4 and transmission matrix
w. X"= Xy, ..., X, shall be a sequence of i.i.d. RV’s with values in
Xand Y"=7Y,, ..., Y, denotes the corresponding channel output varia-
bles. (X") is the set of typical sequences for the source X” and G,(Y"| x"),
x"& X", denotes the set of elements in 4" which are generated by x”.
Definitions for those concepts are given in the next paragraph.

Let Uy, ..., Uy be i.i.d. RV’s with distribution
Prob (U; = x™) = | gy (XMt for all x" & JH(X™. (5.1

Those RV’s are now used to define a new sequence Vi, ..., Vi, of RV’s
as follows: |
(U, ifdU;, U)>en forall j+#i

Vi=A+ (U ’ (5.2)

L Xx otherwise.
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M =1{i:V;# xs, | <i<< M}isarandom set of indices.

We choose {V' i< M) as set of code words and define the decoding
sets {D ie .ﬂ/l} by the rule

D;=DyUy, ..., Uy) = GXY"IU)— U GI"|V). (3)
| e}
Finally, ,, = \(U,, ..., Uy) is the error probability for code word ¥;.

TueoreM 1'.  For the coding method described in (5.1)—(5.3) with M

_specified by M = exp {(I(X A Y) — m)n}, = > 0, and e sufficiently small, the
following estimate holds: :

Prob (|M]| = 1M, max \(Uy, ..., U, <) (5.4)
ie M o

> 1 — exp {—exp [p(r, )nl} for n = ny(d, 7),
where p(r,A) >0 for any )\, 0 <A < 1.

§ 2 AUXILIARY RESULTS FOR THE PROOF OF THEOREM 1

We give here the notions of typical sequences and generated sequences
and those of their properties needed in the sequel. Lemmas which can
be found in [14] or can be proved with easy modifications of proofs given
there, will be stated without proof. Thus only Intersection Lemmas 1, 2
require a proof. If possible we have kept the terminology of [6].

Let Z" = Z,, ..., Z, be a sequence of i.i.d. RV’s with values in Z and -
distribution p. For z”7& £" and z € Z denote by n(z|z") the number of
components in which z" has z. »

z" is (Z", 8)-typical (or (p, .8)5typica1) if for6 >0

Inp(z) — n(z | zM| < S[p(2)(1 — p)]P2 forallze &~ (5.5)
Denote the set of those sequences by T(Z"). |

All the 0(y/n) occurring below are bounded by (C; + C28)y/n. For
fixed alphabets C; and C, are universal constants (see chapter 2 of [14]).

Lemma T. " (a) For every n Prob (2" & Is(Z™) =1 — 0(812) that is, the

or obabzltty goes to 1 unlformly in n, 1f8 — 0.
(b) Prob (Z" = z") = exp {—H(Z)n 4+ 0(x/n)} forz"& SZ}(Z”)
(©) | Ts(Z")| = exp {H(Z)n 4 0(+/n)}.

Let (Z Y)ﬁo be a discrete memoryless correlated source (DMCS),
t=1 :

that is a sequence of i.i.d. pairs of RV’s. Abbreviate Prob (¥ = y| Z = )
as p(y|z). We also use notations such as Y(z") for a RV W1th distribu-
tion Prob (Y(z") = y") = Prob (Y" = y"| Z" = z"). For Z € Z", y"€ Y",
ze %, y e Y denote by n(y, z|y", z") the number of positions in which
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y" has y and z” has z.
A sequence y" e Y is (Y| z", 8)-generated (or (¥(z"), 8)-typical), if
In(y, z|y", z") — n(z | 2p(y | 2)| < 8[n(z | 2")p(y | 2)(1 —p(y | 2)]'2 (5.6)
forallye U, z € &. _
Denote the set of those sequences by Gy(Y"[z") or J(Y(z").
LemMmA Gj.
(a) For every n

Prob (Y" & Gy(Y"(z") | Z" = z") = Prob (Y (z") € Is(Y(z")) =1 — 0(l)

52
(b) Prob (Y(z") = y") = exp {—H(Y(z")) + O(v/n)}.
(©) |Gs(Y"| 2")| = exp {H(Y(z") + O(v/ 1)}

(@ HY@) = ¥, H(Y|Z = z)=nH(Y | Z) + 0(/A), if 2" € T,2Z").

LeMma G,. Let (Z,, Y,)oo be a DMCS. For every 8 > 0 thereis a

8y = 8;((Y|. |2, 8) such that}:(;r all n
@) G(Y"|2") C Tp(Y") for 2" € TyZ")
(b) U G,(X"|z") D Iy(Y")
e T(Z™)
(¢) Ify"e 9;,(Y™, then y” is contained in
exp {H(Z | Y)n + 0(y/n)} sets G(Y"|z") with 2" & J(Z").
LemMa I;. Let w be a |Z&|x |Y|-transmission matrix of a DMC with

(0]
distinct rows. Let (Z,, Y,) be a DMCS with Prob (Y, =y|Z,= z) =

t=1
wylz),ve Y, ze Z.

For z", z'" & J§(Z") with d(z", z2'") > en, ¢ > 0,
|Gs(Y" | 27) N Go(Y" | 2] |Go(Y™| 277! < exp [—g(e)n), (5.7)

for n large enough, where g(e) is positive and independent of n.

Proof. 1t follows from Lemma 8 in Section 4 or already the special
case thereof treated in chapter 5.3 of [15] that there exists an 4, C Y.

Prob (Y" € 4,]Z" = z") > 1 — |Y| exp [—f(6o)ne]

5.8
Prob (Y"& A5 | Z" = z'") = 1 — | Y| exp [—f(bo)ne] ©-8)
1 .
here 6y = == min ) —w(y|z) > 0.
where 6y = 5z min 3wy | 2) — w(r{2)]
By (b), (c) of Lemma G; we have for y” in both generated sets
 Prob (Y" =y | Z" = z") = [Gy(Y" | 2| exp {0(+/R)} (5.9)

Prob (Y" = 3| Z" = 2) > |G(Y" | 2" texp {O(+/71)}.
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This, (5.8) and (c), (d) of Lemma G, imply
1G(Y" |2 N G(Y | 2] |Go(Y" | 2)|7! < exp (—f(fo)ne + O(+/n)).
The result follows by choosing g(e) = 1 f(6p)e for n = ny(e, 6) suitable.

[+0]
LemMA I,. Let (Z,, Y,) be defined as in the previous Lemma and let

t==|
U be a RV which takes values in Ty(Z") with equal probabilities. Then for
" e gg(Zn) .
E(G(Y" |2 N G(Y" [ UD]Go(Y™ | 2071
=exp {—L(Y A\ Z)n + 0(/n)}.
Proof. It follows from Lemma G, that
|G(Y"|2") N Go(Y" | 2]

e J(Z")
= |G(Y"| 2| exp {H(Z | Y)n + O(y/ 1)}
and therefore

Y G((Y"|z2m N G(Y"| 27 lga(Y”IZ”)l"‘lfTa(Z")I;i
2me T(Zn)

— exp {(H(Z | Y) — H(Z))n + O(/m)}.

Those two Intersection Lemmas are basic for the analysis of our coding
technique for the DMC.

§ 3. PROOF OF THEOREM 1’

The estimate on the rate Prob (| M| < M) << 2-exp (—iM) can be
derived by exactly the same arguments as those used in Part I, if one
replaces (3.6)—(3.8) there by

IX AY)—y+ k(e + elog |¥| < HX) — « (5.10)

U S| < exp (B — 9np (5.11)

| To(XM|™! < exp {—g(e)n} (5.12)

M
U SE(”])
j=1

We derive now the super exponential bound. With the conventions:

DS = GX"| Vo = 4 if ¥ — xa, (5.13)
w(F|xs) =0 forevery F c Q"
we can write
)\I(Ul, ey UM) = W(D‘i:l Vl)
' M

< ,-;z w(G(X" | V) N G(X"| V)| V)
+ w(GX" Ve | V). (5.14)
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This and Lemma G, imply

0,.

MU -+ -, Us) < w@wwmn@wwmuu+%)wm

Define now RV’s 171, ce s I//\M by
. (U if Ui¢ U S(U))
Vi=1 J<i (5.16)

| X, otherwise

and finally RV’s T, ..., Ty, by

T, = w(G(X" | V) N GX"| V)| D). (5.17)
Notice that
M 1 A
v R T+0(p) Pi=v (5.19)
E(T; | =Tty ..., Ta=1,) ‘
< Ew(Gy(X" | UD) N Go(X"| Uj) | Uy)
<exp (—I(X A Y)n + 0(y/n)}, (5.19)

by Lemma I,
and that

0<T; <exp(—g(en), by Lemma I;. (5.20)

The inequalities (5.19), (5.20) are the analogues to inequalities (3.32) and
(3.33) and the proof can be completed as before.
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