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The paper investigates secrecy systems with additive-like instantaneous
block encipherers subject to the error probability criterion. It is first shown that
good ciphers for this system are bad codes for an associated discrete memoryless
channel (DMC). Then asymptotically worst channel codes for any DMC are con-
structed explicitly. Applied to the secrecy system, this result gives an asympto-
tically optimal solution for the enciphering problem.

1. Introduction

In [1]C. E. Shannon presented a mathematical theory of secrecy systems.
A good exposition and also certain extensions of this approach to cryptography
were given by Hellman [2]. Ahlswede [4] proposed several improvements
of Shannon’s model and the problem of finding worst codes for the binary
symmetrical channel. '

Whereas these results are mainly concerned with abstract (block free)
message sources, Lu [5], [6] considered in recent work secrecy systems with
additive-like instantaneous block encipherers. Using random ciphering, Lu
derived for these systems upper bounds on the probability of correct decrypt-
ment. , .

The main contribution of the present paper is the observation that to
any additive-like instantaneous block encipherer one can associate a block
code for a certain discrete memoryless channel, and that the best encipherer
is obtained as the worst code for the associated channel. Hence it is now fully
understood that the dual coding problem (the problem of finding worst codes),
which in [4] was studied for its own sake and was felt to be relevant for the
enciphering problem, is indeed the central problem of cryptography. In [4]
the dual coding problem is solved exactly for the binary symmetric channel.
For more general discrete memoryless channels this is still not the case, how-
ever, we give here an asymptotically optimal solution: asymptotically worst
codes (and hence also asymptotically best sets of ciphers) are products of full
sets of typical sequences and therefore asymptotically best ciphers are ‘‘clouds
of sequences™. Of course such sets of ciphers can be given explicitly.

1*
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It turns out that the connection between worst codes and best ciphers
can be found also in more general systems as for instance those studied in [6].
“As a result of this phenomenon we are able to give asymptotically tight bounds
on the probability of correct decryptment for additive-like instantaneous
block encipherers also in the case that side information is available to the
“‘enemy”’.
Furthermore, it is a routine matter to derive a similar result for a more
robust model (arbitrarily varying sources in the sense of [7]) and we therefore
~ just state the result.

2. Worst codes are best ciphers

A. The model

We give first the model of ALIB encipherers, which was introduced
by Lu ([5], [6]).
Let @, 9N, 8, Y be finite sets with

|Cl = [oN] = |¥Y|.

We are given two correlated message sources {(X;, S}z, where all the
(X;,8;), ¢=1,2,... are independent replicae of a pair (X, S) of random
variables with values in M xS. We write X" =(X;,...,X,) and 8" =
== (Sy- . ., 8,). The joint distribution of (X7, S") is given by

Pr(X" = m", §" = 57 = SPr(X = m,, § — 5,
i=1

for all m" = (my, ..., my,) €M, 8" = (s, ..., 8,) € 8". Furthermore, a com-
biner f is given, i.e. a function f: Cx 9N — Y, where f(-,m)is bijeétive for
each m € I and where f(c, - ) is bijective for each ¢ €C. 1@ %I _ g
denotes the n-fold product of f.
An (n, R) additive-like instantaneous block (ALIB) encipherer is a
subset ‘
& C C" with |8] < exp {nR}.

Give an (n, R) ALIB encipherer & — @" the system works as follows.

A key word ¢ € & is chosen according to the equidistribution on &. The
encipherer knows the message word m", an outcome of the random variable
X", which is to be enciphered and to be sent to the decipherer. From the key
word ¢ selected and the message word m" the encipherer forms the crypto-
gram y" = f*(c", m") and sends it to the decipherer. The key word ¢” is given
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to the decipherer separately over a secure channel (a courier for instance).
Knowing the key word ¢" and the cryptogram y” the decipherer deciphers
the message word m", which is always possible because f is one-to-one.

The cryptanalyst intercepts the cryptogram y"; he has also available the
message word s", an outcome of the random variable §". 8" represents a side
information source for the cryptanalyst. From the knowledge of %" and s"
the cryptanalyst attempts to decrypt m" (where we assume, that the crypt-
analyst knows the ‘“whole system”, i.e. he knows the distribution of (X, S),
f, & n). Since the cryptanalyst does not know the actual key word ¢ being
used he may decrypt a message m" different from the true message word m”
being sent (error event). The error probability of the cryptanalyst is our mea-
sure for the quality of the chosen encipherer 8. '

We now give a formal definition of A,(8), the probability that the crypt-
analyst decrypts correctly. Fix &  €". Let C" be a random variable equidis-
tributed on & and independent of X", 8" Let Y" = f*(C", X"). If the crypt-
analyst intercepts y" and gets the side information s", he can maximize the’
probability of decrypting correctly by deciding on a message word " for
which

Pr(X" = m"|S" = s", Y" = y") = max {Pr(X" = m"|S" _ s YT = y")}.

Since this maximum likelihood decision rule is optimal in the error probability
sens3, we always assume that the cryptanalyst uses this rule. Therefore, we
define for an ALIB encipherer & — ©": "

2,8 =2 > Pr(8"=s"Y"=y")max {Pr(X"=m"|§"=¢", Y = Y =

ShE N ynE%Jn P

(2.1) = > 3 max {Pr(X" =m", 8" = §", Y" =y")}.
srE§tyre¥r mr
We note here that the definition of the combiner f implies that each of the
random variables C", X", Y" is a function of the remaining two others. There-
fore the cryptanalyst also could try to decrypt the true key word ¢ correctly
and then he could compute m" from ¢” and y".
This leads to the observation that 1,(8) can also be expressed as

(2.2) (8 = 3 2 max {Pr(C" = c¢", 8" = s", Y" = y")}.
SPES YUYt ("c
We define for any » and R > 0: ‘
A(n, R) = min 2(8),

&
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where the minimum is taken over all ALIB encipherers & — € with |8| <
< exp {nR}. Our aim is to derive a computable expression for

— h'milog A.(n, R).
n

- B. Statement of the results and comnection to coding theory

For random variables Z, Z with values in a finite set % H(Z) denotes
the familiar entropy function, and

D(Z||Z) = S Pr(Z =2)log PrZ=2)
z€% Pr(Z = z)
- stands for the informational I-divergence.
For triples (C, X, §) of random variables with values in CxIMx$ set

~

FC,X,8) =D(X,8)|(X,8) + H(C|f(C, X), 5).
D

(We shall write in the sequel D(X, §|| X, S) instead of D((X,J)|| (X, )L

For R > 0 we define

F*(R) = max min F(C, X, 5).
' . C:H(O)<R X8
C independent of (X,S) '

Let F** be the concave upper envelope of F*. We shall prove:
Theorem 1. For any R > 0

— lim llog A(n, R) = F**(R).
n—~oco N :
We establish now a connection between the present problem and the
problem to find the worst code for a discrete memoryless channel.
A discrete memoryless channel consists of a finite input alphabet A,
a finite output alphabet °9, and a set of transmission probabilities { W(v|«)]
|lweU, veP}. |

The transmission probabilities for n-words
W=y, ., %) €UV = (v, ..., p,) €97

are given by

W u") = ﬁ W(v; | u;).

i=1
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i&n (n, R) code for W is a subset & C U" with |&] < exp {nR}. The probability
2.(8) of correct decoding (maximum-likelihood) is

2.(8) = S Pr(V" = v") max Pr(U" = u" | V" = o).
o i3
Here, U™ is a random variable equidistributed on 8 and V" is the correspond-
ing output variable with respect to W (we say also that “W connects U"
and V™), i.e.

Pr(V? = ") = ZPr(U" = YW | u").

After these definitions we return to the ALIB enciphering problem. Let & < ©*
be an (n, R) ALIB encipherer. We show that & can be viewed as a code for a
special discrete memoryless channel.

Let C" be equidistributed on & and independent of (X", S"); Y™
= fY(C", X"). Then for any c” € &:

Pr(yn — yn’ S — SnIOn = (") =
— FPr(X" = m"Pr(Y" = y", 8" = s"|C" = ¢", X" = m"),

because C" and X" are independent. Observe that by the definition of the
source

Pr(X" = m") = 1"] Pr(X = m,)

i=1
and

Pr(Y" = ", 8" = s"|O" = ¢, X" = m") =
= Pr(8" = s"| X" = m") « Pr(¥" = y"| 0" = ¢", X" = m"),

because C" is independent of (X", 8") and Y" = f(C", X").
Obviously |

n
Pr(8" = s"| X" =m") = [ [ Pr(S = ;| X = m,)
i=1

and
Pr(Y" = y"|O" = ¢", X" = m®) = J[ oy, f(c;, my)),
i=l

where &(y;, f(c;, m;)) equals 1 if y; = f(c;, m;) and 8(y;, f(c;, m;)) = 0 otherwise.
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Thus
(2.3) Pr(Y" =4, 8" = s"|C" = ¢") =

= r 2 Pr(X = m)Pr(S = s|]X = m,) - 6(yi, f(c;, mi)) .

=1 med

If we define now a channel W* with input alphabet @ and output alphabet
Yx8 by

W*(y, sle) = 3 Pr(X =m) - Pr(S = s|X = m) - 8(y, f(c, m)),

medn

then we see that equation (2.3) can be written as
(2.4) Pr(Y" = y", 8" = s"0" = ¢") = [] Wz, s;lc;).
' i=1
From (2.2), (2.4), and ‘t’he deinition of a channel code and its probability

of correct decoding we observe now that the (n, R) ALIB encipherer & can be
viewed as an (n, B) block code for the discrete memoryless channel W*. Tt is

-obvious that the probability 2.(8) of correct decryptment for the encipherer

& is equal to the probability 2.(8) of correct decoding for the code & and chan-
nel W+,

Hence the problem to find the best ALIB encipherer is a special case of
the dual coding problem, i.e., the problem to find worst codes for discrete
memoryless channels. We give here an asymptotic solution. For the special
case of the binary symmetric channel (BSC), Ahlswede [4] gave an exact
solution. Worst codes for the BSC are quasi-Hamming spheres in {0, 1}".
This result can be derived via the isoperimetry theorem of Harper [3]. In
order to formulate the asymptotic solution of the dual coding problem for
general discrete memoryless channels we need a few definitions.

We shall define the functions E, E*, E** as the analogues to F, F*, Fx*:

Consider the channel given by U, °9, and W. For a random variable I
with values in AU and another (dummy) channel W between U and 9 we
define

DWW ||W|U) = >2PrU=u) > W (v|w) log_gff_g}z_; .

Further ¥ denotes the output variable corresponding to U with respect to W .
We define
B(U, W) =DW|W|U) + H({U|V)
and for R > 0

E*(R): = max min E(U, W).
U:HU)<R W
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Finally let E** be the concave upper envelope of £*. Let A (n, R) = min 1.(8),
where the minimum is taken over all (n, B) codes &.

Theorem 2. For any B > 0

— lim —l-log 76(%, R) = E**(R).
—> co
Since Theorem 2 implies Theorem 1 we have to prove only Theorem 2.
It is a routine matter to verify that the functions F, F*, F** are specialized

versions of K, B*, F**. :
The proof of Theorem 2 has two parts: the converse part and the direct

vvpart. From the proof of the direct part it can be seen that the worst codes

(and therefore the best encipherers) are products of full sets of typical sequences.
This is in coincidence with the result of [4], where it is shown that worst
codes for the BSC consist of quasi-spheres in the Hamming space {0, 1}".

3. Proof of Theorem 2

We introduce some notation. The type of a sequence «" € U" is the distri-
bution P, on U defined by letting P .(u) count the relative frequency of the
letter » in the n-sequence u". Joint types such as the type Py of (w7, o) €
€ U"x V" are defined analogously. For a distribution P on U the set of all
P-typical sequences in U" is defined by

P(u)logn
———W :

We state some well-known properties of typical sequences:

= [u"HPun(u) — P(u)| < for all u E%} .

Lemma 1

a) Let P be a distribution on U and P" its n-th extension. Then

»

PYgp)>1—

log n
for some constant x depending only on |Af|.

b) Pn(un) == exp {——' n(D(Pu"HP) + H(Pu"))}
for all u™ € Y".

c) Let U be a random variable on % and W a channel between U and °9.
V denotes the output variable to U with respect to W. Let P be the joint
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distribution of the pair (U, V). Then for any pair
(w", V") € FF < U xP" _
Wr(w"|u") = oxp {— n(D(W||W|U) + H(P|U) + o(n))}.

A. Proof of the converse part of Theorem 2

Let & c U" be an (n, R) code.
Since it is obviously sufficient to prove Theorem 2 for code words of ‘.
fixed composition we assume that there is a distribution ¢ on U such that

Pou=¢@Q forany u"€8.

Let U denote a random variable on U with distribution . Let U" —=
= (Uy - .., U,) be a random variable equidistributed on 8. Let V" denote the
output variable corresponding to U" with respect to W. For convenience we
make the convention that U° is a set of cardinality one; U, is a constant
variable with value in U°. For the given code & we shall now estimate 2.(8).
We shall proceed in this way:

(3.1) 2.(8) = = Pr((U", V") has type @) - Pr(correct decoding [(U™", V™)
Q distr. on XY

hastype b) =>Pr((U", V") has type a) - Pr(correct decoding [(U", V™) has type b),

where @ is any distribution on U xY.

We define first a distribution P on AU x°?, for which the estimate in
(3.1) becomes sufficiently sharp. Then we relate the probabilities in (3.1) to
I-divergences and information quantities. Finally we shall give a single-

letterization of these quantities. For any ¢ = 1, ..., n and any ' ~1 ¢ i1 N
let U(u'~!) be a random variable with values in U such that : i
(3.2) - Pr(Uw'™') = u): = Pr(U; = w | U-! = i1y,

For any ¢ = 1,...,n and any %'~! ¢ U'~! let V(u'~") be a random variable d

‘with values in P and let W(x'"!) be a ‘“dummy” channel between U and ¥

such that V(u'~!) is the corresponding output variable to IJ (u"~1) with respect
to the channel W(»'~!) and such that | ’

(3.3) E(U @'Y, W(ui~Y)) = min B(U@-1), W),
W

where the min is taken over all channelsv W between 4 and 9.
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Now we define the diétribution P on UXY by
(3.4) |
P(u, v): = — S PrU! = u"_l)_ - Pr(U(' ') = w, V(u'~1) = v).

Since by (3.2) and (3.4) for any » € U

1 n

2Pu v) :—77,—2 i %‘ Pr(U' = o) - Pr(U; = w|U'"! = u!7 1)
=1 pi-telti—t
1
——n—ZPrU*u)—-Pr(U u) = Qu),

the marginal distribution of P on AU is the distribution ¢ of the given random
variable U which is generated by 8. Therefore it makes sense to define a random

variable ¥ on ¢ and a channel W between U and °9 such that (U, V) has

distribution P and such that U and ¥ are connected by W.
Now we are going to estimate 2.(8) for the given code &. In order to be
able to apply Lemma 1 we rather look at the k-fold product & < U™, where

 k is a positive integer. Since 8 is an (n, R) code, &* is an (nk, R) code. Let

U™ (resp. V™) be the k-fold product of U" (resp. V"). Note that U™ is equi-
distributed on &*. B
The probability 1.(&%) is given by

(3.5) 2.8 = > max {Pr(U"™ = ™, V" = "} .

vnkécynk unkEéunk

By the product structure of & we have for

vk = (], ..., V) € 9K
max  {Pr(U™ = u", V™% = ™)} = [[ max {Pr(U" = u}, V" = o})}.
u=(uy,...,u?) i=1 uPcun :

Hence we can conclude

7.(8%) = (2.(8))*.

We shall now estimate 1,(8*) rather than 2,(8). ,
 Letoft* = {v™ € 9" there is a u™ € 8% such that (u™, v™) € §}, where
gk < U™ x P is the set of all jointly P-typical sequences.
Thus, since U™ is equidistributed on &,
(3.6) A(8" > |8 max (Pr(V"™ = "% U™ = u™)}.

v"kéeﬂk unkEgk:(unk,vnk)€g?E
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We apply Lémma 1 to the distribution P of (U, V) and get by the definitions
of (U, V)yand W

Pr(Vnk — ,UnklUnk — unk)
> exp {—nk DW||W|U) — nkHWV|U) — n - o(k)}
for any pair (u™, v"*) ¢ gk,
Hence, we can derive from (3.6)

(3-T) A(&") = 18]~ exp {—nk(D(W||W|U) + H(V|U)) — n - ok)} - RX].

As a second step in the proof we have to relate |of}* to information quantities-
For this purpose we define the random variable " on 9" by

(3.8) Pr(V" = o"U" = ") = ]; Pr(V(u'=!) = v|U@W1) = u,)
i=1

for all W™ = (uy, ..., u,) €U, 0" = (v, .. ., v,) € 9", where V(u'~!), U(u'~1)
are the random variables defined in (3.2) and (3.3).
By the definition of the channels W(u!™!),

(3.9) Pr(V" = o"U" = u") = I} W=D (V(u'~1) = o,|U@!™Y) = u,).
i=1 _

We write V7 = (V,, ...,V ). P is the k-product of V". From (3.9) and the
definition of P in (3.4) we observe that for any (u, v) € U X9

1 Zn‘Pr(V,- = v, U; = u) = P(u, v).
n =T

Therefore one can easily see that by Lemma 1.

Pr((PE, U) €83) > 1 — —F
log k&
and thus
(3.10) Pr(Pre e k) >1 — %
} log k

Inequality (3.10) enables us to compare log |of*| with H(V"™). In fact, the
grouping axiom for the entropy function and (3.10) yield

%

(3.11) H(Pr¥) < log 2 + log|oR*| + P log |"97| .

log
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Taking (8.11) into account we get from (3.7)

(3.12) 2(8%) > |8]7% - exp{—nk(D(W |W|U) + H((V|0)) —

— no(k)} - exp{H(V"*)}.
For the remainder of the proof of the converse part we have to give a single
letter expression for the right-hand side of (3.12).

First note that ~
H(Vrey = EH(T™),

because of the product structure of V%, Further,

HPm — 2"H<V,-|I7"~‘> > N HP P Ty
i =1 _

—ZH pAUY,

because V; — U'~! — V-1 form a Markov chain in this order. This follows
from (3.8).
From (3.8) we observe that

(3.18) JSHPV U= 3 Pr(U"'=u"YHTV@Y).
i=1 i=1 ui-feapi-1
Of course we also have
(3.14) log |8] = HU™ = 3 H(U, U™ =
i=1
= 3 PrU"' =4 YH(U@ )
T
From (3.12) we see that we have now to split up D(W||W|U) + H(V|U) in
an appropriate way. This is easy (use (3.4)):
(3.15) DW||\W|U) + H(V|U) = 2Pr = u) > W (vlu) log W(v|u)

= ZP(u, ) lpg W(vlu)

:__.22 > PrUT =) -

i=1 i=1 ui-ieapi—2

- DPr(U' ) = u, V(uiflj = v) * log W(v|u)

n
= _1__ 2 2 PI.(UI'—I _ ui—l) .
N =1 yi-reui-r

C[D(W =D [IW|U () 4 H(V ()| U (ui~ -
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This, (3.12), (3.13), and (3.14) imply

7,(8%) 2exp{ k( 2 > Pr(U' = uYBU@WY), W) — no(k)}.

i=1 ub-teUi—2
Now use (3.3) and the definition of £* and E** to obtain 1.(8%) >

1
> exp{—— k E** (; log l$|) — no (Ic)} , which completes the proof.

B. Proof of the direct part of Theorem 2

Fix a block length » and a distribution @ on A such that

Q(u) € {0, 1/n, 2/n, ..., 1} for €.
We define the code :

(3.186) &= {u" cUP, = Q}.
Let U be a random variable on U with distl_'lbution @. We shall prove:
(3.17) 2.(8) < exp {—nmin E(U, W) + o(n)}.
w

Note that if this would be proved, then the direct part of Theorem 2
follows by the standard time sharing argument. Therefore, asymptotically
“worst” codes are products of full sets of typical sequences (of the form (3. 16))

We give here only a bit more than an outline of the complete proof.
Since 8 is defined to be the set of all sequences of type @, & has “almost product
structure”. Therefore, the evaluation of 1,(8)is very straightforward and needs
only simple counting arguments for sets of typical sequences. -

We start: Let U™ be equidistributed on &. Let 7" be the output variable
corresponding to U™ with respect to W. Let 8, = &.(U, °9) be the set of all
distributions P on U XY satisfying

P(u, v) € {0, 1/n, 2/n, . . ., 1)
for any (u, v) € U X Y. It is well known that
(3.18) 18,1 < (n 4 1)-17
We estimate 2,(8) as follows:
2.(8) = ”2' max {Pr(U" = ", V" = o)}

<3>3 max {Pr(U"=u", V"= ")),
vt Pc8, u®:(utv")
has type P
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Since & = {u"|P,» = @} and since U has distribution @,
- (3.19) 16|71 < exp {—nH(U) + o(n)}.

Since U" is equidistributed on &, we can conclude for (", v") with Pyn =
= P, u" € & that

(3.20) Pr(V" = o"|U" = ") < exp {—n(D(W ||W|U) + H(V ,|U)) + o(n)},

where ¥ p is a random variable on Y such that (U, |4 p) has distribution P and
where Wp is the channel connecting U and Vp (Lemma 1).

In summary,
2(8) < 18,| - max |B(P)|-exp{—n(D(W ||W|U) + H(V |U) + H(U))+ o(n)},
P€8a
where
B(P): = {v" €V"| there is a u” with P(u..,v.) = P}.

It is easy to see fhat
|B(P)| < exp {nH(V ) + o(n)}.

Since

HWV,\U) + HU)— HT,) = HU\V ),
we therefore have

7(8) < 18, - max exp {—n(DW |WIU) + H(UIP,) + o(m)
€8n .
< |8, - exp {—n - min E(U, W) + o(n)}.
v

This gives (3.17) by applying (3.18).

4. On a more robust model

We consider the former model (Section 2. A) with one modification for
- the sake of robustness. In Section 2 we were given two message sources
{(X}, 8;)}i—,, where the X’s represented the message sequence to be enciphered
and where the S’s served as side information for the “enemy’’. Now we are
given a set @ = {P( - |s)|s € §} of probability distributions on M. For every
8 =(8y,...,8,) €8 define the distribution P7( - |s") on IM"* by

Pr(m™s") = [T P(m,s,), m"* = (m,, ..., m,) € ™.

i=l1
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The difference to a correlated source {(X, S,)};2, is that not the joint distribu-
tion but only the conditional distributions are specified and that the S-output
is not governed by a probabilistic law. A sequence s;, s,, . . . can be viewed
as a ‘‘state sequence” of the source.

The definition of an ALIB encipherer 8§ — ©" is the same as in Section 2.
However, since we have no probabilities on the s™s, we have to change the
criterion of error. : ‘

We look now for ciphers for which

2:(8) = max ¥ max {Pr(X" = m", ¥ = y"|S" = s™}
s*oyieyn e
becomes small (compare with (2.1)).

Again it is possible to show that the asymptotically best ALIB en-
cipherers are products of full sets of typical sequences. This can be seen from the
exponents given in Theorem 3. We shall omit the proof of this Theorem because
it is only a translation of the proof of Theorem 1 into the new terms. We for-
mulate the result:

For any random variable S on 8 let X(S) be a random variable on I
such that Pr(X(S) = m) = 3 Pr(S = s) - P(m|s). We denoted by

ry

Pr(X:m]S:s)
Pr(X(8S)=m|S=s)

D(XIX(S)IS) = SPr(S = 5) SPr(X = m|S = ) log
S m

the conditional I-divergence. '
For triples (C, X, 8) of random variables on CxXMxS set

F(C, X, 8) = D(X||X(8)|8) + H(C|f(C, X), 8)
and for R > 0

F*R) = max min F(C, X, 8)

C:H(C)<R §,X
C independent of all S.

Theorem 3. For any R > 0

— lim —l—log Jo(n, R) = F**(R).

H—> oo
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[110Xue Koapl ecTh X0poiue mudpol

P. AJICBELE, I'. QIOK
(Bunedenn)

B paloTe paccMaTpHBalOTCs CUCTEMBI 3aCEKPEUMBAHMSI C ANUTHBHLIMI MOMEHTAIbHEIMU
6JI0YHBIMH YCTPOHCTBAMHU 3aCEKPEUNBAHHS C TOUKU 3PEHHST KPHTEPHUSI TI0 BEPOSITHOCTH OUIHOOK.
IpesKzie BCero MoKasaHo, YTo XOpOIIHe Uridphl st TaKoH cHcTeMbl SIBISTIOTCST IIOXUMH KOaMH
JJIst COOTBETCTBYIOUIEr0 AUCKPETHOr0 KaHana (e3 namsTd. CKOHCTPYWPOBAaHbI aCHMITOTHYECKH
XyZAUIMe KONl [AJist JiI00Or0 JUCKPETHOro KaHana 0e3 mamsaTh. [IpumeHsist 9TOT pe3ysbTaT K
CHCTeMe 3aCeKpeuMBaHMs, N0JyYaeTcst aCHMNTOTHYECKM ONTHMAJbHOE perieHde npobiembl

ndpoBaHUsI.
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