430

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-28, NO. 3, MAY 1982

Good Codes Can Be Produced by a Few
Permutations

"RUDOLF AHLSWEDE AND GUNTER DUECK, MEMBER, IEEE

Abstract—QOur main result is that good codes, even those meeting the
random coding bound, can be produced with relatively few (linear in the
block length) permutations from a single codeword. This cutdown in
complexity may be of practical importance. The motivation for looking at
such codes came from Ahlswede’s covering lemma, which makes it possible
to build correlated source codes from channel codes via permutations. In
Appendix 1 we show that the problem of finding the best error exponents
for coding sources with full side information at the decoder, which has
received attention in the recent literature, can easily be reduced to the
familiar one for the discrete memoryless channel (DMC). Finally, in
Appendices II and Il we give rather precise double exponentially small
bounds on the probabilities that a randomly chosen code will fail to meet
the random coding or expurgated bound for the DMC. According to these
results, good codes are hard to miss if selected at random. This also
explains why good codes of a low complexity (such as those produced by
permutations) do exist.

I. INTRODUCTION

N[5, part I1, sections 5 and 6] Ahlswede suggested as a
program in coding theory to systematically investigate the
symmetric group S, (the group of permutations) acting on
the components {1,---,n}. The immediate use of this
group is due to the fact that it leaves probability distribu-
tions specifying stationary memoryless multi-user sources
and channels invariant. As a justification for his belief in
this program he presented a general robustification tech-
nique, and he derived Slepian—Wolf’s [6] source coding
theorem from the coding theorem for the discrete memory-
less channel (DMC) via a covering lemma (see Appendix I).
By this method source codes are built from channel codes.
Here we show that channel codes, which achieve capac-
ity (and even the random coding bound), can also be built
up iteratively by producing bigger codes from good smaller
codes with suitable permutations w,,- - -,m,, say, which we
call code producers. In particular, this is possible for sub-
codes consisting just of one codeword.

To fix ideas, we describe the production first in this case.
Suppose we are given a single codeword x” = (x;,- - -, x,,)
of length n and the permutations operate on {1,---,n}. By
m,x" we mean the n-sequence obtained from x” by permut-
ing the components of x” according to =, i.e.,

n_—
X" = (Xp1sm X))
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Now we have two codewords x” and 7 x". Form now
mx" and m, o mx", then mx”, w0 mx", mo mx”,
m; om0 mx", etc. In each step we double the cardinality of
our codeword set, if repetitions are counted with multiplic-
ity. In this manner it is possible to construct simply struc-
tured codes. Note that in order to give a code book for
such a code we have to list t permutations, say, instead of
exp{t} codewords. .

Finally, we prove right away a somewhat stronger result
than just achievability of the random coding bound: the
same set of permutations can serve for every positive rate
below capacity as follows. If the rate is R, then use the first
t’ permutations, where ¢’ is minimal with the property
exp{t'} = exp{nR}. Moreover, we also establish universal-
ity in the sense of Goppa [18], that is, the same set of
permutations can be used for all channels of bounded
alphabet sizes. The exact statements are given in the Main
Theorem. For ordinary codes Goppa proved universality
with respect to the capacities and this result was sharpened
by Csiszar, Korner, and Marton [15] to the universal
achievability of the random coding bound. Those authors
also proved that the expurgated bound can be achieved
using a universal set of codewords, and Csiszar and Korner
established in [9] the (universal) achievability of both
bounds simultaneously. We do not know yet whether those
results can be proved for our simply structured codes for
we do not even know whether the expurgated bound can
be achieved at all. The immediate reason is that expur-
gation destroys the algebraic structure.

We would like to draw attention to another problem of
some interest. Generally speaking the idea of building
bigger structures from smaller structures is very common in
human life (also the reverse process, which is often an
unfortunate fact), in science, and, especially, in engineer-
ing. It is often wasteful to build a new machine from
scratch, if functioning parts are available and could be
used. Code producers perform this task for all discrete
memoryless channels with properly bounded alphabet sizes
and all rates. However, they do so only for fixed block
length n. Hence, it may be interesting to try now to build
producers from smaller ones, that is to introduce “pro-
ducers of producers.” :

Our main tool for proving the main theorem is a new
kind of maximal code method for abstract bipartite graphs,
which was given by Ahlswede in [5, part II, section 4, §3].
The method uses average errors. Other differences from
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Feinstein’s maximal code method [20], which is for maxi-
mal errors, are explained in [5]. An important feature of
the method is that while finding codewords iteratively, the
error probability of any initial code can be linked to the
error probability of the extended code.

Moreover, the selection of a codeword at each step can
be done at random and the probability of finding good
code extensions can be estimated rather precisely. These
estimates are used in the Appendices II and III to derive
bounds on the probability that a randomly chosen (nonex-
purgated or suitably expurgated) code achieves the best
known error bounds. They are also used for showing the
existence of universal code producers.

In applying the abstract maximal method to “channel
graphs” the actual calculations of graphic parameters such
as degrees, etc., involve information quantities. These
calculations are very similar to those used in the proofs of
[15, theorem R and theorem EX] stated in the next section.
They also can be found in the forthcoming book [24]. Since
it will be widely available soon, we adopt its notation and
refer to it for proofs of auxiliary results.

In another paper the first author will give applications of
the abstract maximal coding method and of other methods
of [5] to other graphs and hypergraphs of genuine informa-
tion theoretical interest. There the graphic parameters can-
not be described by information quantities and this will, as
we hope, convince more people of the use of the abstract
approach to information theory developed in [5].

II. NoTATION AND KNOWN FAcCTS

Script capitals X, %, - - - will denote finite sets. The
cardinality of a set @ and of the range of a function f will
be denoted by | @| and | fII, respectively. The letters P, Q
will always stand for probability distributions (PD’s) on
finite sets, and X, Y, - - - denote random variables (RV’s).

A. Channels, Types, Generated Sequences

A stochastic matrix W= {W(y|x): y €Y, x € X}
uniquely defines a DMC with input alphabet %, output
alphabet %, and transmission probabilities

wr(yr|xm) = I W(5x,)
t=1
for n-sequences x" = (x,,---,x,) € X", y"= (¥ V)
EY" n=1,23---.
We denote by & the sets of all PD’s on %X and by Uf
(resp. V') the set of all channels with alphabets X, ¥ (resp.
X, %).

For positive integers n we set
P, ={PEP P(x)E{0,1/n,2/n, -+,1} forallx € X}

For any P € @, called type, we define the set U (P) =
(W e U | W(y|x) € {0,1/(nP(x)),2/(nP(x)),--,1} for
all x € X, y € ¥}. Y (P) is defined similarly.

The #ype of a sequence x” € X" is the distribution
P.€ %P defined by letting P.(x) count the relative
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frequency of the letter x in the n-sequence x”. The joint
type of a pair (x", y") € X" X Y" is the distribution P,
on %X X % defined analogously. For P € 9, the set 9" of
all P-typical sequences in X" is given by

Iy = {x"| P = P}.
For W € 9 a sequence y" € %" is said to be W-generated
by x", if for all (x, y) e X X %Y

Pxn,yn(x, y) = P.(x)- W(y|x).

The set of those sequences is denoted by ¥ ,5(x"). Observe
that 3" # ¢ if and only if P € ¥, and T }(x") # ¢ if and
only if W € U (P,n).

B. Entropy and Information Quantities

Let X be a RV with values in X and distribution P € ¢,
and let Y be a RV with values in Y such that the joint
distribution of (X, Y) on % X % is given by

Pr{X=x,Y=y} = P(x)W(y|x), W € 9.

Then for the entropy H( X), conditional entropy H(Y | X),
and mutual information /(X A Y) we shall also write
H(P), HW|P), and I(P, W), respectively. For P, P € &
5 5 P(x)
D(PIP)= % P(x)log 5~
xeX ‘P(‘x)
denotes the Kullback-Leibler I-divergence, and for W, w
€ 9§ the quantity

D(WIW|P) =3 P(x)D(W(-[x)IW(:| x))

stands for the conditional I-divergence. Finally, for x* €

%n’ yn e eyn

Pon(x,y)

I{x"N\y") = P a(x,y)log —>——F.
(A1) = 2 2R ol )08 3 03 )

C. Elementary Properties of Typical Sequences and

Generated Sequences

19, 1= (n + D™, (1)
|W(P)|<(n+ D)™, forPe9, (2
|V(P)|=s(n+ D) forPE®,  (3)
197 |=—T" . faxPEY, (4
xg%("P(x»!
(n+ 1) ™Mexp (nH(P)) <| T/ |< exp {nH(P)},
foralP €. (5)

ForPEF, WeEW(P), x" € T
(n+ 1) Pexp {nH(W|P)}
Sl"Jy’i(x") |< exp {nH(W| P)}. (6)
ForPE®,PEP, x" €T

Pr(x") =exp {—n(D(PIP) + H(P))}, (7)
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where P" is the n-fold extension of P. For P € 9; W, W e
U; x" e Jy, y" € "Jy’;‘/(x"):

Wn(y"|x") = exp { —n(D(WIIW|P) + H(W|P))}.

| ®)
ForP €9, W € W (P), y" € Ty ‘
(n + 1)V exp {n(H(P) - I(P,W)))
<| {x" € 57 |y" € T2(x")} | ©)

<exp {n(H(P) — I(P,W))},

where P_W denotes the PD on % given by PW(y)=
S P(x)W(y|x)fory €%,

D. Historical Sketch of the Bounds on the
Reliability Function

An (n, N) code € for the DMC is a system of pairs
{(u;,%D,)|i=1,---,N} with u; € X" and pairwise disjoint
subsets 9, C Y" (i = 1,---,N). A(C, W) denotes the aver-
age error probability of C, i.e.,

N
NC W)=~ S wr(Df|u,),
N Z

where 07 = X" — D, A . (C, W) = max,W"(Df | u;) de-
notes the maximal error of C. € is called an ML code
(maximum likelihood code), if for i = 1,-- -, N the sets D,
consist of those n-words y” € %" such that

wr(y"|u;) = w"(y"|u;), forallj+i
w(y"|u;) > W"(y"|u}-), for allj < i.
If we define for any rate R
A(n, R,W) = min{A(C,W)|Cisan (n, N) code with
N =exp {nR} },
then

i -
E(R,W) = lim sup — - logA(n, R, W)
‘n—>
is the familiar reliability function for the DMC W.

Since Shannon discovered the coding theorem for the
DMC in his famous paper [1] there has been considerable
effort in improving bounds on the error probability for
codes of a given rate or, equivalently, on the reliability
function E(R, W). Well-known upper bounds on E(R, W)
are the sphere packing bound E (R, W) and the straight
line bound E (R, W). These bounds were derived by Shan-
non, Gallager, and Berlekamp [10]. E (R, W) was first
established (with an incomplete proof) by Fano [11]. For
rates R > C Wolfowitz’s strong converse [12] implies

lim infA(n, R, W) = 1.
n—co
For R > C the problem is to evaluate
liminf —
n—-aoo

%log(l — AX(n, R,W)).
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Arimoto [13] extended the sphere packing exponent for
rates above capacity, and finally Dueck and Korner [14]
showed that this exponent is optimal. A partial result in
this direction was obtained earlier by Omura [25].

The best known lower bounds for R < C are the random
coding bound E.(R, W), which was derived by Fano and
given a simpler proof by Gallager [2], and the expurgated
bound E,,( P, W), which is due to Gallager [2].

Our results here mainly concern those lower bounds.
Csiszar, Korner, and Marton [15] have rederived those
bounds via types incorporating earlier ideas of Haroutunian
[16], Blahut [17], and Goppa [18]. Their approach leads to
universal codes. The function E,(R, W) and to a certain
extent also the function E.(R,W) appear in the new
derivations in a form somewhat more linked to information
quantities than the familiar analytic expression [19]. The
results of [15] are

Theorem R: For every R>0, >0, n=nyX]|,
|%|,8), and every type P € ¥, there exists an (n, N) code

C={(u;,,)|i=1,---,N} with », € T
and —:; logN=R—§
such that
NC, W) =<exp{—n(E(R,P,W)—8))}
for any W € AUf, where
E(R,P,w)= min {D(WIIW|P) +[I(P,W)—R]" },
weas

(10)

and [7]* = max {0, ¢}.
Theorem EX: For every R>0, 8§ >0, n=ny(%],
|%|, 8), and every type P € 9, there exist codewords
U, Uy €I with —rll-logNZR -8

such that for every W € 9 the corresponding ML code
e = {(u,2¥)|i=1,-,N}

[i.e., the D/ denote the maximum likelihood decoding sets
with respect to W] satisfies

ANCY, W) <exp{—n(E,(R,P,W)—3)},
where

E (R,P,W)

min
X, X p-distributed
I(XANX)<R

{Ed(X, X) + I(X N X) — R}

and d(x, %) = —1ogZ,cay W(y|x) - W(y|%) forx, % €
. Ed(-) means the expectation of d(-).

Actually, in [9] a unified description of the random
coding and expurgated bound was given, but this descrip-
tion will not be used here. Also, Theorem EX will be
relevant only in the Appendix.
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III. THE MAIN RESULT: CHANNEL CODES
PRODUCED BY PERMUTATIONS

Let k, n be positive integers with k - n < n!. We call any
subset {m, -, m,.,} €S, a code producer. Such a code
producer works as follows. Assume we are given a DMC W
with alphabet X, ¥, where | X | ,| ¥ |< 2* and we want to
transmit one of 2” messages (m < n - k) over this channel
using an n-length block code. First we identify the mes-
sages with m-sequences in {0, 1}, then we choose a proper
type P € P, and build the “canonical P-sequence” up
defined by

= 6f
Up — (xl" T Xy Xyt T X, ',-x,gq s " ',-xl(_:)q) (S JPn,
where X = {x,* - 5 X}

Suppose that message z™ = (z,---,z,,) € {0,1}" is to
be sent over the channel W. Then the encoder puts

° '”zz' ° ld(uP)

into the channel, where id € §, is the identity mapping and

7’ =id, n! =@, for i = 1,-+-,n - k. Thus, the codeword

set produced for the given parameters X, P € &, and m is
{w,f,mo coromfoid(up)|2” = (2, -,2,) € {0,1}'"}.

We denote the ML code with respect to the channel W for
this codeword set by

G("Tl,"

Zm Zm—1 e
Tm" © Ty=1 ©

.’Trn~k’ PD%’G‘IJ$ W’ R),

where
1 m
R= o log2™.

Two sequences 27 o 7' o id(up), mimo - -+ owZiid(up) are
considered as different if z™ # z'™, even though they may
represent the same element of 9. Therefore the cardinali-
ties of the produced codeword sets are always powers of
two.

If N is given and we want to produce an rn-length block
code with N messages (R = (1/n)log N), then by
C(my, - my, Py X, %, W, R) we mean always the code
having 2™ codewords, where 2™ is the smallest power of 2
with 27 = N.

Main Theorem: Fix a positive integer k and 6 > 0. Then
for any n = ny(k, 8) there exists a producer {=, - -,m, ;}
C &, with the properties

AC(my, - ,my, P,X, Y, W, R), W)
<exp{—n(E(R,P,W)—38)},

for every X, % with |X|,| ¥ |= 2% for every P € 9, for
every channel W with alphabets X and %, and for every
rate R > 0.

The theorem is an immediate consequence of the follow-
ing lemma.

Main Lemma: Fix alphabets X, % and & > 0. Then for
every n =ny(|X|,| %], 8), every type P € P, and every
code C= {(u;, D)|i=1,---,N}; u, €JJ for i =
1,--+,N; there exists a permutation = €§, and suitable
decoding sets &, - -,by, &, ,,- .6 , such that the en-
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larged code
@1: = {(“1’ 81)" I (“N’ 8N)’(7Tul’ 81,1r)" T

(WuN’ 6N,'lr)}
satisfies for every W € W

ANC,W)<=XC, W) +exp{—n(E(R,P,W)—38)},
(11)
where R = (1/n)log N.

Moreover, for a randomly (according to the uniform
distribution on §,) chosen « (11) holds for all W € QU with
a probability larger than 1 — exp{—(8/2) - n}.

The proof is based on the maximal coding idea of [5]. In
its original form codewords are added iteratively to a given
code. Here we add permutations iteratively and thus keep
doubling the lengths of codes. The reader may find it easier
to study first Theorems 2 and 3 in Appendix II, whose
proofs use the original form. These theorems are needed
for the derivation of double exponential bounds on the
probability that a randomly chosen code fails to meet the
random coding or expurgated bound for the DMC. They
also imply Theorem R and Theorem EX and thus we have
an alternative proof of those theorems by maximal coding.

For the proof of the main lemma we need Lemmas 1 and
2 below. They involve quantities which we now define.

Fix R>0, §>0, PE X, and let {u, --,uy} C G
and N < exp{nR} bg given.

For any pair W, W € 9 we define the function g,; , on
X" by

g foru € X",

(12)

8. w(u) measures the size of intersections of sets gener-
ated by n and of sets generated by the given system of
codewords.

Furthermore, for permutations = €5, we define the
function g’;; = by

nx

() =|T2(u) N

H

~ n
gu7,u7 W W(“i) >

iC=

gy i(m) = 2 g, (mu,).

i=1

Let U be a random variable equidistributed on 9, and let
IT be a random variable equidistributed on 3,
Lemma 1: For every pair W, W € U

a) Egy, 5 (U) < (n + HNexp{n(H(W|P) — [I(P, W)
— R]" }, where [¢]T = max{0, ¢}.
Furthermore, for any § >0, £ =0 and n = ny(8,
| X1 1] i .
b) Pr{gy J(U) = exp{n(H(W|P) — [I(P,W)— R —
£1* +(3/4)8 for some W, W € U} < exp{—n((8/2)
+ £)}.

Lemma 2: For every pair W, W €

a) Egy w(IIy= N - Egy z(U).
For any 8 >0 and n = ny(8,| X|,|%¥|);
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b) Pr{g,; #(II) = N - exp{n( H(W | P) [I(P W) Since N < exp{nR}, (14) and (15) imply a). b) follows

RI* +(3/4)8)} for some W,W € A} < from a) by applying Chebychev’s inequality.

exp{ —n(8/2)}. i Proof of Lemma 2: Let W, W € 9. Then

Proof of Lemma I: Choose any W, W € 9 and note 1y
that g 5 is zero for sequences in J,' if W & W(P) or Eg}> "(H) Pl 2 2 g ;(‘”“r)
We Gllf (P) Let PW denote the distribution on % givén Li=lwes,
by . i 1 ,

PW(y) = EP(x)W(y|x), fory € %. =12 2 Hmes,|mu=v)-g; 5(v)
: =l oegy
Note again that gW i is zero for sequences in F' if
PW7é Pﬁ/ Hence we assume that W, WEG&Y(P) and =__ I (PG 2 > 8 (0) (16)
PW = PW. nlex =1 €97
N

Eg. =(U)=E|FAU) 0 U T (w) =N - Eg; +(U). (17)

i=1

Equation (17) foilows from (4). Thus part a) of the lemma
65;';/ (U) N 65:7',(“.-)‘ I: proved. Part b) is an application of Chebychev’s inequal-
Y.
(u Proof of the Main Lemma: Lemma 2 guarantees the
existence of a permitation 7 € §, with

N - 2 Pl'(y ] (U)) * L *, o]
yredi(u) gW,W(ﬂ)’gW,W(W )

E

IA
_‘[Mz

(by symmetry)

i

Since U is equidistributed over J,', we have for every <N - exp [n(H(W\P) —[I(P,vf/) - R]+ +%8H
y" € Y" that e
for any pair W,W € U. ' denotes the inverse (18)

!{x",xn €I, 0" € ("j-y;(x")}' . permutation of 7.

Pi(y" € T2(V)) =

197 | ’ Let C= {(u,,D,)|i = 1,--+-,N} be a code for the given
therefore, (5) and (9) yield codeword set {u, - -,uy} C J,'". Define new decoding sets
Eg. :(U) & =D, — {y"| I(mu; Ay") = I(u; A y") for so_mej}
<N |9 %(u,)] fori=1,---,N and

W .
&, n =D, — {»"|I{u; Ay") > I(mu, A y") for some j}

-exp {n(H(P) — I(P,W) — H(P))} - (n+ 1)™
: x - _ fori=1,---,N.
=N-exp {"(H(W(P) - I(P,W))} (n+ l)m- (13) Notice that the sets &,,--*,by, &, ,,° by , are dis-

By assumption, PW = PW and thus, I(P, W) = H(PW) Jointand set

- H(W|P). e’ = {(uh 81)" ) (uN’ gN)’(ﬂuh 81,'”)’- )
We therefore get from (13) (muy, &y .)}-
Eg. =(U) =N - exp {n(H(W|P) ~ I(P, vf/))} Now we have for every W € U
: N
S+ )M (18 XE@.w) = 2 (w"(D, — &,|u;)

On the other hand, it is obvious from the definition of
g, w and from (6) that +W (7D, — &, , | mu;)) + 2NA(C, W)). (19)

Egu"z, ;(U) = E|‘LT,’,‘,(U)| = exp {nH(W| P)} (15) First we estimate

N N N
> WD, — & |u) =% W"({y"]](vruj/\y") = I(u; \y") for somej}}ui}Z > > W"((’J-;f,(“i)
i=1 i=1 W ey ="
P, W)<IP,W)
N N N
N U IE(ru) || = > 2 w" Gjyg(w_lui) N Lj "J'y'—;f/(uj)lﬂ_lui
J=1 wowew,py ! 7=

(P, W)<I(P,W)

=S e {—n(D(FIWIP) + H(|P)) g5 5
W, WeU,(P)
(P, W)<I(P,W)
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by (8). Now apply (18) to get

N
2 Wn(GDi — & “i)

i=1

< 2
W, e, (P)
(P, W)<I(P,W)
+[1(P,W)—R]" — %8)}
<Nexp{—n(E(R,P,W)—8)},
forn =ny(|X|,|¥]|,8). (21)

In (20) we have used [I(P,W)— R]* <[I(P,W)—
R]*. In the same way,

N - exp {—n(D(WI|W|P)

(20)

% Wn(WGDi_gi,wl'”“i)S 2

i=1

- 3

W, We,(P)

W, WEW,(P)
(P, WY<I(P,W)
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theorem for the discrete memoryless channel via the following

lemma.
Covering Lemma: Fix n and P € %, and let @ C 9. Then

there exist permutations m,- - -,m € §, such that
k
Umrne=97,
i=1
it k>|@"-|T7|log|T;|. (Here 7@ = {mx"|x" € @} and
TX" = (X1, Xgy) fOF X" = (x1,- -+, x,) € K™")

Here we first show that by this approach every upper bound.on
the error probability for the DMC yields immediately an upper
bound on the error probability for the DMCS, with one source
known to the decoder. This way the random coding bound is
transformed into the bound derived by Gallager and KoSelev,
and the expurgated bound is transformed into the bound formed
by Csiszar and Korner.

Next we show that, conversely, every lower bound on thé error
probabilities for the DMC yields also a lower bound on the error

N
2w

i=1

~
6y n 6T n
JW(‘TTui) N gl J”~/(uj) | 7u,

exp {—n(D(WIW|P) + H(W|(P))} g% ~(m)

I(P,W)<I(P,W)

<Nexp{—n(E(R,P,W)—8)},

The result now follows from (21), (22), and (19).

The second part of the claim of the Main Lemma follows
directly from Lemma 2 to b) and the argument given in
this proof.

Proof of the Main Theorem: The Main Lemma states
that if one chooses the permutation 7 randomly according
to the equidistribution on §,, then the probability is at
most exp{ —(8/2)n} that (11) cannot be fulfilled. Since the
number of types in &, the number of different alphabets
X, with |X|,|%¥|=<2* is “exponentially small” it is
clear that one can obtain the Main Theorem immediately
from the Main Lemma.

APPENDIX I

Correlated Source Codes Produced by Permutations from Ordinary
Channel Codes

Gallager [7] and Kogelev [8] have derived a “random coding”
error exponent for discrete memoryless correlated sources
(DMCS’s) {(X,, Y;)};2, in case the decoder is informed about the
outputs of one of the sources. Csiszar and Korner [9] recently
improved those results by establishing what they considered to be
the counterpart of the expurgated bound in source coding. Our
results below confirm this view. In [5, part II, section 8], it is
shown that their result can also be derived via a hypergraph
coloring lemma, which slightly generalizes [23, lemma 4]. In [5,
section 6, part II}, Ahlswede showed that the Slepian—Wolf
source coding theorem can easily be derived from the coding

forn =ny(|X|,|%¥],8). (22)

probabilities for the DMCS. Theorem I below shows thé intimate
connection between the source and channel reliability functions. We
now give the exact statements.

For the DMCS {(X,,Y,)}2, we consider the communication
situation “source coding with (full) side information,” that is, an
encoder observes the X-source and he has the task to encode this
source reliably for a decoder who can observe the Y-source. An
n-length block code ( f, F) for this problem consists of an encod-
ing function f: X" — Z, where Z is the range of f, and of a
decoding function F: X YY" - X". If x" € X" is observed by
the encoder, he gives f(x") to the decoder. Having observed the
side information y" the decoder votes for F( f(x"), ") € X" as
being the output of the X-source. The (average) error probability
of this code A(f, F) is given by

2 ",y In(x", F(f(x™),y")),

x"exn ynesyn

ACS, F)=

where
Q"(x", y") = Il Q(x,, %), 0(x,y) =Pr{X=x, Y=y},
=1

and

n(xn x/n): {1, for x" # x'"
’ 0, forx"=x".

For R > 0 define A(n, R) = min A( f, F), where the minimum
is taken over all n-length block codes (f, F) satisfying || f |l <
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exp{nR}. We are interested in the reliability curve

e(R)= —lm sup 1 log A(n, R)
n-> 00
for any rate R > H(X| Y).
The joint distribution Q(x, y) of (X, Y) induces a channel W,

given by
W(y|x):=P(Y=y|X=x),
For any type P € ¥, define
A(n,R,P,W) = minA(C, W),

where the minimum is taken over all n-length block codes for W
with codewords from J7' and rate at least R. We denote the
distribution of X by Q,. We establish the following connection
between A(n, R) and the numbers A(n, R, P, W).

Theorem 1: For any 8 >0 and n =no| X[, %], 98),

forxeX, y e,

a) — %log An,R+9)

= min [D(P]1Q,) — llog Xn, H(P)— R, P,W)] - &,
Pe?, n
b) — %log A(n, R)
< min [D(PI|Q)) — ~log X(n, H(P) — R — 8, P, W)]
PEY, n

+3.

In order to get estimates on e(R) we can therefore use the
familiar estimates on A(n, H(P) — R, P, W) and thus obtain the
following corollary.

Corollary:

e(R) = glég)[D(PllQl) + E(H(P)—R,P,W)], (23)

e(R) = min[ D(PIQ) + Eu(H(P) ~ R, P.W)], (249)

e(R) < min [D(PIQ)) + En(H(P) = R, P,W)], (29)
where
min

wew
I(P,W)=R

E,(R,P,W)= D(W\w|P).

Remark 2: Equations (23) and (25) were obtained in a differ-
ent form via Chemnov bounds by Gallager [7] and Koselev [8].
Equation (24) was proved by Csiszar and Komer [9]. In the
present form (23) can be found in [9] and (25) in [24].

VL

a) Fix R>0,8>0,and n = no(%|,| %], 8), P € 9,. Recall
the definition of )\(n R, P,W) and note that any (n, N) code

= {(u;, D,)|i= N} for W contains at least N/2 code-
words u; such that W (GD |u;) < 2NC, W).

We conclude that for any fixed P € 9, there is an (n, N,) code
Cp= {(uP &@F)|i=1,---,Np} for the induced channel W such

PROOF OF THEOREM 1

that
{“1" “N,,} qp"
and
=exp (n(H(P) = R)}, (26)
and
Amax(P, W) <2X(n, H(P) —R,P,W). 27
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(It is important here to have a good maximal error code.) From
these “best” channel codes, constructed for every P € 9,, we
form a source code as follows.

By the covering lemma there exist permutations =, -,m/ €
S, such that
kp
U #fu, =97, (28)
i=1
and
kp=[N;" |97 10g| T ] (29)

For every P € 9, we partition the set 9, into the sets

i—1
& p=m"Up— U 7fU,.

Jj=1

i, P

We now define an n-length block code (f, F): for every
x" e X" set

f(x")=(i,Pn), x"EQ p,, (30)
and forevery PEP,,i € {1, -, kp}, and y" € Y" set
F(i,P,y") =alul, ify" €D/ (31)

Next we compute the rate and the error probability of the
source code ( f, F).

||f||S|?P,,|-maka

<(n+ 1)'9‘4 [2exp{—n(H(P)—R)+nH(P)}

n- H(P) + 1]
<exp {n(R +8)}

for n=ny(|%X|,|%|,8), where the steps are justified by (26),
(29), (1), and (5). Further,

A(f, F)= "E KACEE D) “q(x", F(f(x"), y™))
S SIS S0 Wiy
PEZ, i=1x"€Q; p y"

a(x", F(f(x"), y"))

2 exp {—n(D(PIQ,) + H(P))}

Pe?P,

kp
22
i=1qfufe@, ,

<2 3 exp{—n(D(PIQ,) + H(P)))

Pe,
|97 -A(n, H(P) — R, P, W)

(by (27) and (7)).
Hence, by (5) and (1)

Af,F)=2 3 exp{—nD(PIQ,)} -A(n, H(P) — R, P, W)
PEY,

=2n mmax ex -n
<2(n+1) Pe@"[ p {—nD(PI1Q))}

Wn((mPGDjP)" | 1r,-PujP)

X(n, H(P) — R, P,W)],

and Theorem la) follows.
b) Let any code ( f, F) of block length n be given. Let £ =
{z1,* ",z 7} be the range of f. For any z € Z and every type
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P € @, define
@p , = {x"| P =P,f(x") = z}.
For fixed P€ %,z € Z, x" € @, define
Dy, = (3" F(z,y") = x").
We now consider for any P € 9,, z € Z the system
Cp. = {(x", Den p,.) | x" € Qp .} (32)
as a code for the induced channel W. Clearly, | 77" | /2 sequences
in J7' are contained in sets @, , satisfying
|@p 1= 3 TF |- F17 (33)
For any P € 9, let Z'(P) be the set of those elements in Z

which satisfy (33). We analyze now the relation between A( f, F)
and the error probabilities of the codes in (32). We get

A(f,F)=2ﬂE"Q"(X",y")n(X",F(f(x"),y"))
2 2 2 Zei:xM

PeF, €L x"EQ, , ¥"

Wy x")n(x", F(f(x"), y™))
2 exp {—n(D(PIQ,) + H(P))}

PEY,

22 WD p el x")
2€EZ x"€8@p ,

zl{réag exp { —n(D(PIIQ,) + H(P))}

2 2 WDl X",

2EZ(P) x"€Q, ,

where we have applied (7). Furthermore,
2 Wn(GD;",P,z|xn)ZIQ’P,Z|X(@P,27W)

x"€EQp ,
- 1 ’
2|@P,z|?\(n,;10g|éﬁp’z| ,P,W).

Now use (33) to obtain

2 18 .1=35
z€Z'(P)

and continue again by using (33) and (5) to obtain
N/, F) = max exp {—n(D(P11Q,) + H(P))}
E n

1 < 1 1 n -
E|an|>\(n’;log(ElG‘TPIHf” 1)9P’W)

= max exp { —nD(PIIQ,)
Pe?,
+log A(n, H(P) —R—8,P,W) — n8}

for n = no(| %, Y|, ).
Theorem 1 is proved.

APPENDIX II

An Iterative Code Construction Achieving the Random Coding and
the Expurgated Bound

Theorem 2: For any R>0,8>0, n=n(|%|,|%],8) and
every type P € &, the following is true.
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a) Let C= {(u;, D,)|i=1,---,N} be an (n, N) code such
that (1/n)log N<R and u, € 3 for i =1,---,N. Then
there exist an n-sequence uy., € 9,' and proper decoding
sets by, - -,6,,., such that the enlarged (n, N + 1) code

e ={(u;,8;)]i=1,--,N+1}
satisfies for any channel W € U the inequality

- 1 -

+2exp {—n(E(R,P,W) = 8)}). (34)

In particular, if A(C, W) is less than 2 exp

{—n(E(R, P, W) — 8)}, then also A(C’, W) is smaller than
this quantity.

b) Furthermore, if we prolong the (n, N) code C to C’ by

choosing u,, , at random according to the equidistribution

on 9, then the probability of selecting an uy, , for which

_ 1 -

+2exp {—n(E(R+¢&,P, W) —8)}) (35)
holds for any W € U is larger than

en[(3+0)

Theorem 3: For any R>0, n=ny(|%|,|%|,d) and every
type P € @, the following is true.

a) Let uy,--+,uy € J,' arbitrary n-sequences, N < exp{nR}.
For every W €U let C% = {(u;,D/)|i=1,---,N} be
the ML code with respect to W to the codewords u,," - -, uy.
Then there exists an n-sequence uy,, € I such that for
every W € U the ML code with respect to W satisfies

ACY,w) <(1/(N+1D)(N-XC¥,w)
+2exp { —nE,(R+8,P,W)}). (36)

Again, if N(C¥,w) is less than 2 exp{—nE,(R +
8, P, W)}, then also A(C’", W) is smaller than this quan-
tity.

b) If the additional codeword u, , , is chosen according to the
equidistribution on 7', then the probability that (36) can
be fulfilled is larger than 1 — exp{—(8/2)n}.

Remark 2: Since for N =1 MC, W)=<2 exp{—n
(E{R, P, W) — &) and NC¥,W) =<2 exp{—nE. (R +
8, P, W) — §8)} are obviously achievable, Theorem R (resp. Theo-
rem EX) are immediate consequences of Theorem 2 (Theorem 3).

Proof of Theorem 2: Suppose we are given § > 0 and an (1, N)
code

C={(u, D)|i=1,"
where (1/n)log N < R and ; € J;' for i = 1,- - -,N. By Lemma
la) there exists a uy,, € J5' such that

~ + 3
g, (Unsi) Sexp n(H(WIP) —[I(P,W)—R] +58
(37)

holds for any pair W, W € Q. We show that with such a choice
of uy ., (34) can be fulfilled, so that Theorem 2a) will follow. It is
clear that then Theorem 2b) follows directly from this proof and
from Lemma 1b).

’N}S
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First we define new decoding sets

&,=D,— {(y"[1(uns1 Ay") > 1(u; AY")},

fori € {1,---,N}
and
by = {yn|1(“N+l /\)’") >I(“f Ay™),

foralli € {1,---,N}}.

Obviously, the &, are disjoint subsets of %", Set €’ = {(u,, &,)|i
= 1,---,N + 1}. For these codes, C and €, we show (34). We
estimate A(C’, W) for any W € U. Now

1 N+1

Ne,W) = 1 2 W (68 u,)

N+1(2<wn(@‘|u>+wn<@ 61w)

+ W"(g;ﬁl l “N+1))

1

N
=NFT|NMew) + T WD, & |u,)

i=1

+W"(6.’L§/+||“N+l))~ (38)

First we bound the error probability of u, ., from above.

W"(gﬁz+1|“w+1)
= w({y" | I(uysy Ay") < I(u; A y™),

for some 1 <i < N} |uN+1)

N
= 2 wr g},(“NH) nu g,%(“i)|“~+1)
W, Weal,(P) i=1
I(P,W)<I(P,W)
= 2 &y ;,';(“n+1)
W, WEW,(P)

I(P,W)y<I(P,W)
-exp { —n(D(WIW|P) + H(W|P))}

by (8), and the definition of g, - Obserying that I(P, W) =
I(P, W) implies [I(P, W) — R]* <[I(P, W) — R]* we obtain

with (37)
W (&5 | uner) < 2 exp{~n(D(W||W|P)
W, WeW,(P)
I(P,W)<I(P,W)
+[1(P,W) - R]* —%s) }

<I%,(P) P+ max exp {=n(D(W1W| P)
wel

-31)

<exp {—n(E,(R, P,W) —38)}

+{1(P, W) (39)

(40)
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for n = ne(8,| % | ,| ¥), because of (2). Further

N
E W"(GD,' — &, “i)

i=1

i M=

W"({yn €D, [ I(uysi Ap™) > I(u; Ay™)} |u;)
i=1

2

W, weas,(P)
I(P,W)<I(P,W)

[N ZE

W"(GD,' n 65:7(“:‘) n 65,:3(”1%1) | “i)-

i=1

(41)
By (3),
W( (u)ﬂ ‘(“N+|)|“)
—exp{—n(D(WIIW]P)+H(W|P))}
D N FE(u) N TRy s)]-

Since the sets 9; are disjoint we get

(42)

N
2 |6D ng (“ )ng (“N+1)|

= g,%,(uN-f-l) N [Eléj;';(“i) = 8;‘,;,(14N+1)- (43)
Combining (41), (42), and (43) we obtain as before with (38)

N
2 W"(GD,' — & “i)

i=1
< S exp { —n(D
W, We,(P)
I(P,W)<I(P,W), PW=PW

-exp {n(H(vf/|P) —{rp,w)-R]" +%s)}.

Since I(P, W) < I(P,W) and PW = PW (by assumption) imply
H(W| P) < H(W| P), we conclude (as previously for (39) and
(40)) that

(Wiw)|P) + H(W|P))}

N
2 WD, =&, u)<exp {—n(E(R,P,W) —8)}, (44)
i=1

for n 2 no(| %|,| %], 8).

Theorem 2 is proved.

For the proof of Theorem 3 we shall need an auxiliary result,
which is an analogy to Lemma 1 for the expurgated bound.

Fix R>0,8>0, PE®,, and let {u,, --,uy} CIy,N=<
exp{nR} be given.

For any V € V'we define the function f, on X" by

fr(u) =|{ilu€T)(u;)}|, forueX" (45)

fv(u) measures the V-relationship of u to the given code word
system {u,,"--,uy}. Note that f,(u) = 0 if ¥ & YV (P), because
in this case ,/(u,) = @ foralli=1,---,N.

Lemma 3. Let U be a random variable equidistributed in J;".
Then for any ¥V € ¥

a) Ef,(U)<(n+ )X -exp{n(R—I(P,V))},
b) Pr{f,(U) = exp{n(R — I(P,V) + 3/48)}, for some V
€V} <exp{—n(6/2)}.
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Proof:
Ef, (V)
= EHPT(U= u)fy(u)
<exp{—nH(P)} -(n+ ])|9q 2 fo(u)

= e (—nH(P)} - (n+ D™ 3 [{u € T u e T(u))
(46)
= e {(=nH(P)} - (n+ D™ 3 [97(w)

<N - exp {n(H(V|P) — H(P))} - (n + D™
< (n+ )Mexp (n(R+ H(V|P) — H(P))}.

The first inequality follows from (5) and the fact that U is
equidistributed. (46) is obtained by counting and (47) is a conse-
"quence of (6).

Now let PV be the distribution on % given by

PY(z) = ZP(x)V(%|x),

(47)

for # € .

Then from the definition of f, it is clear that for u € ;'
fy(u) =0 if PV 5 P. Therefore, we can assume that PV = P.
Then, however, H(V|P) — H(P) = H(V|P) — H(PV) =
—I(P,V). Hence, in any case

Ef,(U) < (n+ D)Mexp (n(R— I(P,V))}.
Part b) follows by Chebychev’s inequality.
Proof of Theorem 3: Let §, R,P €D, uy, -+, uy €I, be
given. Then by Lemma 3 there exists a uy ., satisfying
foluns) =< (n+ ) exp (n(R = I(P,V))}

for any ¥ € V.

For any W € 9 we consider the ML codes C% = {(u,, D) |i
=1,--,N} and C'% = {(u,,&")|i=1,---,N+ 1}. We esti-
mate for every W € U

(48)

- o N+1 e
XEY. W)= S W (%) 1u).  (49)
First we bound the error probability for uy ., ;.
Wn((6£/+1)c| uN-H)
N
=2 2 W(y" | tni1)
=1 Y™ Wu)> Wy |y ) (50)

N
=2 2 ‘/W"()’n|“i)‘W"()’"|“N+l)-
i:ly"eﬁy"

Now recall the definition of the function d in Theorem EX and
observe that

2 ‘/W"(J’"|“1)W"()’"|”N+|) = €xp {—nEd(X, f()},

yn =o'
(51)
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where X, X are random variables on % of joint distribution
Pui sy UN+1-

Now we count how often every sum of the form (51) occurs in
(50). We use (48). Note that in (48) f,(uy.,) is a positive integer
so that f, (uy, ) = 0,if R + (3/4)8 < I(P, V). Hence, we get

W"((6£/+l)c|“lv+l)

<|%V,| -exp{—n- min
I(XAX)<R+(3/4)%
X, X p-distributed

+I(XANX)—R —%8]}

[Ed(X, S

=(n+ l)‘gqvl@‘exp {—nEex(R + %8, P, W)}
<exp{—nE,(R+8,P,W)}, (52)

for n=ny(|%|,[ Y], 8). Since the code C'% is an enlarged
version of C% and since both C'" and C% are ML codes,
obviously

&Y DY resp. (8¥) > (DY), fori=1,--,N.
Therefore we can write fori = 1,---,N
wr((6%) ) = wr((DF) | u) + w(DF = X |u),
(53)

where
DY =&Y ={y" €D w(y"uns) > W(y"|u)}

is a subset of &) .
Using (48), by the same arguments as above, we get the
estimates

N
2 Wn(GDiW_giwlui)
i=1
N
= 2 2 W"(Y"l“i)
i=1 yrea¥ ¥ (54)
N
= 2 2 ‘/Wn(y”uNH)Wn(y"‘“i)
i=1 y"eﬁy"

<exp{—nE,(R+8,P, W)}

for n=ny(| K| ,| Y|, 8).

Summarizing we obtain by (49) and (52)-(54)
_ 1 y o 9)°
_N+1 EIW((i)lui)

i=

A, w

+2exp {—nE,(R+8,P, W)}

_ 1
N+1

+2exp { —nE,(R+8,P,W)})

(N -X(C¥, W)

for n = ny(| K| ,|%¥| , 8). Theorem 3a) is proved. Part b) follows
directly from this proof and Lemma 3b).



APPENDIX III

Good Codes Are Highly Probable

In the standard Shannon random coding method [22] one
derives bounds on the expected average error probability and
then concludes that at least one code must be as good as the
ensemble average. For high rates this leads to asymptotically
optimal results (E(R, W) = E,(R, W) for rates near capacity,
see [19]) and therefore in this case “most” codes in the ensemble
must be close to the optimum. In the study of complex channel
systems such as arbitrarily varying channels ([4]) it is necessary to
have estimates on the proportion of codes in the ensemble which
are good. Also, if random selection is of any practical use, one
would like to have bounds on the probability with which a good
code can be found. First steps in this direction were taken by
Dobrushin and Stambler in [26], and independently in {3] and [4].
The papers [26] and [3] consider the average and the paper [4] the
maximal error probability.

Here we show considerably more. Whereas in all those papers
the error probability was kept constant we allow here A to meet
the random coding bound and still show that for a random
selection the probability of not meeting those bounds is double
exponentially small. Moreover, we obtain estimates in the double
exponential function.

We first state the result. Theorem 4 estimates the probability
that randomly selected and expurgated codes are “good.” Theo-
rem 5 gives a result for nonexpurgated codes. In order to for-
mulate Theorem 4 we have to introduce some notation concern-
ing the expurgation of a code.

Let n, 8 >0, and P € 9, be given. U,,- - -, Uy are independent
random variables equidistributed on ¥,', N = exp{nR}. For out-

comes u,, - -,uy € 9, of U,---,Uy we define the functions
) F(ula' - "uN) and G(ul" . "uN) by
1) F(uy, --,uy) =1 if there exist u;,--,u, € {uy,---,uy}
and suitable decoding sets GDI.‘,- . -,ngM C %" such that M =
N/2 and for C= {(u;,, D, )|k =1,---,M}

A(C,w) =<2exp{—n(E(R,P,W)—8)}, (55)

for every W € W. F(u,,- - -,uy) = 0 otherwise. Similarly,
2) G(uy," - -,uy) = 1, if there exist u;,---,u; € {uy, -, uy}

such that M >N/2 and such that for every W € A the
corresponding ML code

& = (1 A) = 1,11

satisfies

X(CY,w) <2exp{—nE,(R+8,P,W)}.

G(uy,- -+, uy) = 0 otherwise.

Theorem 4: In the notation above for n = ny(|X| ,| %] , 8)
Pr(F=0)<exp{— (n-8/4 —log2)exp {nR}}, (56)
Pr(G=0) <exp{— (n-8/4 —log2)exp {nR}}, (57)

that is, the procedures fail to achieve the random coding bounds
(resp. expurgated bounds) uniformly for every W € W with
double exponentially small error probabilities. Moreover the ex-
ponent R is optimal.

By somewhat more refined calculations we obtain the next
theorem.

Theorem 5: For any 8 >0, R>0, n = ny(| %], |
P € @, the following is true.

%Y\, 8), and
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Let U,,- - -, Uy be independent random variables equidistrib-
uted on J;' and for any W let C*(U,, - -, Uy) be the ML code
for the codewords U,,- - -, Uy. Then
Pr(X(CY(U,, -+, Uy), W)

=2exp {—n(E(R,P,W) —28)})
<exp { —exp {n(R —E(R,P,W))}}
for all W € 9.

Remark 3: This result shows that for R > E,(R, P, W) codes
achieving the random coding bound can hardly be missed by
random selection. Notice that for R < E,(R, P, W) the probabil-
ity to select a code with P-typical codewords not achieving the
random coding bound is larger than the probability that in a
selected code there are two equal codewords. Since the latter
probability is at least exponentially small, for R < E(R, P, W)
we cannot get any double exponential estimate.

As a new problem in the area of error bounds we propose to
find the exact exponent for all rates R > E(R, P, W).

Proof of Theorem 4: Fix >0, R>0. Let n =ny( %],
|%| , &) such that Theorems 2, 3 hold.
Let U,,---,Uy be independent random variables equidistrib-
uted on G, N = exp{nR}.

Consider the following “expurgated codes”: Set C.(U)) =
{(Uy, Dy,)} with the decoding set D, = Y". Clearly,
AC(U), W) = 0 for every W € . For i = 2,---,N we define
the codes G, (U,,- - -, Uj) by extending C.(U,, - -, U;_,). Suppose
i=2 and assume that C, (U, -,U_y) = {(Uy, D;), -+,
(U, Dy)} with k codewords Uy,- -+, Uy € (U, -+, U} has

been defined. Then we prolong this code by the codeword U, to

the new code
11 U) = {((le’ 6/1)5' T (U,'k, gjk)!(Ui! 5i)}’

C‘Zex(ljla"'vljl*
where, for (=1,---,k, &,=D, — {y"| (U, N\y")>I(U; N
k.

»™)} and where
&= {y"1 (U, Ay")>I(U,Ay"), forall [ = 1, --

If for all W € U
ACo(Urs -+, Uy | U), W) = 2exp {—n(E(R, P,W) — 8)},
then we define
Cox(Ur,- -, U) = Cou(Uy- -+ Ui | U).
If this is not the case we set
Cox(Uyy -, U) = Cou(Uy,- -+, Uimy).

In this way we gave a formal definition of the expurgation of a

given code with codewords U,,: -+, Uy.

Now let S; be a random variable on {0, 1} such that S; = 0 if
and only if C (U, -, U) # Co(Uy,- - -, U_), that is, S; = 0 if
and only if the codeword U, was not expurgated. We observe

NN
Pr(F=O)SPr( 2&23)’ (59)
_ i=1
and
Pr(S; = 1|8, = s;—1, -+, 8 = 51) = exp {"” } (60)

for any values s;_;,--+,s; € {0,1}. Equation (59) follows from
the definition of the functions F and S|, - -, Sy. Equation (60) is
a direct application of Theorem 2b). Hence, we only have to
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estimate P(Z/. | S; = N/2). This can be done by using Bernstein’s

trick.
For any a >0

N N N N
Pr( > SiZE) Sexp{——a ?} - ET] exp {aS;)}.
i=1 i=1
Now apply (46) to estimate the expected value on the right-hand
side. Thus we obtain
) fer )
as exp n>

Pr(é}S,Z—]zi) Sexp{
-exp {a} + (1 — exp {—ng})]N.

(3]

1 —exp —ny
(2]

exp | —n5

which is positive for n = ny(8). Then,

Choose in particular

a =log

N
Pr( xS = N/2) <exp {—D((1/2)llexp { —n(8/2)}) - N},
i=1
where D( pllA) denotes the I-divergence between the probability
vectors (p,1 — p) and (A, 1 — Q).

We can estimate this divergence:

ol b1en{ 13 -

1 )
—log2 — 2 log exp {—ni}

1 : 8
—Elog(1~exp{—n5})

=—log2+n- %
Thus, Pr(F = 0) < exp{—(n(8/4) — log2) - exp{nR}}. This
proves the first part of Theorem 4. The proof of the second part
is completely analogous.

We have to show that the exponent R is best possible. For this,
choose any codeword u € 5/, P € 9,. Define C as a code with N
codewords u,, - -,uy; ;= u for all i =1,---,N. We make two
observations: Cis a “bad” code, even if one expurgates C. On the
other hand, the probability to choose € at random is of the order
exp{—O(n) exp{nR}}.

Proof of Theorem 5: Fix 8 >0 and n=ny(|X|,|%¥], 8)
such that Theorems 2 and 3 hold and choose N = exp{nR}.

Let U,,- -, U, be independent random variables equidistrib-
uted on 97 and let W € W. We consider the ML codes
CW,, -+, U), k=1,---,N, that is codes with codeword set
{U,,- -+, U} and maximum likelihood decoding with respect to
the given channel W. We define the random variables 7}, - -, Ty
on [0, 1] as follows: 7, = M(C(U}), W) =0, and for k =1,---,N
— 1 the random variable T}, is defined by

AMe(U,, -+, Us), W)
k .+. 1 (k }\(G(Ulr : ’Uk)aW) + Tk+1)'
Observe that with this definition
k
T 1
ANC(U, -, Uy), W) =% 2 T,

for any k = 1,---,N.
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Using this notation Theorem 2 says that for any £ =0 and for

any values f,,- - -,f; of the random variables T}, - -, T, we have
Pr(T, ., >2exp {—n(E(R+ & P, W) —8)}
|T1 = tl!'“sTk = tk)
)
<exp{—n 5+§ R k=1,--,N—1
(61)
For any £ = 0 we define random variables S, ;, i = 1,---,N, on

{0, 1} such that S; ; = 1 if and only if
T,>2exp {—n(E(R+ ¢ P,W)—8)}.

Thus, 3¥S, ; counts the number of 7; of a certain size. Note
that |7,| < 1 and E(R + ||, P,W) = 0, since E(C, P, W) =0,
where C is the capacity of W. We express the error probability of

the code C(U,,- -, Uy) with the help of the “counting vari-
ables” SN S, ;. Let m be a positive integer, 1/m < 8/2. Then
A(G(Ul,---,UN),W)
1 X | "N
i=1 j=1 \i=1
~2exp{—-n(E,(R+%,P,W) —8)}.

Here we have counted those 7; which lie in intervals of the form

[2exp{—n(E,(R+#-,P,W) —8)},
~2exp{—n(E(R+j+l P,W) —s)”.

Therefore, A(C(U,," - -, Uy), W) becomes large, if the expres-
sions 2,8, ;,,, become large.
We show that for any £ =0

{ES,fwexp{ n(R— (E(R,P,W)

i=1

s )]
Sexp{—(hg_z) exp {n (R
_E,(R+g,p,w)))}}. (63)

Again we use Bernstein’s trick. Abbreviate 7 =1 —
exp{—n(E(R,P,W)— E(R + &, P,W))}. Then for any a >
0: :

N
Pf{ E Sit
i=1

In order to estimate the expectation on the right-hand side it is
necessary to have estimates on conditional probabilities of the
S;. ¢- Now observe that from the definition of the S; , and because
of (61) we have for any £ =0 and for any values s,,---,s;_, €

{0, 1}
Pr( S, sl,---,S,-,,‘Ezs,-_l)Sexp{—n(%+£)}.
(65)

— (E(R,P,W)

ZN‘(]—T)}

<exp{—a-N(1—7)}-E][] exp{aS,;}. (64)

i=1

e=18:=

Iy
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We get from (64) and (65)

Pr{ g S =N - 'r)}
=1

=exp {—aN(l —r)}[exp{—n(%-#&) + a]

R ——l

l—exp{—n(%-hf)} BT
exp{—n(%ﬁ-&)] 4
Since E(R,P,W)— E(R+ ¢ P,W)<¢ for all £=0, the

number a is positive for n = ny(8). We obtain from (66) with this
choice of a:

Pr{%S,-YSZN-(l—'r)}

(66)
Set

a = log

<2-exp{—n(E(R,RP,W)—28)},
for n sufficiently large. Now (69), (68), and (62) yield
Pr{X(C(U, -+, Uy), W) =2exp {—n(E/(R, P, W) — 28)}}
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Suppose now that

N
> S,-_j/mSexp{n(R— (E,(R.P,W)
=1

—Er(R+%,P,W)))}, =1 m | %,

Then we can continue with (62):

X(G(UI" ’ "UN)’W)

m-| %}

=23 exp[—n(E,(R,P,W) —E,(R +£,P,W))

j=1

—n(E,(R+%,P,W) —s)}

<2-m-|%| -exp{—n(Er(R,P,W)-F—r%-}—ﬁ)}

(69)

Sexp{— (ng —2) exp {n(R — E(R,P,W))}

Theorem $ is proved.

i=1
sCxp{—D(l —Tllcxp{—n(g+$)]) -N],
where

p(1—rlesp {-n(§+£)})

2710g1-+(1—~r)10g(1—~r)+n(%+§)-(1—7). .

(2]
From the fact that log(l — x) = —2x for small positive x we
conclude that log r = —2(1 — r) for n sufficiently large. (3]
Hence, for large 7, ‘

ot {-o{ 1))

2[n(§+§_(E,(R,P,W)—E,(R+§,P,W))] 5]
(=1 =2(1—7) .
B ("g - 2)(1 =) (67)

= (ng — 2) ~exp{—n(E(R,P,W)— E/(R +§, P,W))},

(7

(8]
where (63) is true, because E(R, P, W) — E(R + £, P, W) =<§. (9]
Equation (63) is proved. Finally, we have to show that (63) and
(62) imply Theorem 5.

From (63) we conclude first that for all £ =0 (10]

[11]
[12]

Pr{g1 S, ¢=exp{n(R—(E(R,P,W)

nrcrom)

(13]

Sexp{—(ng—z) -exp {n(R — E(R, P,W))}, [14]

if nis large.  (68)
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Alphabet-Constrained Data Compression

JERRY D. GIBSON, MEMBER, IEEE, AND THOMAS R. FISCHER, MEMBER, IEEE

Abstract—The optimal data compression problem is posed in terms of
an alphabet constraint rather than an entropy constraint. Solving the
optimal atphabet-constrained data compression problem yields explicit
source encoder/decoder designs, which is in sharp contrast to other
approaches. The alphabet-constrained approach is shown to have the
additional advantages that (1) classical waveform encoding schemes, such
as pulse code modulation (PCM), differential pulse code modulation
(DPCM), and delta modnlation (DM), as well as rate distortion theory
motivated tree/trellis coders fit within this theory; (2) the concept of
preposterior analysis in data compression is introduced, yielding a rich, new
class of coders; and (3) it provides a conceptual framework for the design
of joint source/channel coders for noisy channel applications. Examiples
are presented of single-path differential encoding, delayed (or tree) encod-
ing, preposterior analysis, and source coding over noisy channels.

I. INTRODUCTION

HE GOAL of data compression is to process source

information, such as a voice or video signal, to obtain
the simplest possible representation of the source with an
acceptable loss in quality. Phrases sometimes used as syn-
onyms for data compression are “source coding with a
fidelity critedon” and “redundancy reduction,” although
the latter is somewhat restricted in scope [1, pp. 8-9]. As
noted by Gray and Davisson [2], [1, pp. 21-25], work in
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MD, March 25-27, 1981.
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data compression historically has followed one of two
substantially different approaches, each approach having
been pursued by an entirely different group of researchers.
One group of workers has relied principally on intuition
and experience to design data compression systems for
specific sources such as speech or images [3, pp. 1-3], [26].
One of the principal contributions to this approach was the
invention of the delta modulator by Cutler in 1952 [4]; this
differential encoding structure is prevalent in data com-
pression systems today. Another group of researchers has
taken the rate distortion theory approach that has its origin
in a paper published by Shannon in 1959 [5]. The emphasis
of the rate distortion theory based approach has, in past
years, been on deriving the optimum performance theoreti-
cally attainable (OPTA) for given source, fidelity criterion,
and coder assumptions [1], [6]. The proofs of OPTA theo-
rems sometimes provide constructive procedures for de-
signing source codes. For example, the familiar random
coding argument indicates that for sufficiently long block
lengths, a nearly optimal code can be found by selecting a
code at random from a particular code ensemble. Unfor-
tunately, such codes have no discernible structure, and,
hence, the required code book grows exponentially with
block length. Thus these codes are not instrumentable [6, p.
199]. Much effort has been expended recently on obtaining
suboptimal coder designs that are motivated by rate distor-
tion theory considerations [7]-[16], [36]. However, OPTA,

not source coder designs, has been the principal output of

the rate distortion theory approach.
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