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: The paper contains three improvements of Shannon’s theory of secrecy
systems [17:

1. By a very simple construction we obtain ciphers which are with respect
to natural security measures as good as Shannon’s ‘‘random ciphers”’.

2. For this construction it is unnecessary to assume that the messages are
essentially equally likely. Shannon made this assumption in order to make his
“random cipher” approach work.

3. Furthermore we construct optimal ciphers under the rather robust
assumption that only a bound on the entropy of the source is known to the com-
municators and that the cryptanalyst is still granted to know the message sta-
tistic exactly.

Finally we construct worst codes for the binary synunetric channel and
emphasize the importance of this “dual coding problem” for cryptography.

1. The model and an outline of the results

C. E. Channon presented in [1]amathematical theory of secrecy systems.
We now briefly describe his model and refer to the original paper for the A
reader interested in the heuristic behind the assumptions made.

We are given a source of messages (9N, P), where SN = {1, ... , M}
and P = (Py, ..., P,,) is a probability distribution on 9.

A key space € = {c;, ..., ¢} is a set of bijective mappings (the keys)
¢, :M — {Ey, ..., E,}, the set of cryptograms, which can be identified

with 9 via isomorphy. Thus the ¢/s can be viewed as permutations on
{1,..., M}.

Let @ = (@, -..,Qk) be a probability distribution on @. The pair
(C, @) is called cipher. ' :

The secrecy system operates as follows. (€, P) and (©, §J) are independent
random experiments. First a key is selected according to (€, @) and sent to
the receiving point over a secure channel. Then a message is produced and
the sender applies the key chosen to produce a cryptogram. This cryptogram

* Presented at the International Symposium on Information Theory, Ithaca,
N.Y., Oct. 10-14, 1977. '



302 AHLSWEDE: REMARKS ON SHANNON'S SECRECY SYSTEMS

is transmitted to the receiver by a noiseless channel and may be intercepted
by the enemy cryptanalyst. The receiver can reproduce the message, because
he knows the key, which is an invertible transformation. Since the cryptanalyst
may eventually find out,the message distribution anyhow, it is assumed right
away that he knows it. For the same reason it is also assumed that he knows
the cipher (€, @). The identity of the key being used is the only information
which is supposed to be unknown to him. The security of the system results
from the fact that the cryptanalyst has several options for the key which might
have been used. The main problem in this model is now to find subject to
constraints, such as a limitation on the size K of the key space, ciphers which
guarantee for a given source maximal security. To make this problem mathe-
matically tractable a quantitative notion of security has to be introduced.
Shannon used as criterion the average uncertainty about the message:

Let X, Y be random variables on 9Ii, resp. {&}, . .., &} (for simplicity
we set {&,, ..., E,,;} = Il in the sequel) with joint distribution
(1.1) PriX=m,Y=m)=P,- 2 Q.

iicy(m)=nm’
Pr (X = m) = P, is the probability that message m is to be sent. The crypt-
analyst intercepts the cryptogram Y = m’ with probability Pr(Y = m/’|
X = M), if m was sent. Observing Y the average uncertainty about X for
him is the conditional entropy H(X|Y). Measuring the “size’” of cipher (C, @)
by H(Q) Shannon suggested in [1] the study of the function
S(P,a) = max H(X|Y).
(C,Q): HQ)<~

Another, but closely related measure of security was used by Hellman in [2].
He considers the average number of “‘spurious decipherments”.

As a third secrecy measure one can consider the cryptanalyst’s error
probability in deciding upon the message sent. (During the presentation of
this note we learnt that other fidelity criteria have been investigated in [5]).
For given P, €, @ the probability to decrypt correctly is given by

(P, € Q)= 2> max Pr(¥Y =m' X = m),
m €M meon
where it is assumed again that the cryptanalyst uses the (best possible) max-
imum likelihood decision rule. _

Considering this secrecy system, we address ourselves to the following

questions.

1. Can good ciphers be constructed explicitly ? ,
2. Is the hypothesis of essentially equidistributed messages (made in [1],
page 691) necessary? '
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3. How can one deal with sources whose statistic is not known exactly ?
(Robustness).

In Section 2 we give as an answer to question 1 a very simple construction
of é cipher which is with respect to any security measure as good as Shannon’s
“random ciphers”. Moreover, the construction gives also an answer to ques-
tion 2: the hypothesis of essentially equidistributed messages is completely
unnecessary. It was needed in [1] to make the “‘random cipher” approach
work. Since for many stochastic processes the AEP-property does not hold,
one should tryv to avoid this hypothesis.

The construction in Section 2 leads to almost optimal, however, not
strictly optimal ciphers for all distributions P — (Py,...,P,) on the mes-
sages. In Section 3 we make an attempt to construct best ciphers with respect
to the error probability criterion. The only results of some general nature is
Lemma 1. Tt helps for the construction of those ciphers. The approach gives
satisfactory insight only in the case of two keys.

With respect to question 3 we suggest to make Shannon’s model more
robust in the following sense: We completely drop the assumption that the
message statistic is known to the communicators and still grant the crypt-
analyst that he knows it. The performance of a cipher depends decisively on
the entropy H(X) of the source. If for instance the entropy is 0 and therefore
all probability concentrated on one message, the cryptanalyst just votes for
that message and no secrecy is possible, no matter how the cipher is chosen.
‘random ciphers” Shannon derived for a known source (9N, P) with
the additional hypothesis of equidistribution on a large probability subset of
messages the bound

H(X|Y)>log K + H(X) — log M.

In Section 2 we see that this bound is very poor for a general X and good
only if H(X) = log M, that is, the source is compressed. The reason for this
poor performance of random ciphering is due to the fact that keys are chosen
at random from all permutations on 9 and therefore small probability messages
are exchanged with high probability messages. In our robust model in Section
4 we permit all source statistics X with entropy H(X) > H, We show that
with one cipher one can achieve

H(X|Y)>logK + H, — log M
for all X with H(X) > H,.

Moreover, this bound is tight for the class and thus finds its natural place.
~ Finally, as a first contribution to the dual coding problem we construct
worst codes for the binary symmetric channel in Section 5. It was already
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emphasized in [2] that the problem of ciphering is in a sense dual to the prob-
lem of coding. Here the “code” is given and we look for channels subject to
constraints for which this code is worst. There is, however, a noticeable differ-
ence between the two problems: whereas good codes are hard to find, worst
codes can be constructed explicitly for the binary symmetric channel (BSC)
as we shall show in Section 5. It therefore seems to be unnecessary to escape
to random choices of secrecy systems unlike the situation in coding theory
where random coding is often the only method to quarantee at least the
existence of codes with certain parameters.

2. A simple cipher for Shannon’s secrecy system

Let (9N, P) be a message source, where Jil = {1,..., M} and P =

— (P,,.. , P, is probability distribution on JN.

We shall present a cipher with K keys ¢, . .., ¢x, which is very good
with respect to both security measures defined in Section 1. If K > M one
can choose the M keys c(m)=m + 1 mod M (¢ =1,..., M) with equal

probability and then for this cipher H(X) = H(X | Y), where X, Y are defined
as in (1.1). Therefore we can always assume K < M. We also consider here only
canonical ciphers, that is, ciphers whose keys are equiprobable. In [1] (page
691), and in [2] (page 6) ciphers were also assumed to be canonical. This
restriction does not seem to be severe, but this has to be proved. We call a -
cipher (C, @) regular if for all m € II: ‘

(2.1) H{em)1 < i < K| = [{e;¥m)|1 < i < K} = K.

We define now a simple regular cipher for the given (I, P), where we assume
without loss of generality that '

(2.2) P,>P,>P,>...> P,
We write M in the form

(2.3) M=K -1l+r, 0<r<K
and we define K keys ¢y, ..., ¢,y as follows

Kj + ((t + i — 1)mod K) +1 if m = Kj + ¢ with
0<j<l—2 1<t<K
K(l—1)+((t—{—i—1)modK+7‘)+lif »

m=K({—1)+¢t with 1 <t<K +r.

(2.4) c/(m) =

These transformations map the blocks of messages
B,={1,...,K}, B,—{K+1,...,2K},...,




AHLSWEDE: REMARKS ON SHANNON’S SECRECY SYSTEMS 305

B, ={KQl—2)+1,....Kl— 1)}, B={K(I—1)+1,...,Kl+ 7}

onto themselves. Obviously (2.1) holds and the cipher is regular.

Let € = {cq ...,cx_1} and let @ be the equldlstrlbutlon on €. Then
(€, @) is a regular canomcal cipher.

If the cryptanalyst intercepts a cryptogram m’ ¢ dl, then with respect
to the error probability criterion the best. decoding rule (maximum likelihood)
is to vote for

Kj+ 1, iftm"€B;,; and 0<{j<{l—2
CKj 41, if m’E{_K(l——l)—}-l,...,Kl}, resp. for
K(l—1) +¢ if m" =IK +¢t— 1 and 2<t<r+1.

- Then the messages {Kj+1]0<j<?— 1)} are always decrypted cor-
rectly, the messages {K(I — 1) +-¢|2<t<r + 1} are decrypted correctly

with probability —IIE ;and all other messages are always decrypted incorrectly.

Therefore the error probability 2 for this cipher can be expressed as

(2.5) )‘Zl—‘Pl—PKH—---—PK(1—1)+1“‘
1 1
— —Pripro— . ——P, .
| % L Ke-D K KUt
Therefore

A2 Pyt oo+ Pr) + (Prya + oo+ Pog) o+ (Prgyan 4 -« +

K1
+ Pru-1y) + (Pxg-n+2 + - - - + Pryiysrs) + (P Ku—D+ri2 T - .. Priiy).

This and (2.2) imply
(2.6) A (K —1) (P + Py + ... + Prgoyy 4

1 1
+ }{“P Ka—1+2+ -+ -K—P Ki—~1)4r-+1)

and (2.6), (2.5), and again (2.2) yield
2> (K —1)(1—24—P)
and thus

ZZK_I

(1—2Py).
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Since the cryptanalyst can always vote for message 1 € I, obviously also
A<1-—-P

K—1

must hold. This shows that for large K, A > (1 — P;) is close to the

“optimum” 1 — P;.

In summary we have

Theorem 1. For the cipher described in (2.4) the decrypting error proba-
bility 2 satisfies
| K —1

(1_Pmax)g)‘£1_Pmax’.

where P, .. = max P .
medn

We consider now the entropy criterion H(X | Y).

In [1] Shannon assumed that the set of possible messages I can be
divided into two groups: one group of high and fairly uniform probability,
the second of negligibly small total probahility. If the high probability group
has cardinality N, then we have H(X) ~ log N. Using a cipher selected at
random Shannon gave for this situation the bound

(2.7) H(X|Y)>log K + H(X) — log M.

Note that (2.7) trivially holds for every regular cipher, without any assumption
on X. It is amazing that a better result can be obtained by evaluating H(X | Y)
for our simple cipher.

We derive first a bound by staundard mampulatlons of entropy quantities,
which is already better than (2.7). Then we show that for (also infinite) discrete
probability distributions satisfying the rather natural assumption

(2.8) P, <}{_ (1=1,2,...).

H(X | Y) is very close to log K.

Notice that in addition to (2.8) no equidistribution property will be
assumed and the result is essentially best possible, because always H(X | ¥) <
<log K. Also, the hypothesis (2.8) cannot be weakened significantly. If P; = 1/2
for some 7, for instance, the cryptanalyst can always vote for 7,0 and thus
keep H(X | Y) significantly smaller than log K.

In order to give the first bound we define a random variable Z with /
values and distribution
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K
PI'(Z :3) = Z-PK(]'_D_H fOI‘j =1,... s l — 1, and
t=1 '
K+r
’ t=1

Further we define random variables X i 7 =1, -+ +, 1 — 1 with distributions

. P...
PrX;=K(j—1)+1)= K=+t =~ 3 4 -~
r( j '(.7V ) + ) PI‘(ZZj) _g <

Finally we define a random variable X ; with distribution

Pr(X,:K(l—1)+t):i§;’(<(Z—’“1:)Ll’), 1<t < K47

We shall prove

Theorem 2’. For the cipher described in (2.4) the cryptanalyst’s uncer-
tainty H(X | Y) satisfies ’

K+r

l .
(210)  H(X|Y)> SPr(Z—=j)H(X,) — Pr(Z = I) log
=1

Proof. We use H(Y |X)=logK (regularity), H(X | Y) + H(Y) =
= H(X) + H(Y | X), and the grouping axiom of the entropy function to get

{
(211)  HX | Y) + H(Y) = H(Z) + 3PrZ = jH(X)) + log K.
=

Since Y is equidistributed on the blocks By, ..., B _,

i
H(Y) < HIZ) + 3 Pr(Z = j)log K + Pr(Z = ) log (K 4+ 7).
=1
This and (2.11) imply (2.9), which in turn yields (2.10).
Now we permit 9 to be infinite. Then there is no last block, that is,
[ = co. Otherwise our cipher is defined as before and (2.9) takes the form

(2.12) H(X | Y) = 3Pr(Z = j)H(X,) — H(X | 2).
| = ,

Next we prove

Theorem 2.2 Let K be the number of keys.

? Originally we derived the bound log K — 7. Simplifying our proof, 1. Csiszér
obtained the present bound.

4*
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Suppose that (P, P,, . . .) is‘a discrete message distribution with
1
—>P, foric{l,2...}.
=P i € { }

then for our simple cipher
HX|Y)>log K — 1.

Proof. By (2.12) it suffices to give a lower bound on H(X | Z). For this
we write Pr(Z = j) in the form

(2.13) Pr(Z = j) — Ki where 0 < & < & < . .

Let us look at the first block. Since its total probability equals Pr(Z = 1) =
L and since the individual probabilities are smaller ‘chani by the mono-

K=
tonicity properties of zlog «

1

HX|Z=1)Pr(Z=1)> %= log K'—*,
By the monotonicity of the P,’s
1 ., 1
PK+ISK81K _-K1+81 ’

and repetition of the previous argument gives

1
K+

HX|Z=2)Pr(Z=2)>—((1 4+ ¢ +&)logK — 1.

By reiteration therefore
= 1
(2.14) ' HX|Y)> > E((l—{—ej_l—ej))logK»
j=

(with the convention &, = 0).
Of course also

= 1
121 K

(2.15) =1.

These two relations imply

(2.16) H(X|Z)>1ogK — 3 EL_I-{—;L_Hog K.
j=1

e
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Since for natural logarithms log x < — 1, we have that

(ej — &) log K < Kei—%i—= — 1,

which is equivalent to

g =t K_l( 11y
Kei S(og ) Kei—1 Ke

We can conclude that

and the Theorem is proved.

3. On the construction of optimal ciphers

The construction of best ciphers with réspect to the probability of error
criterion furnishes an interesting combinatorial extremal problem. Our only
result of a general nature is Lemma 1 below. It is shown for the case K — 2
and for canonical ciphers how this lemma can be used for the construction
of ciphers.

For m, m” € I and a cipher (€, Q) we say that m and m’ are connected

and write (m, m’), if there exists a ¢ € © with m’ — c(m). (m, m’) will mean
that m and m’ are not connected.

We mention again that for regular canonical ciphers a best decrypting
rule for the cryptanalyst is, after having intercepted m’, to vote for a message
m of largest probability among those connected with m’.

Let (O, P) with P, < P, <...< P,y and a cipher (C, Q) be given.
Since we are concerned only with canonical ciphers in this section we write
simply € instead of (@, Q). We denote by D, (m=1,..., M) the set of ele-
ments decrypted into m.

FormE{l,...,M} we define
To(m) = {m’ €| m’ € Dy, (m, m")}
and
Oc(m) = {m’ €I | m' § Dy, (m, m")}.
Denote by m(€) the smallest m € 9 with I,(m) == g.

Lemma 1. There exists a cipher @, which is optimal among the regular
canonical ciphers, such that
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a) [ Io(m(©) | < [o(m(Q)) + 1] < ... < [{(M)],
qnd |

b) for any 7, m; @ > m; either Io(m) D Le(m) or g == Og(ii) < Og(m).

Proof. Denote by & the set of all optimal regular canonical ciphérs on
{1,...,M}.

Let m; = max m(C) and define

. cea
Q(m) = {CeR | m(C) = my, | Lo(m)] = min [Iy, (my)}.
: . € m(CY=m,
Let m, = ml + 1, mg=my, +1,... ,my g =my_, +1=m + M — 1.
We define
R(my, my) = {@ € &(my) || Io(my)| = min |I@,(m2)|}
‘ € eq(my)
ete. ... until
R(my, my, ...,]lf[):{@EéR(ml. oo M — D) (M) = min ’I@,(ﬂ[)]}i
Ce&(my ..., AM—1)
Obviously, &(m,, ..., M ) s« g.
| We choose a C; € &(my, ..., M). We show that the conditions a) and

b) of the Lemma hold for C,.
a) Assume that for m; < m < m:
(e (m)] > |Le ()] .

Then there exists an m’ § D,; and an m'’ € D, such that

(7, m"), (m, m'"), (m, m"), and (%, m’’) hold.

Replace (i, m’), (m, m'") by (m, m’), (#, m’"). Then we get a cipher €, with

(3.1) - He,(m)] = [Io(m)] — 1,
and_
(3.2) 1o (m)| = I ()| for any m < m.

Since P, < P, < P, it is clear from the definition of the error probability
that the error probability for the new cipher is not smaller than the original
one. This and (3.1), (3.2) contradict the definition of C,.
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b) If Io(m) = ¢ the statement is obviously true. If condition b) does
not hold for @,, then there exist m’, m’’ such that

m' ¢ Iel(m), m' € Iel(m), m” € 0@1(7%)a m” ¢ Oel(m)-

Replace (m, m’’), (m, m’) by (m, m’’), (i, m’). Again the decoding error proba-
bility does not decrease because m’ is decrypted into M anyhow and m' has
now besides the old connections a connection with an element of smaller
probability. '

We use now this Lemma to obtain best regular canonical ciphers for
the case K = 2.

For canonical ciphers € = {¢), ..., ¢,} the incidence matrix T is an
M X M matrix with entries from {0, 1} such that the 4, j-entry of this matrix -
/is 1 iff 7 and j are connected by the cipher, that is iff (7, §).

The incidence matrix § of a cipher € is a unique representation of C.
For the special case K = 2 we look now for best incidence matrices.

For K = 2 any regular cipher € satisfies of course |D,,| = 2 and there
are exactly four connections with the two elements of D,,. Thus we can con-
clude from Lemma 1 (a) that either (w.l.o.g. D, = {M — 1, M})

(M — 1) = [I(M)] = 2 (Case 1)
or A .
(M — 2)) = [To(M — 1) = 1, [Io(M) = 2. (Case 2)

We make the following convention: For matrices T, o we denote by
[T, 1 the matrix

ot= g

where 0 iIs a-zero-matrix.

Case 1. In this case obviously the incidence matrix 7 of € has the structure

j - [jl’ jl]
. 1 1
th 7, =
with 7, ( 1] ] .
Case 2. Since K = 2 and M picks up two connections with D,,, neces-

sarily

I(M — 1) N Iy (M — 2) = g.
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By Lemma 1b) therefore Ogo(M — 1) < Og(M — 2) and hence
U@(M _— l) - OG(M - 2))

because |Og(M — 1)| = |Oe(M — 2)|. We conclude in this case: 7 has the
structure (w.l. o. g. [y(M — 1) = {M} and O(M — 1) = {M — 2})

: j = [7’ jz]
1 1 0
with 7, = (1 0 1)

0O 1 1

By iteratively applying the above argument we get the result:

Theorem 3. For K = 2 and arbitrary M > 2 there exists an optimal
regular canonical cipher of the form

[jex’ .}52’ cee jsf]’ where ¢,...,¢ € {1, 2}.

For small values of M there are the following possibilities:

M=2:9=79

M=3:7=1

M=4:7= [}l

M =15:7="T[h %] or [Jo Tl

M=6:7=[hT hlor [} ]

M="7:7=1% Tl or [} ] Tl or [Ju Fu Tl

By a suitable choice of the source probabilities P = (Py, ..., P,,) one
can show that all these cases occur as best incidence matrices. We show
now that for K = 2 nothing is gained if we drop the supposition of regularity.
This can be readily verified as follows:

We can assume that [D,,| = 2, because otherwise M is doubly connected

with one element m’ say, and the cipher can be improved by replacing any
(M, m""), M, m"" == M and one connection (M, m’) by (#%,m’) and (M, m'").

If there is an m with |Io(m)| = 2 we are in Case 1: §,. Otherwise we have
two elements my, my = M, P, > P, , with [Ig(m,)] = [Io(m,)] =1 and
Io(my) N Ig(my) = @. Then either we are in Case 2: G, or we have for m’, m’’ § D,
(my, m’) and (m,, m'"). Since there is also an m* € D,, with (m,, m*) we can
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replace (m,, m*) by (my, m*) and (my, m'") by (my, m’’). The error probability
does not decrease. We are again in Case 1: 7.

Remarks. These considerations might suggest that for X > 2 there is -
a fixed number f(K) of incidence matrices, independent of (91, P) such that
optimal incidence matrices can be built from these few basic matrices. Unfor-
tunately, already for K = 3 this conjecture is false. Also for K — 8 there
are non-regular ciphers which are better than best regular ciphers.

However, a result similar to Theorem 6 can be obtained for arbitrary
K if one imposes a kind of convexity condition on the probability vector
P = (P, ..., Py). More precisely, if P, < ... < P,, and

P, ,+ P
ng‘ m—1 5 m+1
for any m € {2,..., M — 1}, then there are two incidence matrices "}K , I
such that a matrix of the form
/A A AN (AR )

represents a best reguar canonical cipher. This was proved by Blome and
Jusek in their (unpublished) diplom thesis. -

4. A robustification of Shannon’s secrecy system

From the definition of regularity of a cipher one can see immediately
that every regular canonical cipher satisfies

H(X| Y) = H(Y|X)+ HX) — H(Y)
= log K + H(X) — H(Y)
>log K 4+ H(X) — log M
for all message variables X, and therefore also
HX|Y)>logK + Hy—log M

for all message variables X with H (X) > H,. We show now that this hound
is essentially best possible for canonical ciphers:

Theorem 4. For every canonical cipher (@, Q)on I = {1,..., M} with
K keys and for every Hy, 0 < H,<< log M, there exists a message variable X
with values in O, H(X) > H,, such that
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(41) H(X|Y)>[log K + Hy— log M1* + log % 4 h(e) + ¢ log K,
&

1
where 0 < ¢ <§ and [f]* = max {t, 0}.

For the proof of Theorem 4 we need an auxiliary result, which is readily
obtained by using Feinstein’s maximal coding idea for the construction of a
code with code words from a prescribed subset ol = IN.

Recall that for a message source (M, P) and a cipher (€, @) we defined
random variables X, ¥ in (1.1). Now we consider

Wm' | m) =Pr(Y = m'| X = m); m’, m € 9,

as a transmission matrix of a “‘channel” associated with (91, P) and (C, Q).
We use again the notion of connectedness of two messages, which was intro-
duced in Section 3.

Lemma 2. Liet W be the transmission matrix associated with a canonical
cipher on I = {1,..., M} and let R < I be such that oA > (1 — 8) M,

] . .
0 <7 6 < 1. Then for any e, 0 < ¢ <~ — there exists an e-code {(;, D,)|i =

== 1,..., N} for Wsuch that {u,|i=1,...,N} c Aand N = i(lﬁé)ﬂ[],
[t] is the integral part of ¢. K -
Proof. Let {(u;, D;)|i=,...,N} be an e-code with {u,[i=1,..., N} CoA,

such that w; is connected with every element of D; and such that the

N
code cannot be prolonged in ofl. Then for all u €l W (| D;ju) > & and
: i=1 '
N N .
therefore | |J D,| K > e|of]| - K. Hence, N - K > |U D, > e lok| and
i=1 i=1
. :
N>—(1—-06) M.
=7 )
Proof of Theorem 4. By iteratively applying Lemma 2 we can construct

e-codes {(uf, D}y |¢=1,... ,N}fort=1,...,T with all w; distinet provid-
ed that

T. 2 (1—8)M< oM.
K

This is satisfied, if 7 g—»é—él(. Define now a random variable X with

distribution &(l —
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1
PrX =ul) = —_
( ’)_ NT
Let Y be the corresponding output variable with respect to W. By the
gfouping axiom for the entropy function and by Fano’s Lemma we get

(42) H(X | Y) <logT + h(e) + ¢log K.

Actually, Fano’s Lemma applied directly would give only a term elog N,
here we can do better because every m’ € I is connected with at most K w's
in a code.

Now we choose 7' as small as possible under the conditionlog (7' - N)>> H 0

Clearly, log 7 << H, — log—]% — log (1 — §) — log M + 1and (4.2) vields

for 6:~1—
2

HX|Y)<H,+ log K — log M log—2~ + hie) + clog K + 1
&
which is (4.1).
3. Worst codes for the BSC

The result presented below is for binary symmetric channels with trans-
mission matrix W = 18‘8 1 ¢ . } , 0<e gé , 1ts extension to general DM(’g
seems to be an interesting mathematical problem.

Coding theory has heen concerned with the problem to find (n, R)-
codes, i.e., codes of block length n and rate R, for which the average error
probability is small. Nobody found for arbitrary n and positive rate codes
which are optimal in the sense that error probability assumes its minimuam.
This is a very hard combinatorial extremal problem and has led to numerous
investigations in probabilistic and algebraic coding theory.

We study here the dual problem: find (n, R) codes with distinct code
words for which the decoding error probability is maximal. More generally
we also permit an arbitrary message statistic rather than just the equidis-
tribution.

The problem then takes the following form: Given a probability distribu-
tion P = (P, ... » Pya) on 2" elements, find a bijective map U : {1,...,27) —
— {0, 1} such that : |

2n

(5.1) | A(P) = max 2P - WHD,uy)
. ®

=1
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is minimal. Here u; = U(7); W(+| ) denotes the n-fold product of the trans-
mission probability function of the BSC, and & = {D,, ..., D,.} is a decod-

ing rule.
We describe now an explicit solution to the problem. W.lo.g. we can

assume that

P,>P,>...> P,.

Let us order the vectors v in {0, 1}" primarily according to the number of

components with value 0 and secondarily lexicographically, where 1 precedes

0. Thus

~
Vp Uy > U > vn+22...zv(%)Jran...szn.

Theorem 5. Let P = (P, ..., P,) be a probability distribution on the
messages, P; > P, ,,-then the encoding U(i) = v, for ¢ =1,...,2" min-
imizes the probability of correct decoding A, (P) (as defined in (5.1)).

' For (n, R) codes one gets the solution to th above problem by choosing

P‘:—l—v for i =1,..., N = [¢"®].

H

For the proof of Theorem 4 we need an extension of a result of Harper

[3]. Let us denote by S («") the Hamming sphere in {0, 1} with center
2" € {0, 1}" and radius r.

Then we have:

General isoperimetry theorem. Let {r,}L, be a decreasing sequence of
integers, then for any distinct «f, ..., 2% € {0, 1}

N N
| U Sri(x?l > l ‘Ul Sr,-(vi) ]
= =

Harper [3] proved this in the case r,=71,t=1,...,N. We show here
that the given general case easily follows from his result.

Proof. Fix any j€{0,...,N — 1}. Then for any ¢ € {1,..., N —j}
¢ << N — j holds and by the monotonicity of the radii we have for those %

P> TN and |Sr(@f)| > 18y _,(&h)] -
Hence, :

!
> max
Je{o, -, N-1}

N .
U Srdal)

1 1

N—j =
U Sry_;(x?) |-
=1




iy
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By Harper’s theorem the expression on the right-hand side is minimal
if 2t =¢, for i =1, , N. Furthermore it can easily be verified that
A _

N_ ‘ -
Uj S,y 1( v;) equals {v,. "Ut,-} for a suitable tj.

i=1 N—_/'
Therefore, there is a j§°€{0,...,N — 1} such that | Sy ()
N—j i=1
contains all the sets U 8, (v), 7€ {0, . N — 1}. We conclude that
i=2

o) o

Jj=0 \i=1

N
U S"’i(vi)
i=l1

which proves the theorem.

Proof of Theorem 5. For a map U : {1,...,2"} — {0,1}" (U(3) : = u,),

a decoding rule is optimal iff
(5.2) D, c {y"€{0,1}"| P,pi0"H) > Pjﬁd(y"’”f) for all 5}

and U D, = {0,1}", where f§ = ] © (-) denotes the

i=1
Hamming distance. Note that in (5.2) we have formulated just the concept of

maximum likelihood decoding for the special case of the BSC. It should be clear
intuitively that best decoding sets for the code word u, are “like spheres
around w;'’, the diameter of which depends on P,. We make this heuristic
precise and apply the general isoperimetry theorem. For y" € {0, 1}" define

m(y", U) = max P; - 40" ud,
i

Then our problem is equivalent to the problem of minimizing

m(y", U),
yre{o, 1yt
as a function of U. Order now the elements of {P,8/|1<i << N; 0<{j < n}
in increasing order and denote them by «, .. ., Ay NV = 27
We can write
(n+1)N
m(y", U) = 3 o|6(U)],
yREQL,0p =1

where 6,(U) = {y"|m(y", U) == a;}. Further, set & (U) = 6,(U) U 6. (U)U ...
.U 8,.5(U). Then with oy: = 0

(n+-1) N (n+1) N

> o |8,(U)| = > (o — o 4) |6 (U)!

=1 =1

o s+ e A AN GBS s 8 A8t 3R 0+ L T e peanta tachrmh e AL et e e B+ st e
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Since “12 0 and o, —o, ;>0 for I =2,... (n+ 1) N we are done if
the same U minimizes all §¥(U); I=1,..., (n +- 1) N. We write now oF(U)
as a union of spheres. Define radii

po— 11 if P, <o
U | max {t|t integer with P, > 41 else
o i < ]

and observe that with the convention S_,(2") = g

N
of(U) = U Sru(ui) .

i=1
Since ry > 1, > ...y forl =1,..., 1N the general isoperimetry theorem
gives the result. -
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[3ameyanus 0 IEHHOHOBCKMX CEKPETHBIX CHCTEMAX CBA3M
P. AJICBEJIE ‘
(Buanadan)

CTatbs1 COAEPAUT TPU YIYUIIEHHS HIEHHOHOBCKOH TE€OPHUH CEKPETHbLIX cucrem [1]:

1. C nomompio oueHb NPOCTOif KOHCTPYKLMU ONpeeNnsoTCsa MU, KOTOPhIE 151
€CTECTBEHHBIX KPUTEpUEB G6E30MacHOCTH CTOJIb YK€ XOPOIUH, KAK M IEHHOHOBCKHE “cnyyaiinrie
1152(1130) S i : ,
2. 1151 3TOH KOHCTPYKIMH Heo0s13aTebHO NpeAnoJiararh, YT0 COOOLIEHHsT PABHOBEPOSAT-
Ho. IlleHHoOH cxenan ato NPEANONOKEHNE TUIsT TOTO, 4TOOBI MCHOJIb30BATL CBOH TMOXXOJ “cay-
uaiiHoro mugpa’’,

3. Bonee TOro, KOHCTPYHMPYIOTCS ONTUMAJILHbIE wudpet npu 6osiee rpy6pIx MPeaInoJIodKe-
HUAX, YTO MOJb30BATEIISIM HN3BECTHO TOJILKO OrpaHu4YeHue Ha SHTPOIHNIO MCTOYHHKA U 4YTO KpHII-
TOrpady TOYHO H3BECTHA CTATHUCTHMKA COOGIIEHMSI. .

Haxonen, KoHCTpyHpyIoTCst Hauxyamme Koabl AJIsi ABOMYHOrO CUMMETPUYHOI'0 KaHas1a 1
TOAYEPKUBALTCA 3HAYEHHE ITOH “‘IyanbHOM Npobiembl KogupoBaHust’” st Kpunrorpahuu.
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