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Motivated by a certain model of parallel computing ‘in unreliable networks we study
combinatorial problems of the following type: For any graph and any integer ¢, what is the least
number d such that removal of any d edges (or vertices) leaves a graph with a largest connected

- component of more than ¢ vertices. We nge rather precxse estimates for the n-cube.

1. Introduction ’

Consider L processes.operating asynchronously in parallel. The program of
each process contains a specified area of code called critical section, which
requires for its correct execution that no other processes are 51multaneously in
their critical section. Such a code might manipulate a common resource (e.g. line
printer, tape drive), in which case access to the critical section corresponds to
allocation of’ the resource. So the problem is to control access to the critical
section in such a way, that the following basic requirement is satisfied:

(C1) Mutual exclusion. No two processes may be in their critical section at the
same time. ‘

In order to provide mutual exclusmn at all, there must be the possibility of
interprocess communication. In 1965 Dijkstra [1] proposed and solved the critical
section problem for the case that the communication mechanism is a shared
memory with elementary read and write operatlons This soluuon satisfies (C1)
and has the obviously desnable property:

(C2) No deadlock. It is not possxble for all processes to become simultaneously
blocked in such a fashion that none of them will be able to enter its critical
sections.

Knuth [2] pointed out that Dijkstra’ s solution does ‘not meet the following
requirement:

(C3) No lockout. It is not possible for an individual process to be kept forever
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from entering its critical section by some (perhaps highly improbable) sequence of
actions by the other processes. :

Knuth presented a solution which satisfies all of (C1)-(C3). Further improve-
ments and new solutions were given by de Bruijn [3], Eisenberg and McGuire [4],
Rabin [5] and in [6], [7]. .

~ All these solutions have the property that they employ a ‘global variable. This
has a serious drawback in a real multicomputer system: the failure of the memory
unit containing the global variable will halt the entire system. Therefore Lamport
[8] proposed a system in which each process contains a local communication
variable. Each process may set only its own variable, but may read the communi-
cation variable of any other process. Lamport’s solution was improved by Rivest -
and Pratt [9] and Peterson and Fischer [10]. '

In real multicomputer systems physical limitations are likely to imply that each
computer can only be connected to a limited number of others. Then a failure of ?
few processes and connections may disconnect some computers from the rest of
the system. In that case it is natural to replace condition (C3) by

(C3) Minimal lockout. At any time the number of processes which are locked
out from entering their critical section is minimal.

In other words, if certain processes and connections fail with the result that the
rest of the system is disconnected, then it has to be guaranteed that the processes,
which belong to the largest connected component, continue to compete for
entering their critical section, while all other processes are locked out during this
state. If every connected component of the system contains fewer than [3L] +1
processes, then no process has the possibility to check whether the component it
belongs to is maximal. In this case there exists no solution to the critical section
problem, which satisfies the basic requirements (Cl) (C2) and (C3’) simultane-
ously.

We ask how easy this case can occur for a multiprocessor system. Representing
the network topology by a graph G =(V, E), |V|=L, the question can be stated
as follows:

How many arbitrary vertices and (or) edges can be removed from G such that
- the resulting graph has.at least one connected component of size greater than
3L +1?

From a combmatonal point of view there is no reason to stick to the number
BL]+1, and we- therefore replace it by any number c¢. For. graphs G=(V,E)
with a maximal connected component of size greater than ¢ we are lead to the
following extremal problems.

Problem 1. Denote by p(G, ¢) the maximal number with the property that
removal of any m < u(G, c) edges results in a graph with a maximal component
containing at least (=) ¢ vertices. Derive estimates on w(G, c).



Extremal problem for unreliuble networks 139

Problem 2. Removing vertices instead of edges one can define analogously the
function A(G, ¢) and try to obtain bounds for it.

Problem 3. More generally, denote by P(G, ¢) the set of pairs (I, m) such that
removal of any I vertices and any m edges leaves a connected component of size
at least ¢. Characterize P(G, c).

It is often more convement to use the functions (defined for all G and all-
ce{l,...,|Vl} ™G, c) (resp. /\*(G ¢)) = minimal number m(resp. 1) with the
prOperty that there exist m edges (resp. I vertices) whose removal results in a
graph with a maximal connected component of size smaller (<) than c.

Whenever p or A are defined; then

w*(G, )= u(G, c+1)+1, MG, ) =A(G, c+1)+1. (1.1)

Clearly, by (1.1) our estimates for w(resp. A) can be converted into estimates for
w*(resp. A*), and vice versa. Thus we use whichever terminology seems more.
appropriate in a particular case. :
The problems stated above are trivial in the following

Example 1. G=K,, the complete graph with L vertices. Obviously, A(K}, ¢) =
L —c. In order to determine u*(Kj, ¢) observe that one has to remove 3 ¥7_, (L —
L)L, edges, if the resulting connected components Z; (1<i=<1J) shall have
L,=L,=---=L; vertices. Under the condition L; <c¢ (1=<i=<I)

1 I I

32 Z (L-L)L, ——<L2 Z >

is minimal exactly if

Li=c forl=<is<t L,,=c
where L =c¢ - t+c¢’, ¢’ <c. Therefore

w* (K, ©)=3(L>—c*-t—c'?).

-Now also P(K;, c) can be determined, because the worst case arises, if we
remove first vertices and then edges.

It seems hopeless to solve the problems above (even in an approximative sense)
for arbitrary graphs, but the example shows that there is hope in special cases.
The actual design of networks has to take into consideration constraints such as
limitations of technical equipment, availability of tools, space etc. The study of
special graphs is therefore also of interest. In subsequent sections we are con-
cerned with the n-dimensional cube, which has been frequently suggested as
network topology for computing problems. For a survey and bibliography see
Siegel [11]. Two combinatorial results of Harper [12, 13], presented in Section 2,
serve as basic tools in our analysis. Here we raise some questions and make some
comments concerning general graphs. '
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1.) For which graphs can p™* and/or A* be determined or can at least ‘good’
lower and upper bounds be derived?

2.) Denote by ‘G(L M) the set of all graphs with L vertices and M edges. Which

“graphs in G(L, M) are extremal in the sense that they have (a) maximal or (b)

minimal p*(resp. A*) values?

For the model of parallel computing descrlbed above question (a) seems to be
the most important one.

Given the number of vertices and edges, which graphs are least sensitive
towards ‘destruction’? :

The answer will depend on the number of objects (edges or vertices) removed,

~ as can be seen from the following simple

- Example 2. L =6, M=9. See Fig. 1.

G, 9 7 5

4 2 0
G, 9 6 5 4 30

© Thus Gy, 2)>p*(Ga, 2), w*(Gy, 5)<p*(Gy, 5).

It would be interesting to know whether ‘one can exhibit a finite number of
types of graphs (as for instance quasi-complete graphs, quasi-star graphs in the
sense of [14], etc.) in which for all values of L, M and I (resp. m) extremal

-configurations can be found. Whereas this problem seems hard, the dual problem

(b) is merely an exercise. We state the result therefore without proof as
Proposition 1. Define

'Y(L,JM) mm{c w*(G, c) 0},

GG(

that is the least size of the largest connected component for the graphs in G(L, M).
Then - :

@ it 2= <k=r, | E|(5)o (F 704 pg)
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(2) w(G,m)=y(L,M—m) for all GeG(L, M).
) MG, =L =1 max(M— (]} ~104-0,0)) for al Ge 1, )

(4) For any G € G(L, M) removal of | poinis and m edges leads in the worst case
to a largest connected component of size.

max(L -1, max(l![;(_é)—. I(M~-1)— m, 0))

(By convention (3) =0 for t<<2.)

3.) We can replace the G(L, M) in 2.) by suitable subclasses such as the regular
graphs R(L, M) (if parameters permit). What are in this case the extremal
conﬁgurations? _ , ' L

It is worth knowing that among the regular graphs the n-cubes do not always
yield maximal pn* values. S

Example 3. The 4-cube C* has L = 16 vertices and M = 32 edges. Our Theorem
1, Section 3, implies that ' . :

p*(C4 8)=8.

However, it has been checked by computer that for the graph G in Fig. 2
(L =16, M=32) n*(G, 8)= 10 holds.

AN

N

/]

Fig. 2.

4.) Finally, we draw attention to the extensive literature [15-21] on network
reliability problems in probabilistic settings. However, the present problem con-
cerning the size of the largest connected component has to our knowledge not
been considered. The combinatorics changes with changes of the probabilistic
model and several problems arise. ‘ '

Suppose for instance that edges are removed independently with the same
probability. In our context it is of interest that the n-cube has asymptotically
maximal probability for reliability (1 connected component) among all graphs

- with the same number of vertices and edges [30].
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2. Harper’s “isoperimetry” theorems

Let H" =]; {0, 1} be the set of (0-1)-sequences of length n and let d denote
the Hamming metric in H", that is, for any two elements X" =(X1, ..., Xn)s

Y":(}’1,-7-:Yn)€I'In 4 )
d(x", y) =t x# v, 1st=<n}l. N 2.1

This is a very canonical metric for (0-1)-sequences and was used by Hamming for
his investigation in the theory of error correcting codes. We therefore refer to
(H", d) shortly as Hamming space. In this terminology the n-cube C" =(V,, E,) is”
a graph with vertex set V,£H, and edge set E, Ax" y"}:x", y e H",
d(x", y*) =1}. The following two configurations play a key role in several com-
binatorial extremal problems. ' A V

The quasi-sphere S, n

For any neN (the set of natural numbers) and any N, 1=N<2" there is a
unique representation.

n n a a
N:( )‘r‘—. . .+< ‘ )+( k)+' . .+< s)

n k+1 k : s _
forsome k,s—1<k<n and n>aq >a_> ' ->a=s=L (2.2)

We denote by S,y the set of all n-sequences ‘with [ zeros, k+1=<I=<n and
%)+ - -+ (%) n-sequences with k' zeroes chosen in lexicographical order.

The quasi'-subcube' Cun
Every N, 1<N <?2" can be (uniquely) written in the form »
N=2h+2b+4. . .4+2% _ .. ' (2.3)

where the exponents are nonnegative integers with iy >i;>+ - > i

Any set of 2% vertices of the n-cube which agree in a specified set of n—k
coordinates will be called a k-subcube. A shadow of a k-subcube is a k-subcube
obtained by complementing one of the n—k fixed coordinates. -

A quasi-subcube of C™ with N vertices is a subgraph, whose vertex set in the union
of the vertex sets of subcubes of dimension i, 1=<j=<s, such that each subcube is
containedl‘in the shadow of every larger subcube. .

In particular, if the components specified ZV=(2y, 0005 Zam), 1 =1, .., 8, are
always the first possible in lexicographical order, then we obtain the quasi-

“subcube C, 5. We denote the i;-subcube corresponding to z" ™ by C(z™5).

Motivated by certain coding problems Harper found the answer to two basic
extremal problems, which for tutorial reasons we state in reversed historical
order. ’



Extremal problem fbr unreliable networks 143

Minimal surface prdblem
For vany set A < H" define
- I'A={x":x"eH", d(x", y")=<t for some y" € A}. _ (2.4)
I'"A— A is called the t-surface of A.

Theorem I ([13]). For all t=1, 2,...; 1st2"

—-—/

IFIA AI IrtSnN Sn,,N"

ACH" IAI

Furthermore, with the parameters of (2.2) A -
» n n n ay ‘ ag
t — RS Fee +
TS0 (n) <k+1> <k—t+ 1) (k - t>+ +(s—t)'

Remark 1. In case () +- -~ +(¢+,) = 0 the quasi-sphere S~ 18 actually a spherc of
Hamming radius k+1 and center 0=(0,0,...,0). H" can be viewed as vector
space over GF(2) and the metric d is invariant under translation by a vector.
Therefore the above statement applies to spheres or quasi-spheres with any
center. The special case ¢ =1 has a striking interpretation and simply means that
given the cardinality (‘volume’) the sphere has minimal (cardinality of the)
surface. This phenomenon is known as isoperimetric property for euclidean [22]
and also non-euclidean geometries [23]. Since (H", d) is isomorphic to the family
of subsets of an n-set endowed with the symmetric difference as distance function
every result about (H", d) has directly a set theoretic interpretation.

Remark 2. Surface problems have been treated in a more general probabilistic
setting by Margulis [21] and his asymptotic solution has been further extended by
Ahlswede/Géacs/Korner [24] to the so called ‘blowing up technique’ with far
reaching consequences in Multi-user Information Theory. Theorem I was also used
in [25] for the constructlon of good ciphers.

Minimal surfaces with multiplicities

The. second problem is for 1-surfaces (and unsolved for t>1). Define for
A,AIC Hn ) .

OA, A')'={(x", y") X"EA, Y cA’, d(x", y*) =1} | (2.5

and 1n case A’ = Ac
OA =0(A, A°). | | | (2.6)

Theorem II ((12]). For all neN and 1sN=<2"

l@Ai—l@Can

ACH" IAI
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Remark 3. Harper’s proof had a gap. Theorem II was first proved with a different
approach by Lindsey [26], who solved right away the more general case V, A
{1,..., a}". Bernstein [27] completed Harper’s original argument. Theorem II has
been rediscovered in [28] and by now several proofs exist. It is also a consequence

of Theorem 4.2 of [29], where order 1deals are maximized subject to certain
weight assxgnments to the ranks.

3. Removing edges from the n-cube
We formulate and prove now our main result,

Theorem 1. For avll. neN and k, 0sk=s=n-1,
wHen, 2") =(n—k)2"*. : \
The key idea is to look at densities |@A]|A|™!, which we estimate from below.
Lemma 1. For any A < H" with |A]<2*, O0sk=<n—1,
|GA||AI =n—k.
Proof. By Theorem II and since’ Cpjai< C(z" ™), zv = (1, 1,1,...,1)
0A|=16C, sl=(-k) Al O (3.1)
Proof of Theorem 1. vaiously C" can be decomposed into the 2" % k-subcubes
C(z"7), z" 7 &{0, 1}"7* by removing 3(n —k)2“2" %= (n—k)2" ™" edges. Since a
k-subcube has 2" vertices, this shows that p*(C", 2XYy=s(n—-k)2" .
The reverse inequality is now also readily established. Suppose that removal of

m edges from C" leaves us with connected components Zl, ..., Zy, all with not
more than 2* vertices. Then

\V»

S

L4 [e¥4 *
zl=3 Lzrial (3.2)

(n—k’) 2. 1Zl= (k27

)

/

where the second inequality follows from Lemma 1.

Remark 4. The guiding idea of the proof is the notion of ‘density’ |@A||A[™ =
average number of edges connecting a vertex from A with AF€. Notice that
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I@Q,Nl N~' is not monotonically decreasing in N. However, since |@C, |2 7% =
-n—k, Lemma 1 implies that ' ‘
- |@C,n| N =[OC, | 27F

(3.3
forall k=1,2,...,n and all N<2¥, )

- This fact and Theorem II are the reasons for Theorem 1 to hold.

Remark 5. Theorem 1 determifies u*(C™, ¢) for all ¢ of the form ¢ =2*, which
should be sufficient for all practical purposes, because for any ¢, 28 <c¢=<2k*1,

(n— k)27 = p*(C", 2= wH(C7, ) = p*(C™, 254 = (n— k— 1)2"

and then p*(C" ¢) is known within 2"~ deviation.

A theoretically challenging problem is to find a reasonably simple formula for
all values of c, but this appears to be quite tedious. However, by a more precise
evaluation we can improve Lemma 1 and thus ‘obtain an extensmn of Theorem 1
to all ¢ with 2* <c<%2* for some k, 0<k<n-1. :

A more general result

Lemma 2. For any A < H" with |A|<3%2* O0<k=n,
 |GA|lA| " =n -k |

Proof. We can assume .

2<k<n-1, 2<|A|<®F
because the result obviously holds for k=0, n, for [A|<2* by Lemma 1, and
k=1, 2¥ <|A|<%2* are incompatible. '

In particular this implies the result for n=1, 2. We proceed by induction in n.
C,.|a; can be written as disjoint union of C(z"™*), z"*=(1,1,1,...,1), and
B(zg A C, aNC(z5™), z57=(1,1,1,..., 1,0). Now .

7 O(Coa) = O(Cprjap, Cota)
=0(C(z" )~ O(C(z"), B(z§™9)
+O(B(z57™),[C(z"*)U C(z5 ™M)
+O(B(z579), C(z579~B(z5 ™).
Furthermore since |B(z§ )| <32* =%2*72, by induction hypothesis (k ~2<n—1):

O(B(z57™"), C(z§7) —B(zs—*)) =(k —(k'—2)> IB(z57)=2|B(z57).

Thus

O(Cpia)=(m—k)2“ —|B(z5 )|+ (n— k—1) |B(z3 )| +2 |B(z}~ k)l
=(n—k)2*+|B(z5 7)) = (n—k) |Al
Smce by Theorern 11 I@(A)l>l@(C 1apl, this proves the mequahty
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Thedrem 2. Forall neN and k, 0sk<n—1,
u*C c)=(n— k)2rt if 2k = c <52~

Proof. Since u*(C", ¢) is monotonically decreasing in ¢, we have for c=2k
wH(Cm, )= pH(C 2 =(n—k)2" T,

by Theorem 1. Suppose that removal of m edges from C" leaves ‘us with

connected components Z., ..., Zy, |Z]|<c for 1<i=<], then

1.3 1 &0z

m== ) |0Z|== =\Z:|
25107 2z
1 I .
==(n—k) 2, |Z|=(n-K)2"",

2 i=1 |

where the second inequality follows from Lemma 2. - 0 . \

‘Remark 6. It is easy to show for instance inductively that in terms of the
representation (2.3)

O(Con)= 3, (=i =2~ )2

ji=1

which can be used to derive other 'bounds on p*(C" c).

4. Removing vertices from the n-cube

We consider now the problem of getting bounds on A¥(C", ¢), which Was
defined in Section 1. Unfortunately the close connection between Theorem II,
Section 2, and the p*-function is not paralleled by an equally close connection
between Theorem I (the analogue to Theorem II) and the A\*-function, even-
though Lemma 2 has a canonical analogue, namely Lemma 3 below. However, in
case ¢ >2""1 which is the case of interest for our problem in parallel computing,
we get very good and in case ¢>32" almost exact bounds.

~ Analogue to Lemma 2 and its consequence
Let us uge the abbreviation |
R(B)A|I'(B)—B| for every B< H"
Lemma 3. For every N, 1SNSN,(_1¥A—(;‘)+- -+ A<k=n)

R(S,n) Sl = R(Snn_ ) 1Smm 7%
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Proof. It suffices to prove the inequality for

n n n
Nz(n)+"'+<k+1)+” 0<’<<k)’ - | ~ (4.1)

‘because we can then iteratively apply the estimate.
We actually prove a somewhat stronger result:

R (Sn’Nk U A) lSn,Nk Li—A’l:l? R(S“,Nk—‘l) lsn,Nk—J—l (4 2)
for all A C'Sn,Nk_1 — S, N lA|=1 .

For this notice that

n
lSn,Nk_,l = N1 =N+ (k)’

1Sn,NkuA!:Nk+l: o R(Sn,Nk_l): (k_'j1>7

n

where

BA(beS,n,_,~Sun,:JacA, dlab)=1}

and obviously |B|=k '|A[/(n —k+1).
Thus. it suffices to show that

) e Q7 oo

or equivalently that the inequality holds if

[l G (2 o= e ()]
(bt s )
)=
‘This simplifies to

n k
N"’L(k)?nvkerlN"' - @3

Now observe that for t=k

k n—t
=z

n—k+1t+1\1’
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‘ and thus

<n>> k n—t(n)i & (n >
t) n—k+1t+1\t) n—k+1\t+1/

 Therefore

n (n k n k
e 0 B )
T \k ks,;,l_l t Z_1n~k+1 t+1 .n—k+1N"

k=<t=<n ’

and we have proved (4.3) [

Notice that R(S,n)|S.n|"" is not monotonically decreasing in N.

o0
o-()+()+()+0)
() )2
- ()0 )-()+0) 2

26—16_,28-17

16%17

and

The reasoning which led to Theorem 1 yiélds now |

Proposition 2. For k >%n

_ - 2k-n - '
*(C", Ny = 2" 4.4
Proof. Suppose -that removal of | vertices results in the connected components
Zl: “e . ,‘ ZI with maxlgisriziist_l. Then .
. 1 L\rz-z) ~ ~

l:‘ FZi—Zi = e Zi' . 4.5
U 0z-2)=0 0, o 12 | (+.5)

By Theorem I for any A = H", |Al=N ,
 RA AT = RS0 [Senl™ — (4.6)

and by Lemma 3 for N<N,_,
. R(S,.n) 1Sl =R(S,.~n._) lsn,N,c___,!—l

I (S A )
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Therefore - ' | | | .
=G e @8

It is well-known (sée for instance Peterson “Error correcting codes”) that
A e
With the permittable choice A = k/n we obtain
5 (om0 5
=\ 2k/n 1 2k—n \k—1
and thus from (4.8)

2k—n
2__._.‘___—
nn—k+1)

)
or equivalently (by elementary calculation)

2k—n ' : _ '
=5 2". ' v . ' .
~ W nk 12k = | (4.9

Discussion of the bound

Often the elementary inequality
. ) | ' |
A*(CM ) = n*(C" c) (4.10)
in conjunction with Theorem 2 gives better results than the lower bound of

Proposition 1. Responsible for the poor performance of this bound is obviously
the factor 1/n in (4.4) needed for the present approach. In order to compare the

bounds choose for §, 1>6>2, k = 8n and use the approximation

( 8';) =2h@nrolesm - where h(8)=—5log, 8 —(1—8)log,(1-8).

Obviously

(@=2 (=)

and therefore

k .
Z (7:1) = 2h(5)n+0(]ogn,)
i=1 1 *
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With &'(n) = h(8)+O(log n)/n the bounds take the forms
1 281 | 1-8'(m) ..
——2" ‘and ——2"
ni-6+28in 2
and the second is obviously better by a factor const. - n.
Inequality (4.4) is better for very small values of c. For instance

A¥(C™, 1)=2""1  (the bound of (4.4)). (4.11)

To see this remove from C" all vertices with an odd number of 1’s in their
coordinates. Then C™ decomposes into isolated vertices. Since

' n n
= - 2“—1,
. 0$tszn,odd (t> Os:szn; eYen (t) .
clearly /\*(C-", =21,
" The main result
B Theorem 3.
(a) AX(Cm N,:) = (Z) for Ny >%2".
. n %(n n ] s
(b) -1 sA*(Ch o= h Cif max(32", N )<c<Np_1.

(c) De’ﬁne' ko= max{k @+ - (',;)<%2“} and Lo=(§)+- - -+ (). Then for any -
¢, 2" —2Lg<c<2"—L, ' |

(’:‘() <AH(C"0) <2 (ID

Proof. (a) If we remove from C" all vertices with k 0’s in thexr coordmates then
C™ decomposes into two connected components Z,, Z, with

i (e ) e () ()

Therefore A*(C", N) = (Z)

In order to show the reverse inequality assume that removal of | vertlces results
in the connected components Zy, ..., 2y with maxi<i<s |Z:|=<N,. By taking
unions of suitable Z;’s we can obtain disjoint sets Uy, .. , Uy with

LT 1 ’ .
UU=U2Z, max|Ul<N, and |UUU/|>N, forj#]j.

j=1 i=1 Ll=sj=<T

(4.12)
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Since IUj-1 Uj|=<2", (4.12) implies J =2, and thus by Theorem I

I =max R(U))=R(S,x,) = (”)
i=12 k
(b) The upper bound follows exactly as in (a) and the lower bound with the
additional fact R(S,c)=R(S,, ). (Note that R(S, ) is not monotonically de-
creasing in N for N=2""1) _ '
- (c) Removal of all vertices from C", which have ko O’s or kg 1’s in their
coordinates results in three connected components Z,, Z,, Z, with

‘ n n L
= (M)t <ln<n-2
1z (o)f (ko—l) 32" <27 2L,

|2l = (koi 1)+ i .+V(n - (1’;+ 1)) =2" 2L,

2= () o ()<< on,
| o |

Since A* is monotonically decreasing therefore
A¥CH oy=A¥C™, 2" -2L) <2 (k" )
| 0

Furthermore
| AX(C™, ¢)=A*(C 2" — L)

and since N, =2"—L;>32" we know from (a) that A¥(Cm 2 - LO) =(z,)- Thus -
AHCh=(). O -

In conclusion we state the following

Problem. Find good upper bounds on minimal coverings of H" with spheres of
identical radii. This is one way to get good upper bounds on AE(C™ o).
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