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To Get a Bit of Information May Be As
Hard As to Get Full Information

RUDOLF AHLSWEDE anDp IMRE CSISZAR

Abstract— The following coding problem for correlated discrete mem-
oryless sources is considered. The two sources can be separately block
encoded, and the values of the encoding functions are available to a
decoder who wants to answer a certain question concerning the source
outputs. Typically, this question has only a few possible answers (even as
few as two). The rates of the encoding functions must be found that enable
the decoder to answer this question correctly with high probability. It is
proven that these rates are often as large as those needed for a full
reproduction of the outputs of both sources. Furthermore, if one source is
completely known at the decoder, this phenomenon already occurs when
what is asked for is the joint type (joint composition) of the two source
output blocks, or some function thereof such as the Hamming distance of
the two blocks or (for alphabet size at least three) just the parity of this
Hamming distance. :

I. INTRODUCTION

E ARE given a discrete memoryless double source
U v (DMDS) with alphabets %X, %, and generic variables
X, 7, i.e, a sequence of independent replicas (X}, ¥,), i =
1,2,---, of the pair of random variables (X, Y) taking
values in the finite sets X and %, respectively. Slepian and
Wolf [9] considered the problem of encoding the source
output blocks X"= X, ---X_ resp. Y"£Y,---Y, by two
separate encoders in such a way that a common decoder
could reproduce both blocks with small probability of
error. They proved that such an encoding is possible with
rates (R,, R,) if and only if

R,= H(X|Y), R,=H(Y|X), R,+ R,=H(X,Y).

(1.1)
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It may happen, however, that what is actually required
at the decoder is to answer a certain question concerning
(X", Y™). Such a question can of course be described by a
function F of (X", Y"). We are interested in those func-
tions for which the number k, of possible values of
F(X", Y") satisfies

lim llog k,=0.

n—oo N

(1.2)

This means that the questions asked have only “a few”
possible answers. For example, X; and Y, may be the results
of two different quality control tests performed on the ith
item of a lot. Then for certain purposes, e.g., for determin-
ing the price of the lot, one may be interested only in the
frequencies of the various possible pairs (x, y) among the
results, their order, i.e., the knowledge of the individual
pairs (X, Y)), being irrelevant. In this case k,=< (n +
1)!*11%1 and (1.2) holds. A natural first question is whether
or not it is always true in this case that, for large n,
arbitrarily small encoding rates permit the decoder to
determine F(X", Y"). To our knowledge, even this seem-
ingly simple question had not been answered prior to this
paper, except for the particular case of independent binary
X and Y, where one of them takes the values 0,1 with
equal probabilities. In this particular case, Korner [6]
showed the necessity of positive rates if both entropies are
positive.

We also consider here other choices of F and first obtain
the following result. For every DMDS with

H(X|Y)>0, H(Y|X)>0

there exists a binary question (function F with only two
possible values) such that in order to answer this question

0018-9448 /81 /0700-0398300.75 ©1981 IEEE
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(determine F( X", Y")) one needs encoding rates as speci-
fied in (1.1).

As a matter of fact, almost all randomly selected func-
tions F are of this kind. Since the reason for this unex-
pected phenomenon might be that randomly selected func-
tions are very irregular, we next study more regular func-
tions. A function F of special interest is the joint type of
the two source blocks hinted at in the quality control
example. In this respect our main result is that for de-
termining the joint type of X" and Y" when Y" is com-
pletely known at the decoder, X" must be encoded with
just as large a rate as if X" were to be fully reproduced,
except for (exactly specified) singular cases. Actually, we
shall prove an analogous result for a class of functions F
which include, in addition to the joint type, the Hamming
distance and— for alphabet size at least three— the parity
of the Hamming distance.

As a consequence of these results one obtains that in the
case of encoding both X" and Y”, the rates must satisfy

R, = H(X|Y), R,z H(Y|X), (1.3)

in order that the joint type or the Hamming distance of X"
and Y" can be determined by the decoder. In particular, it
follows that for a DMDS with independent components
(i.e, when X and Y are independent random variables
(RV’)) nothing can be gained in rates, if instead of
(X7, Y") only the joint type or the Hamming distance of
X" and Y" is to be determined by the decoder. For a
DMDS with dependent components such a rate gain is
possible, although it remains to be seen whether this always
happens and to what extent. At present a complete solu-
tion to this problem is available only in the binary symmet-
ric case. In fact, it readily follows from a result of Korner
and Marton, published in [5}, that our necessary conditions
(1.3) are also sufficient. Let us emphasize that their result
concerns “componentwise” functions F

F(X"’Yn)é (Fl(Xls Yl)’ Fl(XZ: YZ)" ' 'sFl(Xn’Yn))’

(1.4)

where F, is defined on % X %.

In the binary symmetric case (i.e. Pr{X=Y =0} =
PriXx=Y=1}, Pr{X=0,Y=1} =Pr{X=1,Y =0}),
they proved for the particular F with Fi(x, y) Zx+y
(mod?2) that (R,, R,) is an achievable rate pair for de-
termining F( X", Y") if and only if (1.3) holds. Now ob-
serve that the types of X” and of Y" can be encoded with
arbitrarily small rates and that those two types and the
mod2 sum F(X",Y") determine the Hamming distance
and also the joint type of X", Y".

II. NOTATION

We use the notation of [4]. Script capitals denote finite
sets. The cardinality of a set @ resp. of the range of a
function f is denoted by |@| resp. |l fIl. The letters P, Q
always stand for probability distributions (PD’s) on finite
sets. A stochastic matrix W= {(W(y|x): x € X, y € U}
with rows W(-|x) which are PD’s on % is referred to as W:
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% — %. The discrete memoryless channel (DMC) with this
transition probability matrix is denoted by {W: X — %}.
Given a PD P on % resp. a stochastic matrix W: X — %,
forx=x,--x, EX", y=1y, -y, € Y" we write

P02 [ rtx), w(sim2 T W),

We denote the distribution of a RV X by Py and the
conditional distribution of Y given X by Py x. For W:
X — %, the equality Py y = W means that

PY|x(}’|x) = W(yl|x)

whenever the left side is defined, i.e., Py(x) 5% 0. The type
P, of a sequence x € X" is a PD on % where P,(x) is the
relative frequency of x in x. The joint type P, , of two
sequences x € X", y € Y" is the PD on ¥ X %Y defined
similarly,

Given any PD P on %, we designate by 9" the set of -
those sequences x € X" which have type P, = P. Further,
given an RV X and a positive number %, we denote by Iy |
the set of (X, n)-typical sequences in X", i.e.,

T o= {xix € X", |P(x) — Py(x)| < n for every x € X}

= U 2.1)

P: max,ex| P(X)= Px(x)|<n

6y n
T

All exponents and logarithms in this paper are to the base
two. The following well-known facts about types and typi-
cal sequences will be used:

{P:Trs£ B) < (n+ 1), (2.2)
(n+1)"Mexp [rH(P)] < |9;'| < exp [nH(P)],

if9r == @, (2.3)

%]

P,’}(ﬁ;’n) > 1 —;n—z,

(2.4)

and for every @ > 0, 8 > 0, and n = ny= ny(|%X |, a, 8),
@c k", PHQ)=a imply |@| = exp[n(H(X)— 3)].
(2.5)

The inequalities (2.2) and (2.4) are obvious while (2.5)
follows from (2.4), (2.1), (2.3), and the continuity of the
entropy function. Equation (2.3) can be checked with Stir-
ling’s formula; a simple direct proof is given in [4].

The Hamming distance of two sequences x = x; * * ‘X,
and y =y, - - -y, will be denoted by d(x, y):

d(x, p) 2 |{i: x, %y, 1 < i <n}|.

III.

Let % and % be finite sets and F an arbitrary function
on UX (X" X %"

Definition 1: A length-n block-F-code for a double source
with alphabets %X, % (or, briefly, a source F-code) is a triple
of mappings ( f, g, ¢) where the encoders f and g map X"
resp. Y” into some finite sets whereas the decoder ¢ maps
the Cartesian product of the latter into the range of F.

THE RESULTS
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Given a DMDS with alphabets %, %, the probability of
error of this F-code is

e=e(f g o; F)
= Pr{p(f(X"),g(Y")) % F(X", Y")}. (3.1)

Further, a pair of nonnegative numbers (R, R,) is an
achievable F rate pair if for every € > 0, § > 0, and suffi-
ciently large n there exists a source F-code (f, g, ) of
block length n with

1
;10g|if|I<R1+8,

1
;logllgll <R, + 8,

e(f,g ¢, F)<e. (3.2)

When not mentioning F we shall always understand that F
is the identity mapping. In this case Definition 1 reduces to
the familiar one of block codes and achievable rate pairs
for double sources given by Slepian and Wolf [9].

Theorem 1: For every DMDS satisfying the conditions
(3.3)

there exists a binary valued function Fon U % (X" X ")
such that only those (R,, R,) are achievable F rate pairs
which satisfy the Slepian—-Wolf condition (1.1).

H(X|Y)>0, H(Y|X)>0

This theorem will be proved in the next section by
randomly selecting the value of F for every (x, y). In this
way, for every possible joint type P of pairs (x, y), x € X",
y € Y" the set 9, of pairs having joint type P will be
partitioned very irregularly by F. One might think that this
irregularity is the reason for the unexpected result. Hence,
to get more insight into the problem, we now focus atten-
tion to such functions F which are constant on each
Jpr CX"X YY" ie., F(x, y) is a function of the joint type
P, .

Example 1: Let % 2{0,1}, & 2 (0,1,2}, F(x, y)2
P, ,. Consider a DMDS with generic variables X, Y such
that

Pyy(0,1) = Pyy(1,0) = 0. (3.4)
Thus, since no pairs (0, 1) or (1,0) are possible, the joint
type of X" and Y" is uniquely determined (with probability
one) if the types of X" and of Y" are known. This can be
achieved with encoders of rates approaching zero. Hence,
for DMDS’s satisfying (3.4), even (0, 0) is an achievable F
rate pair.

We shall see that this example is quite atypical. For most
DMDS’s positive rates are needed in order to determine
the joint type of X" and ¥". Conclusive answers (coincid-
ing direct and converse résults) will be obtained only for
the projections of achievable F rate regions to the R,-axis,
or what is the same, for codes with Y" completely known

at the decoder. Qur results will be of the kind that if Y" is .

completely known at the decoder, then as large a rate of
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the X encoder is needed to determine F(X",Y") as to
reproduce X" itself, i.e., H(X|Y'), except for singular cases
such as Example 1.

We say that R, is an achievable F rate in the knowledge of
Y if for every € > 0, 8§ > 0 and sufficiently large n there
exist length-n block-F-codes ( f, 8, ¢) such that g is the
identity mapping on Y” and (3.2) holds with R, = log|%|.
Clearly this happens if and only if there exists any R, such
that (R,, R,) is an achievable F rate pair in the sense of
Definition 1. A central result is the following

Theorem 2: Let F(x, y) £ P, , and let us be given an
arbitrary DMDS with generic variables X, Y such that for
every x; % x, in %, the number of elements y € ¥ with

Pyy(xy, y)-Pxy(x;, ») ?0

is different from one. Then R is an achievable F rate in the
knowledge of Y if and only if
R= H(X|Y). (3.5)
Remark: It is easy to see that the condition of Theorem
2 on the joint distribution Py is necessary for the assertion
to hold. In fact, if to some x, 5% x, there exists exactly one
y* € % for which Py,(x,, y*) and Py,(x,, y*) are both
positive, then write

m(x)= {x,

{x1, %2},

if x € X\ {xy, x,},

ifx =x;,0orx =x,.

Notice that #(X,) - -#w(X,) and Y" uniquely determine
the frequency of each pair (x, y) among the random pairs
(X,,Y,),i = 1,---,n, with the exception of the pairs (x,, y*)
and (x,, y*). For the latter, only the sum of their frequen-
cies is determined, but this ambiguity will be removed if
the frequency of x, in X" is known. Applying the theorem
of Slepian and Wolf [9] for reproducing 7(X;),- - -,7(X,)
and using the fact that the frequency of x; in X" can be
communicated with asymptotically zero rate, it follows that
H(m(X)|Y) < H(X|Y) is an achievable F rate in the
knowledge of Y.

The proof of Theorem 2 will be based on the property of
the function F(x, y) = P, , that changing y in one compo-
nent drastically changes the partition of %" whose atoms
are the sets on which F(x, y) is constant (for the given y).
We shall refer to this property as high sensitivity.

Definition 2: A function F on UX (X" X Y") is highly
sensitive if for every x, = x, in % and y, 5 y, in ¥ the
following holds. Whenever x € %" x’ € X", y € Y" have
ith component x,, x, and y,, respectively, and F(x, y) =
F(x', y), then for the sequence y’ € Y" obtained from y
by replacing the ith component by y, we always have
F(x, y") = F(x', y’). Further, F will be called sensitive, if
for every x, % x, in %X and y, in % there exists a y, in % for
which the above statement holds.

Remark: Clearly F(x, y) = P, , is highly sensitive, and
if %X C %, then F(x, y) = d(x, y) is sensitive. Further, if
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X C % and |%| = 3, then the binary valued function

F » [0, ifd(x, y)iseven,
(x, y) = 1, ifd(x,y)isodd,

is sensitive.

Instead of Theorem 2 we shall actually prove the more
general Theorem 3 below. In addition to Theorem 2, it also
contains the results that an achievable F rate in the knowl-
edge of Y for a DMDS with strictly positive Py, must
satisfy (3.5), if: a) X C %, and F is the Hamming distance;
orb) X C %, |%| = 3, and Fis the parity of the Hamming
distance.

Theorem 3: If for a DMDS with generic variables X, Y,
all probabilities Pyy(x, y) (x € X, y € ¥) are positive
and F is sensitive, then R is an achievable F rate in the
knowledge of Y if and only if R = H(X|Y). If F is highly
sensitive then the same is true even under the weaker
condition that for every x;z x, in % the number of
elements y € %Y with

Pyy(xy, p) Pyy(x3, ) >0

is different from one.

(3.6)

This theorem will be a consequence of Theorem 4 below,
which states a result for channel F-codes. From a mathe-
matical point of view, channel F-codes are a natural coun-
terpart to source F-codes. We shall not enter the question
whether channel .F-codes also correspond to some real
communication situations since for us their primary role
will be to provide a tool for proving Theorem 3 (via
Theorem 4).

Definition 3: A length-n block-F-code for a channel with
input alphabet % and output alphabet % (or briefly, a
channel F-code) is a pair (C, §), where the codeword set ©C
is a subset of X" and the decoder { is a mapping of ¥" into
the range of F. Given a DMC {W: X — %}, the average
probability of error of this F-code is

e=¢&(C,y; F)
2 TEIJT S W({v:9(9) # Fx p)lx).

(3.7)

Remark: Clearly, if F(x, y) = x, then Definition 3 re-
duces to the usual definition of channel block codes and
their average probability of error. In the general case,
F-codes may be interpreted as list codes, putting for a
received sequence y € UY" exactly those codewords x € C
on the list which satisfy F(x, y) = y( y). Our present point
of view is, however, quite different from that of previous
papers dealing with list codes, e.g., [1], [8], for we are
interested in lists of a specific structure and pay no atten-
tion to list size. A connection between source and channel
F-coding problems is established by the following simple
lemma.

Lemma 1: Consider a DMDS with generic variables
X,Y and a DMC (W: X — ¥} with W = Py, x. Then for
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every 8 > 0, n > 0 and block length n = ny(|X|, 8, 0), to
each source F-code ( f, 8, ¢) there exists a channel F-code
(C, ¢¥) such that

e(C,y; F)<2e(f, g 9; F), (3.8)
~10g[C] = H(X) = - logl /Il =8, (39)
ecay, (3.10)

d(x, x’) = 7n,if x # x' are in C, (3.11)

where 7 is a positive number depending only on || and 8.
This Lemma and the following theorem will be proved in
Section V.

Theorem 4: Let a DMC {W:% — %} have positive
transition probabilities, i.e., W(y|x) > 0 for every x € X,
y €%, and let F be a sensitive function defined on
U (X" X Y™, Then to every 7 > 0 and A > 0 there is
an ¢ > 0 such that a channel F-code (C, ¥) of any block
length n can satisfy

e(C,y; F) <e (3.12)

and
d(x,xy=mn, forxs*x"inC (3.13)

only if there exists a decoder ¥: %" > € such that the
channel code (C, ¥) in the usual sense has average proba-
bility of error less than A, i.e.,

(5 9)2 (v 9 (5) # 5ix) <n.

(3.14)

Further, if F is highly sensitive, then the same holds also
under the weaker condition on W that for every x, # x, in
% the number of elements y € %Y with

W(y|x))W(y|x;) >0
is different from one.

It is easy to see that Lemma 1 and Theorem 4 do imply
Theorem 3. In fact, because of the theorem of Slepian and
Wolf [9], only the converse part of Theorem 3 needs a
proof. In other words, the statement to be verified is that,
if for every 8 >0, ¢ > 0 and sufficiently large block
length n there exists a source F-code ( f, g, ¢) such that g is
the identity mapping on %" and

—:;logllfll <R+35, e(f,g 9, F)<e, (3.15)

then necessarily R = H(X|Y).

To deduce this from Lemma 1 and Theorem 4, consider
a DMC (W: X — ¥} with W = Py y, fix ann > 0 to be
specified later, and find for the above source F-code
(f, & ) a channel F-code (C, ) as in Lemma 1. Then by
(3.9) and (3.15) we have

%log‘G|ZH(X)—R—28. (3.16)

Further, to the 7 of Lemma 1 and an arbitrary A > 0,
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choose € > 0 as in Theorem 4. Since we may assume that
¢ <e¢/2, we then see from (3.15), (3.8), and (3.11), that
Theorem 4 is applicable to the channel F-code (C, ¥).

There follows the existence of an ordinary channel code
(C, §) with the same codeword set © which has average
probability of error less than A. Since C C Iy’ by (3.10),
this implies

~10g[C| S I(XAY)+8

provided that A and n have been chosen sufficiently small
(depending on §). Comparing this with (3.16) and remem-
bering that § > 0 can be arbitrarily small, we get the
desired inequality R = H(X|Y).

IV. PROOF OF THEOREM 1

Theorem 1 will easily follow from a more abstract result,
which we now formulate and prove. We are given finite
sets V= {1,---,M}, W= {1,---,N}, and a subset & of
X 9. Also p denotes the probability distribution on
4 X AU specified by

p(o,w)216|7!, forall (v,w) € 6&.
Let F:YX U — (0,1} and G=(f,g) with f: V>
{1,---,K}, U — g{1,---,L} be two functions that can be
considered as random variables defined on (V' X U, p).

Suppose we are interested in the value of F but can
observe only G. We describe now a (decoding) function
o:{l,---,K} X {1,---,L} - {0, 1} for which Pr(p(G) s
F) is minimal. Define

6,26NG ' (kI) and F,=8&,n FI(1).
Clearly, an optimal choice of ¢ is

1,
0,

if |6‘5:k[| = ngll - |63—k1|»
if |Fyl < 164] = | Bl

plk, 1) = { (4.1)

for 1< k=<K, 1<I!=<L. Its error probability
e(G, F) = Pr(¢(G) = F) is given by

6/(,11 min (|&,,] — |Fy/l, | Fuil)
|&] |&4]

e(G,F) =) |

k1

. (42)

We use the abbreviation
tklé|6k1||6|_l' (4.3)

Later we consider also a function G': VX U —
{1,---,K} X {1,---,L} X (N U {0}). To all quantities de-
fined by means of G and having indices (k, /) there will
correspond quantities defined by means of G’ and having
indices (k, [, m). Next replace F by a randomly chosen
function Z, defined as follows. Let X, ((v, w) € VX aUf)
be independent identically distributed (i.i.d.) RV’s with

Pr(X,,= 1) = Pr(X,,=0) = 1/2 and set
oy 1 X =1
(0,w) = 0, ifX,, = O0for(v,w)e VX aW.

(4.4)
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Lemma 2: Assume that for some 8 > 0
|6| = max(M, N)(MN)*, (4.5)

and that
IGIH= 1/l lgh<K-L<|E|(MN)™". (46)

Then for any A € (0, 1/8) there exists a constant ¢\ (A, B)
such that for MN = ¢,(A, B):

a) Pr(e(G,Z)<A) < exp{ ¢
b) Pr(e(G, Z) < A for some G satisfying (4.6))

max (M, N)(MN)"};

Sexp{ émax(M,N)(MN)"}.
Proof: Set Z, = &,,N Z7'(1). Since |Z,| =

2, w) €6, Kows WE AN write

e(G’ Z): Ztklmin(l _18k1|_1 2 qu’
k1 (U,W)Egkl
ngll_l' 2 Xow .
(v,w)Eb,,
Define
L a6, T X X, <1-4A,
Y, = (v, w)EB,
0, else.
(4.7)
Clearly,

e(G,Z) =4\ Y 1,.Y,, (4.8)
k,l

and therefore
Pr(e(G,Z) <\) < Pr( DtaYu= %) (4.9)
k.l

For an arbitrary a > 0 and with the abbreviation

Py = Pr( Y, = 0) (4-10)

we can upperbound the right-side expression in (4.9) as
follows:

Pr( > tk,Yk,S%) = Pr(cxp{ —a ) tk,Yk,}
k,! ki1

a))

=< exp ( 2 ) kH[[E exp { —at,,Y,,}.

a
Zexp(—z

Recalling that in this paper the exponents are to the base 2,
we have

l-u<exp(—u)<1-— ifo<su<l.

u
2 b
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Thus if at,, < 1 for every k, [, then

pllE exp{ —at,, Yy} = pl(Pk1+ (1 — py;) exp {_atkl})

<]l (l’kl+ (1 _pkl)(l - %tkl))

k1

= y{(l - %(1 _pkl)atkl)

a
= exp [ 5 2 _pkl)tkl}’
k1

so that

Pr(e(G, Z) <\) < Pr( S Y, s%)
k,l

< exp {_%(_%+ El(l —sz)tkl)},

ifmaxt,, < a”l (4.11)

This bound is good unless there are relatively large &,,. In

fact, setting
a 2 max (M, N)(MN)?, (4.12)

assume that
tk1:|6k1||6_115a_1 (4.13)

To see that in this case (4.11) implies assertion a), notice
that from (4.7) and (4.10) it follows that p,, can be fairly
large only if |&,,| is very small. In particular, for a suitable
constant ¢ = ¢(A),

for every k, .

1
Pu<3g> whenever |&,,| > c. (4.14)
Further, by (4.6),
S 1< cKL|G|T'=o(MN) . (4.15)
k1 |6y |=c

Since 3, 7, = 1, (4.11), (4.12), and (4.15) give

Pr(e(G, Z) <A) < cxp{—%(—%.,.%_ c(MN)_B)}

Sexp{—%}, (4.16)

if MN = ¢\(a, B), proving assertion a) (under the condi-
tion (4.13)).

If (4.13) does not hold, then the bound in (4.11) need not
be valid. We can overcome this difficulty by replacing G by
a suitable “refinement” G’. For this, partition each &, of
size greater than a ~!|&| into sets &,,,, 0 < m <r,,, such
that

¢ <|&ym| < a7'|B] (4.17)
(recall that a~'|&| = (MN)P by (4.5). If |&,,| < a7 |6,

AL

then write r,; = 0, &, = &,,. Define G’ by
(k,1, m), if (v,w) € &y,
G'(v,w)=1{(k,1,0), if (v,w) &b
and G(v,w) = (k, I).
(4.18)
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Then for the (decoding) function

(P'(k, l m) = {1’ if |Gfklm| = |6k1m| - |Gfklm|,
0, otherwise,
(4.19)
obviously
e(G', F) 2 Pr(¢/(G') # F) < e(G, F). (4.20)

By the very same arguments which led to (4.11), we obtain

Pr(e(G, Z) = \) < Pr(e(G’, Z) <)

Sexp{—%(—%+ > (l—pk,m)tk,m)}.

k,l,m
(4.21)

The condition #,,, < a~' is automatically met by (4.17).
Since |&,,| <c holds only in the case when m =0,
|& 0] = |&4/] = ¢, cf. (4.17), the bound (4.15) applies also
for t;,,, instead of #,,. Thus (4.20) implies (4.16) in the
same way as (4.11) did. This proves a) without any addi-
tional condition.

The number of functions G = (f, g) with f: {1,---,M}
- {1,---,M} and g:({l,---,N} — {1,---,N} equals
MM.NV=exp (Mlog M + Nlog N}. This and a) imply
b). O

Remarks

1) The main reason for the Lemma to hold can best be
understood in the special case & = U X V. The number of
functions F: W X ¥ — {0,1} equals then 2™V, which is
much larger than the number NV- M* of functions of type
G = (f, g)- In the “one-dimensional” case the number of
functions F: U — {0, 1} equals 2", which is smaller than
the number NV of functions f: U — 9. In this case one
can of course always choose f = F and get exact reproduc-
tion.

2) Condition (4.5) guarantees that we are sufficiently far
away from the one-dimensional case. In the terminology of
[2], the pair (VX AU, {&}) is a rectangular hypergraph with
one edge &. G = (f, g) is called an orthogonal coloring. It
is of type p, if in & at least (1 — A)|&| different colors
occur. One readily verifies that condition (4.5) implies that
& can be partitioned into two sets &,, &, with |&,||&,| !
— 0 (MN — o) such that &, is of rectangular type in the
sense of [2, sec. 2, pt. IT]. The results there imply that (4.6)
is “essentially” necessary, because otherwise (|Gl =
|&|(MN )P) there exists a G = ( f, g) reproducing all but a
small fraction of elements in & exactly.

Proof of Theorem 1: For a DMDS with generic variables
X, Y, consider the family of sets

Q% v,y = {T7 1 |P(x, ) = Py y(x, y)| =1,

for all (x, y) € X X ¥}.
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Then
Ty ,=U{6:6€Q%y,}, (by(21), (4.22)
P =1 - SR ey
(4.23)
gx'l ¥.n © Gj)? METRS Gj}f %> (by (2. 1)) (4.24)

and therefore 2% 5 ,isa set of subsets of Iy’ o) X Iy a5

that is, (T, o X ﬂ'y nox)> 2k, v,,) 18 @ hypergraph Apply
Lemma 2 to the triple (V, U, &) = (I, ap Iy, x> &),
& € 2% y ,- By (2.3) and the continuity of the entropy
function, there exists a positive function c(n) with
lim, _oc(n) = 0 such that for n = ny(n) :

exp [n(H(X) — ¢(n))] <M < exp [n(H(X) + c(n))],
219], (4.25)

exp [n(H(Y) — c(n))] =N <exp [n(H(Y) + c(n))],
£ |95|, (4.26)
exp [n(H(X,Y) — c(n))] = |6|. (4.27)

Choose 1 so small that
H(X|Y) = ¢(n) >0, H(Y|X)— c(n)> 0.

(4.28)

The inequalities (4.25)-(4.28) imply that for B < Bo(m),
sufficiently small and n = ny(n),

6] = exp [n(H(X, Y) — c(n))]
= exp [n(max (H(X), H(Y))
+ 2,8(H(X) + H(Y) + 2c(n))]
> max (M, N)(MN)*,

which is (4.5). Fix A € (0,1/8), 8 > 0, and choose n and 8
so small that

H(X,Y)—8<H(X,Y) — c(n)
— B(H(X) + H(Y) + 2¢(n)).

Since the expression to the right is smaller than
|f§|(MN )7A, Lemma 2 applied to the class of functions

"2 (G'= (f, &) : (1/m)log Il /| + (1/n) log ligll <
H(X,Y) — 6} yields for e(G, Z, &) £ e(G, Z),

Pr(e(G, Z, &) > A, for all G € §")
>1— exp [—%—max(M, N)(MN)B], (4.29)

and therefore also
Pr(e(G, Z,6) >\, forall & € Q%  , and all G € §*)

>1—(n+1)*1¥exp [— 5 max (M, N)(MN)B}.

Since the right side expression is obviously positive for

n > ny(n, B) suitable, there exists a function F,: I 3|y X
y}fymn {0, 1} with
e(G,F,,6) >\, foralGeg§", 6€Qy,,.

(4.30)
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Define now F: U2 (%" X ¥") — (0,1} by

ny
0, for (x, y) € U (%" X% yny,
F(x, y)2 =1
F;l(x} y)! for(xs y)egXva n>nl’
0, otherwise.

(4.31)

Equations (4.30), (4.22), and (4.23) imply that the error
probability is bounded away from zero, because the sets in
Q2% v, , are disjoint and their elements are equiprobable. We
have thus seen that rates R, R, with R;+ R, < H(X,7Y)
— & are too small if R, < H(X) + ¢(n) and R, < H(Y) +
c(n). There is, however, no point in choosing for instance
R, > H(X) + c(n), because the projection of ?J}‘Y aonY
has rate less than H( X) — c(n). O

Remark: From here it is just an exercise to show the
existence of a binary (universal) function F such that for
every DMDS with H(X|Y) > 0, H(Y|X) > 0 one needs
encoding rates as in (1.1) in order to decode F with small
error probability.

V. PROOF OF THE RESULTS ON F-CODES FOR
SENSITIVE FUNCTIONS F

We have seen in Section III that Theorem 3 is a conse-
quence of Lemma 1 and Theorem 4, while Theorem 2 is a
special case of Theorem 3. Thus we have to prove Lemma 1
and Theorem 4.

Proof of Lemma 1: Consider an arbitrary source F-
code ( £, g, p) of block length #. Our first claim is that it
can be replaced by another F-code ( f’, g’, ¢’) such that

e(f. 8.9 F)=e(f. 8.9 F) (5.1)
where f maps X" into {1,---,N} with
N = llesp "3) (52)
each set
Q= {x:f(x)=i}, (i=1,---,N),

consisting of sequences of the same type and satisfying
d(x, x') = rn, (5.3)

whereas g’ is the identity mapping on %". To verify this,
denote by V,(|%X|, r) the cardinality of a Hamming sphere
in X" with radius 7n (and arbitrary center x, € %"), i.e.,

(1%, 7) = [{x: d(x, x0) < n}|.

Then the sequences x € X" can be partitioned into
V.(1%X|, 7) classes in a successive manner so that each
x €%" is put into a class different from the at most
V,(|%X|, ) — 1 classes which already contain sequences of
Hamming distance less than 7n from x. Subpartitioning
each of these classes according to types we get, cf. (2.2), a
partition of %" into at most

M2 (n+ )™y, (%),7) (5.4)

subsets, each consisting of sequences of the same type and

if x % x’ are in the same @,,
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neither containing distinct sequences of Hamming distance
less than Tn.

Now let (&,,&,,---,&,) be the coarsest joint refine-
ment of the latter partition of X" and of the one defined
by the encoder f. Since clearly

1), ) = exp ()

if 7 is sufficiently small (depending only on |% | and §), it
follows from (5.4) that (5.2) and (5.3) are valid for this 7 if
n is sufficiently large. Defining

f(x)=i, itxed, g(y)=y,
it is obvious that to the encoders f” and g’ there exists a
decoder ¢’ satisfying (5.1). This establishes our first claim.

Since each @, consists of sequences of the same type,
Pj(x) is constant on each @, and thus

e(f,8,9:%)
2 Pi(x)Pr{o/(f(x),Y") % F(x,Y")| X" = x}

xE?X,"

EPX( )|@|

S wr({y: 9'(i, ¥) # F(x, y)}|x)

x€@,
Denoting by ¢ the set of those indices 1 < i < N for which
S w({y:9'(i, y) # F(x, p)}|x)

x€q;

I@ |
(5.5)

=2e(f,8,9; F),
it follows that

| Ue)= 3 pa
ie$ i€
For any fixed n > 0, this implies by (2.4) that
1
PX(U@mJ“)_4

i€$
provided that n = (|%|/4%%). In turn, one gets by (2.5)
that

S e =‘( Ue|ns
i€$,@,c3y, i€}

Zexp-{n(H(X) —g)}

if n=ng=ny(|%X|, ,8).

Consider an i, € ¢ for which |@,| is maximal subject to
@, C Iy ,. Then the last inequality and (5.2) result in

1 1 1 8
;log|éﬂio| Z;log [Nexp {n(H(X) — E)]]
1
ZH(X)—;logIIfH—B. (5.6)
Now a channel F-code (C, ) w1th the requlred properties

(3.8)—(3.11) can be given by C= €, ¥(y)= ¢(ip ). In
fact, (5.6) means that this C satisfles (3.9), whereas (3.8)
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follows from (5.5) and (5.1), for e(C, ¢; F) is just the left
side of (5.5) if i = iy. Of course (3.10) and (3.11) are valid
for C by construction. O

For the proof of Theorem 4 we require two simple
lemmas.

Lemma 3: Let @ be any subset of %" with the property
that d(x, x’) = tn for every x = x’ in &. Let P be an
arbitrary PD on X" and denote by P,(x) the P-probability
of the set of those sequences x € @ which have ith compo-
nent x, Then

—E 3 P(x)B(x) = P(€)( P(€) — maxP(x))r.

i=1 xs%=x"
(5.7)

_Remark: The special case of inequality (5.7) when P is
the uniform distribution on &, is familiar from the deriva-
tion of Plotkin’s [7] bound, cf. Berlekamp (3, p. 311.]

Proof: Consider two mdepen(_ient random sequences
X"=X,---X, and X"=X, - X,l both having distri-
bution P, and define

2_2{1, ifxX"e®,X"e@, X, X,
' 0, else.
Then
izz{d(x",)?"), ifxeeq, Xrea,
=1 0, else,

and therefore

S 3 P(x)R(x)

i=1 x5x'
=EY Z=mPr{X"€@, X" €@, x"# X"}). (58)
i=1
But
Pr{X"€®,X"€@,X"# X"} = Y P(x) Y P(x)

xeQ

= P(2)(P(@) - l;neaé(P(x)).
O

x' €@\{x}

Thus (5.8) gives (5.7).

Lemma 4: Consider a directed graph with vertex set V.
Denote by d,(v) the d (v) resp. in- resp. out-degree of a
vertex v € YV, i.e., the number of edges leading to resp.
starting from v. Let the vertices v € Y have weights u(v)
= 0 such that for some £ > 0,

k(v)) = éu(v,) (5-9)

if there is an edge from v, to v,. Then if d,(v) < k for
every v € Y, and d (v) =/ whenever d (v) > 0, we have

S o) = 3 o).
veY

v:d,(v)>0

(5.10)

Proof: Summing the inequalities (5.9) for all edges, we
get

2 d(v)p(v) =¢ X d,(v)u(v).
veV =N
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By the assumption on the degrees this yields

I3 wo)<é¢k Y p(v).
veVY

v:d,(v)>0
O

A sketch of the proof of Theorem 4 is the following. Given
a “good” channel F-code (C,{), we shall consider the
ordinary channel code (C, ¢) where ¢ is a maximum
likelihood decoder. Supposing that the codewords x € C
are equiprobable, we shall look at the (posterior) probabili-
ties e( y) resp. &( y) that y resp. ¢ makes an error if y is the
received sequence. The main idea will be that if e( y) is
small but &( y) is not, then sufficiently many sequences y’
with d(y, y') =1 can be found such that either y has
much smaller probability than y’ or else e( y’) is large and
the probability of y is not much larger than that of y’. Then
Lemma 4 will enable us to conclude that the set of se-
quences y € Y" with large é( y) must have a small proba-
bility.

Formal Proof of Theorem 4: Consider an arbitrary
channel F-code (C, ) as in Theorem 4, i.e., satisfying
(3.12), (3.13), with 0 < e =1/4 to be specified later. De-
fine a PD Q on @ X %" by

O(x, y)= IGIW(y|x) x€C,yEY”

(5.11)

and denote by Q(y) resp. Q(x|y) the corresponding
marginal resp. conditional probabilities, i.e.,

N Q(x y) Wn(y|x)
Q(x|y) Q(y) 2 W"(ylx') (513)
x'el

Let : Y" - © be a maximum likelihood decoder, i.e., let

$( ) equal an x € © maximizing Q(x|y). We denote by

e(y) resp. &(y) the Q(-| p)-probability that ¢ resp. ¥
makes an error, i.e.,

e(p) £ 0({x: ¥(y) # F(x, »)}| »),

()= 0({x: () # x}|y) =1 — maxQ(x| y).
(5.15)

(5.14)

Then by definition,

e(C,¥; F) = 0({(x, »): ¥(») # F(x, y)})

2 0(»)é(y).

yeyr

O({(x, »): ¥(y) # x})
> 2(y)é(y).

yeEY”"

(5.16)

é(C.¥)

(5.17)

On account of the assumption &(C, ¥; F) < ¢, the identity
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(5.16) implies that the set

B2 {ye(y) <} (5.18)
has probability
O(®)=1— |e. (5.19)
Now consider an arbitrary y € % for which
é(y)=e(y)+39, (5.20)

where 8 > 0 will be specified later. We claim that there
exist at least (87n/4) indices i € {1,---,n} such that
changing just the ith component of y, one can get se-
quences y’ for which either

o(y) <£0(y),

Q(y)
20

where £ is a small positive number to be specified later. To
establish this, we apply Lemma 3 to the set

&(y)= {x:¥(y) = F(x, y)} C X",

and the distribution Q(-| y) on %X".
Notice that by (5.14), (5.18), and the assumptione < 1/4,
we have

Q(@(y)ly)=1—e(y)=1- e 2%;
further, using (5.20) and (5.15),
0(€(y)ly) —maxQ(x|y)=1—e(y) — (1 - é(y)) =8

Thus Lemma 3 gives for

(5.21)

yes, oy)=é—— (5.22)

(5.23)

P(x)2 Q({x: x € @(y), ith component of x is x }| )
(5.24)
that
- 2 2 P(x)P(X)>—
i=1 x5x’
Let §( y) be the set of those indices i € {1,---,n} for
which
> P(x)P(x') >—. (5.25)
x5x’
Then the previous inequality implies
dtn
1$(¥) = (5.26)

Fix an arbitrary i € §( y). By (5.25), there exist elements
x; 7 x, of % such that

P(x)P(xy) =,

o
4x 2

Let @, resp. @, denote the set of those sequences x €
@( y) the ith component of which is x, resp. x,. Since @,
and @, are subsets of @( y), we have

F(x,y) =F(x', y),

where n £ (5.27)

wheneverx € @,, x’ € &,.
(5.28)
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Further, (5.27) and (5.24) give that
(@) y)=n, Q(&)y)=n.

Denote the ith element of y by y,. By (5.28) and our
assumption that F is sensitive, cf. Definition 2, there exists
a y, € % such that for the sequence y’ € %" obtained from
y by replacing its ith component by y,, we have

F(x, y) s F(x', y),

(5.29)

wheneverx € @, x' € @,.
(5.30)

This means, in particular— cf. (5.14)— that
e(¥) = min (Q(&,|»"), (8,1 »))-
Now suppose that for the present y’ (5.21) does not hold.

Then writing W,,,, = min_W(y|x), from (5.13) and (5.29)
we obtain

(5.31)

2 Wi(y|x) &2 W yx) W

N — xE€Q, x€@,
oY) = 51003 G100
= Wi Q@] ) = EnWpy

and similarly

Q(@Zl y’) = gTWVmin'

Now choose

>

Je
§ ;ﬁii;;. (5.32)
With this £ upon substituting the last bounds into (5.31)
we get that if (5.21) does not hold, then e( y") > g, i.e,
y’ & B. Further, since Q(&,U @,| y) = 27 by (5.29), using
(5.12) and (5.13) we also have

2 Wr(ylx)
o )<Q(@,u@2|y)Q( )= x€@,ue,
yr= 27 y 29|C|
2 wr(ylx) wr(y
x€Q,Ua, ,Ee (y]x) _ Q(.V')
2n|e|Wmin 27)|@|Wmm 27’Wmin‘

On account of the choice (5.32), this proves the inequality
in (5.22).

Thus we have established our claim stated in the para-
graph containing (5.20) for the case when F is sensitive and
W(y|x) > 0 for every x € X, y € ¥. If Fis highly sensi-
tive, then replacing the ith component y, of y by any
¥, # »,, for the resulting y’ (5.30) holds. If W satisfies the
weaker hypothesis postulated in Theorem 4 for the case
when F is highly sensitive, this y, can be chosen so that
W(y,|x,) and W(y,|x,) are both positive (for W(y,|x,)
and W(y,|x,) are positive by (5.29)). Then the previous
argument applies word for word, with the only difference
that now W, should stand for the smallest positive ele-
ment of the matrix W.
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To complete the proof of Theorem 4 we apply Lemma 4
to the graph with vertex set %", drawing an edge from y to
y’ if and only if p € B, y satisfies (5.20), and y’ is obtained
from y in the same way as above for some index i € §( y).
Let the weights be defined by

o(y),

p(y)=4_L
2‘EQ(J’),

Then (5.9) holds according to (5.21), (5.22), and the out-
degree of each y € %P satisfying (5.20) is at least §tn/4 by
(5.26). Of course, every y € Y" has in-degree less than
n|%|. Thus (5.10) gives

ify €,

ify g D. (5.33)

O({y:y €D, é(y) =e(y)+8})

_ 9]

<6£|Gy|
~ dtn/4 -

ot °

1+

Q(G?J"\%))
2/e

where the second inequality follows from (5.19). Substitut-
ing the value

e _ 4P

W,

g B T'Wmin

cf. (5.32), (5.27), we get
O({y:iy €D, &(y) <e(y)+8))

A 2 2
ko K=—4|—2%|—|6g|.

€
< K35 (5.34)

min

On account of (5.16), (5.17), and (5.19), this results in

eC.¥)= 3 2(»)é(y)

yeEY”
< Q({y: é(y)=e(y) + 8})
+ 2 o(y)e(y)+8)

yeEY"

SK§+ Je +&(C,y; F) + 8.
Thus, choosing the so far unspecified 8 > 0 as § = K '/%!/6,
we have proved that
e(C,y)<2K'P/+ ¢ +e, ife(C,y; F)=<cg,
(5.35)
where K is the constant of (5.34). a

VI. DiscussioN

For a discrete memoryless double source we have shown
that in order for a decoder to determine a function



408

F(X", Y") of the length-n messages of the component
sources, for “most”—even binary valued— functions F,
the encoders of the component sources must have as large
rates as if (X", Y") were to be determined. Next, we have
considered specific functions F such as the joint type or the
Hamming distance of X” and Y” or just the parity of the
Hamming distance. For a class of functions F containing
the mentioned ones we have shown that for determining
F(X”", Y™) in the knowledge of Y”, the X-encoder typically
must have as large a rate as for determining X" itself. This
implies that all achievable F rate pairs must satisfy

R, = H(X|Y), R,= H(Y|Y).

The problem of describing the achievable F rate region (for
either F in the mentioned class) remains open unless the
double source has independent components or is binary
symmetric (in the latter cases the above necessary condi-
tions are also sufficient).

Notice that the problem of F-codes is outside the usual
framework of rate-distortion theory except for “compo-
nentwise” functions F, cf. (1.4). Still, a complete descrip-
tion of the achievable F rate region, e.g., for F(x, y) = P, .
may be as hard a problem as to determine the achievable
rate region for reproducing X”,Y" within a prescribed
distortion measure. We draw attention to the fact that in
analogy to our Theorem 3, for the latter problem it is also
the projection of the achievable rate region to the R,-axis
which could be determined (Wyner-Ziv, [10}).

As a tool for proving our results concerning F-codes we
have considered also channel F-codes. From a mathemati-
cal point of view the latter are matural counterparts of
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source F-codes. One could also define the F-capacity of a
DMC in an obvious manner. Under the conditions of
Theorem 4 one then easily gets the corollary that the
F-capacity equals the ordinary capacity. We do believe that
Theorem 4 and this corollary are also of independent
interest and that communication situations can be found
for which the concept of F-capacity and these results are
relevant. This, however, still remains to be explored.

REFERENCES

R. Ahlswede, “Channel capacities for list codes,” J. Appl. Prob., vol.
10, pp. 824836, 1973.

R. Ahlswede, “Coloring hypergraphs: A new approach to multi-user
source coding,” pt. I, J. Comb. Inform. Syst. Sci., vol. 4, no. 1, pp.
76-115, 1979, pt. 11, J. Comb. Inform. Syst. Sci., vol. 5, no. 3, pp.
220-268, 1980.

E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-
Hill, 1968.

1. Csiszar and J. Korner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. New York: Academic, 1981.

1. Korner, “Some methods in multi-user communication: a tutorial
survey,” Information Theory, New Trends and Open Problems, G.
Longo ed., CISM courses and lectures no. 219. Wien: Springer,
1975.

J. Korner, personal communication.

M. Plotkin, “Binary codes with specified minimum distance,” IRE
Trans. Inform. Theory, vol. IT-6, pp. 445-450, 1960.

C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower
bounds to error probability for coding in discrete memoryless
channels,” pt. I, II, Inform. Contr., vol. 10, pp. 65-103, 522552,
1967.

D. Slepian and J. K. Wolf, “Noiseless coding of correlated informa-
tion sources,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 471480,
1973.

A. D. Wyner and J. Ziv, “The rate-distortion function for source
coding with side information at the decoder,” IEEE Trans. Inform.
Theory, vol. IT-22, pp. 1-1, 1976.

(]
2]

3]
4]
(5]

6]
{n

(8]

1]

(o]




