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On Source Coding with Side Information via
a Multiple-Access Channel and Related
Problems in Multi-User
Information Theory
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Abstract— A simple proof of the coding theorem for the multiple-access
channel (MAC) with arbitrarily correlated sources (DMCS) of Cover-Fl
Gamal-Salehi, which includes the results of Ahlswede for the MAC and of
Slepian—Wolf for the DMCS and the MAC as special cases, is first given.
A coding theorem is introduced and established for another type of
source-channel matching problem, i.e., a system of source coding with side
information via a MAC, which can be regarded as an extension of the
Ahlswede-Korner-Wyner type noiseless coding system. This result is
extended to a more general system with several principal sources and
several side information sources subject to cross observation at the en-
coders in the sense of Han. The regions are shown to be optimal in special
situations. Dueck’s example shows that this is in general not the case for
the result of Cover-Fl Gamal-Salehi and the present work. In another
direction, the achievable rate region for the modulo-two sum source
network found by Korner—Marton is improved. Finally, some ideas about a
new approach to the source-channel matching problem in multi-user com-
munication theory are presented. The basic concept is that of a correlated
channel code. The approach leads to several new coding problems.

I. INTRODUCTION

T is well-known that Shannon’s paper [1] was the

starting point of multi-user information theory and it
still seems, at least to us, that this paper is not given the
attention that it deserves. In our judgment one of the most
important problems raised is that of transmitting corre-
lated messages over a noisy channel with two (or more)
senders. This problem is still far from being completely
understood. For the ease of our later reference and discus-
sions we repeat here what Shannon wrote in the section
Attainment of the Outer Bound with Dependent Sources [1,
sect. 14, p. 636] (the numbers were inserted in the text by
the authors for later reference):

With regard to the outer bound there is an interest-
ing interpretation relating to a somewhat more general
communication system. Suppose that the message
sources at the two ends of our channel are not
independent but statistically dependent. Thus, one
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might be sending weather information from Boston to
New York and from New York to Boston. The
weather at these cities is of course not statistically
independent. 1) If the dependence were of just the right
type for the channel or if the messages could be
transformed so that this were the case, then it may be
possible to attain transmission at the rates given by the
outer bound. For example, in the multiplying channel
just discussed, suppose that the messages at the two
ends consist of streams of binary digits which occur
with the dependent probabilities given by Table III.
Successive x,, x, pairs are assumed independent. Then
by merely sending these streams into the channel
(without processing) the outer bound curve is achieved
at its midpoint.

It is not known whether this is possible in general.
2) Does there always exist a suitable pair of dependent
sources that can be coded to give rates R,, R, within €
of any point in the outer bound. 3) This is at least
often possible in the noiseless memoryless case, that is,
when y, and y, are strict functions of x, and x, (no
channel noise). 4) The source pair defined by the
assignment p{x,, x,) that produces the point in ques-
tion is often suitable in such a case without coding as
in the above example.

Now, in Shannon’s notation, x; (resp. y;) are the inputs
(resp. outputs) at terminal i (i = 1,2) for the two-way
channel (TWC) and the outer bound G, is the set of all
pairs (R, R,) with

R, =I(X;; %,|X;), R,=1I(Xy;Y1X,), (L1)
where X;, X, are dependent input variables and Y, Y, the
output variables induced by the channel.

Shannon showed that the inner bound G,, defined as
convex hull of the set of rate pairs obtained in (1.1) for
independent X, X,, is an achievable rate region in the case
of independent messages. Recently Dueck [2] showed that
G, is in general not the capacity region € in the case of
independent messages and C is still not known.

New progress in multi-user communication began by
considering a simpler channel model, namely, that of a
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multiple-access channel (MAC; also mentioned in [1]).
Ahlswede [3] was the first to establish the capacity region
of this channel in case of independent messages and subse-
quently Slepian and Wolf [4] found the region of this
channel for the following situation:

a) The correlated message statistic is described by a
correlated memoryless source;
b) the MAC is noiseless.

They also found the region for an arbitrary MAC and a
certain special correlated message statistic in [5]. The result
of [4] can also be viewed as solution to sentence 3) men-
tioned in the quote. In case of a noiseless TWC formula
(1.1) gives

R, = H(X|X,), R,=H(X|X)). (12)

Notice that by the result of [4] sender 2, who knows X,
can be informed about X, with a rate H(X|X,), and
sender 1, who knows X, can be informed about X, with a
rate H( X,| X,).

Considering again the MAC, which is better understood
than the TWC because the feedback problem is not pres-
ent, Cover, El Gamal, and Salehi [6] recently found a way
of using the dependency structure of the correlated mes-
sage source for the channel coding and thus obtained a
general coding theorem for the MAC which includes as
special cases the results of [3], [4], [5]. (The close connec-
tions between the results of [3] and [4] are explained for
instance in [7, part I, sect. 6].)

Dueck recently showed [8] that the approach of [6] does
not always give the full capacity region; it only does if the
dependency structure of the source fits nicely with the
dependency structure of the channel.

It seems that Shannon gave not only the direction but
also understood the situation quite well in the remarkable
sentence 3) of the quote. In the last Section VII of this
paper we will present some results and ideas, which we
hope will be helpful in making some further progress in the
direction indicated in sentence 1).

But the larger part of this paper (Sections II, III, and IV)
relates to the approach to the correlated source-multiple-
access channel matching problem given by Cover, El
Gamal, and Salehi [6]. They introduced an interesting
coding technique based on a kind of correlation-preserving
mapping.

In Section IT we look at their coding theorem from the
viewpoint of cross observation at the encoders (Han [9],
[10]), revealing that the heart of their theorem consists in a
simpler but elegant version and that the theorem itself has
a simple proof.

In Section III we introduce another type of source-chan-
nel matching problem, i.e., a system of source coding with
side information via a multiple-access channel, which may
be regarded as an extension of the Ahlswede-Korner—
Wyner type noiseless source coding system ([11], [12]). For
this system we establish a matching condition.

In Section IV we consider a more general system with
several principal sources and several side information
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sources subject to cross observation at the encoders, and
we establish a sufficient condition for the matching of this
system.

In Section V we present an achievable rate region for a
channel with side information at the decoder, which is
perhaps one of the simplest cases for which the converse is
presently not known.

In Section VI we describe a new achievable rate region
for the modulo-two sum source network considered by
Korner and Marton [13], which is a special but very
instructive case of the general two-helper source network
introduced in [24].

Even though most of our results are (except for special
cases) incomplete in the sense that no converses are proved,
we still feel that the results obtained, the problems
proposed, and the handy formalism provided will be of
some benefit for the advancement of the subject of multi-
user communication theory.

II. A NEw LOOK AT AND SIMPLE DERIVATION OF
THE COVER—EL GAMAL—SALEHI CODING THEOREM

We establish first the fairly simple theorem 1 below and
then show that it contains the result of [6] as a special case.
Consider a memoryless multiple-access channel (MAC) M,
with input alphabets %, %, (finite), an output alphabet %
(finite), and the transmission probabilities

w(ylx,, x,), forye®, x, €%, x,€X%,.

Let § =(S,,S;, S;) be a multiple information source,
where S, S,, S, are arbitrarily correlated random variables
with values in finite sets §,, S,, &5, respectively. Denote by
S/ an independent identically distributed (i.i.d.) n-sequence
of S;(i=1,2,3).

Let us consider the following joint system of the source
S and the channel M, with cross observation at the en-
coders (Fig. 1). The encoder ¢, observes a pair (S7, S7)
and maps it to an input n-sequence X1

¢ &7 X &5 = %7,
Similarly, the encoder ¢, observes (S5, ;') and maps it to
an input n-sequence X7

¢, &) x & = %J.
The decoder y observes an output n-sequence ¥" and maps
it to an element (S}, S5, S7):

YY" - T X §F X 8F.
The probability of error P, is given by
P, = Pr{88;8y = S7S;ST).

Definition 1: The source § = (S, S,, S;) is said to be
admissible for the channel M, if for any 0 <A <1 and
sufficiently large n there exist encoding functions ¢,, ¢,,
and a decoding function ¢ for which P, < A.

In order to obtain a sufficient condition for admissibil-
ity, it will be convenient to consider an associated test
channel as follows (cf. Han {9]).
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Fig. 1. Joint system of source and channel with cross observation.
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Fig. 2. Test channel M3.

Let AU, U,, AU, be finite sets and consider two de-
terministic functions

fol, X, » %,
f2: 621/2 X 621/3 d %2.

Define an associated test channel M as the channel with
the input alphabets AU, U,, U4, the output alphabet ¥,
and the transmission probabilities w*( y|u,, u,, us3) =
w(p|fi(uy, uy), fo(uy, u3)) fory € Y, u; € U, (i = 1,2,3).
(See Fig. 2.)

Let U,, U,, U; be random variables on U, AU,, U,, re-
spectively, such that

Pr{S,=5,8=5,8=5,U=u,U=u,U= us)

= p(sy, 53, 53) p(w1]s1) P(uslsy) p(usls3)-
Denote by X;, X,, Y the random variables with values in
%X, %X,, % induced by U,, Uy, Us via the test channel M.
In particular,

X =f1(U1’U2), X2=f2(U2’U3)- (2-1)

Theorem 1: If there exist some U,, U,, Ui, f1, f5, X1, X;,
Y such that for all 4 with 4 € 2 = {1,2,3), 4 = ¢,

H(S,|S7) < I(Ug; YIUgS), (22)

where A is the complement of 4 in =, and S, = (S));c 4,
then S-= (S, S,, S;) is admissible for the channel M,.

Remark 1: 1f in (2.2) H(S,|S;) vanishes for an 4 C 2,
then for that 4 the inequality “ < ” may be replaced by
113 < ”‘

Proof: First, consider the problem of encoding
Sr, S5, Sy for the test channel M5 using three encoders ¢} :
Sr— Q" (i = 1,2,3) and one decoder ¢*: Y" - 5 X &;
X &F (cf. Fig. 2). Then, entirely paralleling the argument of
Cover—El Gamal-Salehi used only for demonstrating their
simpler case (i.e., a case without “common information”
and hence the “time-sharing” parameter O set constant;
see [6, p. 648)), it immediately follows that under condition
(2.2) there exist encoding functions ¢} (i = 1,2,3) and a
decoding function y* yielding the probability of error
A—0.
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Fig. 3. Source coding via a multiple-access channel.

Next, for the original channel M,, define encoding func-
tions ¢, ¢, and a decoding function y by

$1(S7, 87) = f1(#1(ST), $1(S7)),
(83, 87) = £:(63(57). 94 (S7)),
¥ =y,
where f(v, w) = (fi(v1, W), fi(v,, w,)) for =
(v, > 0,), w=(w,---,w,) (i=12). Clearly, these

&1, ¢, ¥ yield the same probability of error A for the
channel M, too. Q.ED.

Now let us apply Theorem 1 to the following special
case: let S, T be arbitrarily correlated sources, let K be the
common variable of S and T in the sense of Gacs and
Korner [14], and set S, = S, S, = K, S; = T. In this case
our system (Fig. 1) is equivalent to the system considered
by Cover—El Gamal-Salehi (Fig. 3). Thus, as a conse-
quence of Theorem 1, we have the following result.

Theorem 2: (Cover-El Gamal-Salehi [6]) If there exist
some Q, X, X,, Y such that

Pr{S=s,T=t,0=4,X,=x,X=x,,Y=yp)
=p(s, 1) p(@) p(xls, §) p (%302, GIw(y1x1, x5)  (2.3)

and such that

H(S|T) < I(X,; Y|X,TQ), (2.4)
H(T|S) < I( X,; Y| X,50), (2.5)
H(STK) < I( X, X,; Y|KQ), (2.6)
H(ST) < I(X,X,;Y), (2.7)

then the source (S, T') is admissible for the channel M,.

Proof: With the choice U, = Q condition (2.2) is in
the present situation equivalent with the following seven
inequalities:

H(S|TK) < I(U;; Y|U; TKQ), (2.8)
H(T|SK) < I(Uy; Y|U,SKQ), (2.9)
H(K|ST) < I(Q; Y|UU,ST), (2.10)
H(SK|T) < I(U,Q; Y|U,T), (2.11)
H(TK|S) < I(U;0; Y|U,S), (2.12)
H(ST|K) < I(UUy; YIKQ), (2.13)
H(STK) < I(U,U;0,Y). (2.14)

It is easy to check that (2.8) and (2.9) imply (2.11) and
(2.12), respectively, and (2.10) is trivial (cf. Remark 1).
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On the other hand, the right-hand side of (2.8) can be
rewritten using the assumed Markov chain properties and
(2.1) as

I(Ul; Y|U3TKQ) = I(Ule; YIU3TQ)
(X; YI,TQ)
(X Y|U; X,TQ)
(X; Y1X,TQ).

I
I
I

Similarly, for (2.9), (2.13), and (2.14) we have
1(Uy; YIUSKQ) = I( X5; Y| X,50),
I(Uani Y|KQ) = I(X1X2; Y|KQ),
HUUQ; Y) =I(X Xy, Y).
QED.

Remark 2: The way of deriving the theorem from Theo-
rem 1 reveals that the heart of it consists in its special but
elegant case with Q being a constant:

H(SIT) < I( X,; Y| X,T), (2.15)
H(T|S) < I( X;; Y|X,S), (2.16)
H(ST) < I( X, X,,Y). (2.17)

Note here that (2.7) implies (2.6) if Q is a constant.
III. Sourck CODING WITH SIDE INFORMATION VIA
A MULTIPLE - ACCESS CHANNEL

The system considered by Cover—El Gamal-Salehi may
be regarded as an extension of the Slepian—Wolf type
noiseless source coding system [4]. In this section we con-
sider a parallel extension of the Ahlswede-Korner—Wyner
type noiseless source coding system with side information
[11], [12].

Let M, be the multiple-access channel as specified in
Section II, and let § = (S, T) be an arbitrarily correlated
source with alphabets &, (finite sets), respectively. We
shall consider here the following joint system of S and M,
as depicted in Fig. 4. The encoders ¢,, ¢, are defined by

$;: " = A7,
& T" > X7,

The decoder ¥ observes an output n-sequence Y " and maps
it to an element 8" of S": Y: Y" — S, Since in this system
the purpose of the decoder ¢ is to reliably reproduce the
source S" alone, the probability of error P,(S) is defined
by

P,(S)=Pr{§" = S").
Definition 2: The source S = (S, T) is said to be &-
admissible for the channel M, if for any 0 < A <1 and

sufficiently large n there exist encoding functions ¢, ¢,
and a decoding function ¥ such that P,(S) < A.
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Fig. 4. Source coding with side information via a multiple-access
channel.

Let Q,V be any random variables with values in finite
sets 2, °V, respectively, such that

Pr{(S=s5,T=t,0=¢q,V =0,
Xi=x,X,=x,,Y=y)
= p(s,1)p(q) p(xils, @) p(vlt, q)
p(x,0t, 0, )w(ylx,, x5),  (3.1)

where X,, X, take values in the input alphabets X, %X,,
respectively, and Y in the output alphabet % (Q is the
time-sharing parameter).

Then we have Theorem 3.

Theorem 3: If there exist some Q, V, X|, X,, Y satisfy-
ing (3.1) for which

H(SVQ) < I(SX,; YIVQ), (3.2)

H(S|VQ) + I(T; V|Q) < I(SX\V; Y|Q), (3.3)

then the source (S, T) is S-admissible for the channel M,.

Here it is sufficient to consider only Q, V such that the

cardinalities ||Q|}, ||V']| of the ranges of Q, V' are bounded by
WVI<191-1%,0+ 3, 12l < 4.

Remark 3: Conditions (3.2), (3.3) are equivalent to the
following seemingly stronger conditions:

H(S|VQ) < I(SX;; Y|[VQ), (34)
I(T;V|SQ) < I(V; Y|SX,0), (3.5)
H(SIVQ) + I(T; V|Q) < I(SX\V;Y|Q). (3.6)

In fact, suppose that Q, V, X, X,, Y satisfy (3.2), (3.3). If
I(T, V|SQ) < I(V; Y|SX,Q) for those variables, then
(3.4)-(3.6) follows. On the other hand, if I(T; V|SQ) >
I(V; Y|SX,Q), by rewriting (3.3) we have

H(S) < I(SX,; YIQ) + {I(V; YISX,0) — I(T; V|SQ)}
< I(SX,; Y|Q).

This coincides with (3.4)-(3.6) with ¥ set constant (cf.
Remark 1).

Proof of Theorem 3: In view of Remark 3, it suffices
to prove the admissibility under conditions (3.4)-(3.6). In
proving the theorem we use the fundamental properties of
jointly typical sequences (cf. Berger {15], Han and
Kobayashi [16]. The notion used is slightly different from
the one of Wolfowitz [17]). The set of all e-typical se-
quences for a random variable Z is denoted by 7,(Z), and,
for w e A",

T,(ZIw) = (zlow € T,(ZW)).
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1) Auxiliary Code: First generate one random n-
sequence ¢ = (¢,," - *, ¢,) according to [1P(q,).

Next, fix any R such that R > I(T;V|Q) and take
L = exp[nR] mutually independent n-sequences ¥,,- - " v,
with values taken equiprobably in T,(V|q), and set V=
RN A S

Note here that V,---, ¥, depend on the value of q.
Since (3.1) implies that S, 7,V (given @), form a Markov
chain in this order, there exists for sufficiently large n a
function V* = g(T"; V,,-++, V) such that V* =¥, for
i=1,---, L and

Pr{(S",T",V*) € T.(STV|q)} > 1 -8, (3.7)
where 8 = 8(¢) » 0 as ¢ » 0 (a conditional version of
Lemma 3.3 of Han and Kobayashi [16]).

2) Random Code Generation: For each s = (s,,"* -, s,)

€ &" generate one random n-sequence x(s) = (xy;, - -,
x1,) € KT according to

kljll’(xw“k, )

For each ¢ = (¢;,--,¢,) € 9" generate one random n-
sequence x,(t, v*) = (x,,," - -, X,,) € %] according to

n
I;I:[lp(kaltka Uz, qk)’

where v* = (o}, -, 0}) = g(5 7, +, V).
3) Encoding: Define the encoding functions ¢,: 5" —
K 02 T > K3 by
¢1(s) = x,(s), (3.8)
¢2(t) = xl(t’ V*) = x2(t’ g(t; f/l" B I~/L)) (39)

4) Decoding: Let X[ = x\(S"), X} = x,(T",V*), and
indicate by Y”" the output n-sequence induced on %" from
X", X7 via the channel M,. If (s, v*) is the only element of
$" x ¥ such that

(s, x(s), v*,Y") € T.(SXVY|q). (3.10)

Then define the decoding function ¢: ¥" — 5" by Y(¥Y")
= s, otherwise let (Y ™") be arbitrary (the decoder is to be
informed about the value of ¢).

5) Probability of Error: Denoting by E(s, v*) the event
(3.10) for (s, v*) € 5" X ¥, we have the following expres-
sion for the probability of error:

P,=Pr { ES(S", V) or U E(s, v*)}
so* =SSP

< Pr{(S",T",V*) & T.(STV|q))
+Pr{E(S",V*)(S", T",V*) € T.(STV|q)}

Z PI‘{E(S,D*)|F0(S",T",V*)}),

so*=S"P*
(3.11)
where “c” indicates the complement; Ex( ) denotes ex-
pectation, and F,(S", T", V*) denotes the event

(8", T",V*) € T.(STV|q)} N E(S", V*).

+Ex(
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Note that the range of v* in the above sums is restricted to
be within V.
From (3.7) we have

Pr{(S",T",V*) & T,(STV|q) < 8.  (3.12)

Next, by the Markov properties among S, V, X, X,, Y
given Q (derived from (3.1)) and from the way of generat-
ing the random sequences x,(s), x,(Z, v*), it follows that

Pr{E(S", V*)|(S", T", V*) € T.(STV|q)} < ¢.
(3.13)

On the other hand, the last term in (3.11) can be decom-
posed as follows:

>

so*=S"V*

Bx( T Pr{(E(Gs, oR(s" T )

_ Ex( Y Pr{E(s, V*)|R(S", T",V*)})

s=S"

+Ex( £ Pr(E(S™ o NE(S". 77, 7))

v¥=p*

> ¥ Pr{E(s,v*)IEO(S",T",V*))).

s=S" *=P*

+Ex(

(3.14)

Denote the first, second, and third terms on the right-hand
side of (3.14) by P,, P,, P;, respectively.
a) Evaluation of P,: Set

@, ={(sls=S",s € T(S|V*Y"q)},
and for eachs € @,

B,(s) = T(X)|sV*Y7q)},

= P =
9(s) mq%x( , r{x,(s) = x}

< exp[-n(H(X|SQ) - 2¢)].
Then, for any s € @,,
P\(s) = Pr{E(s,V*)|F(S", T",V*)}
< Bx(max (%,(s)] - au(s))
< exp [n(H(X,|SVYQ) + 2¢)]
-exp [—n(H(X,|SQ) — 2¢)]
= exp [~ n(I(X,; Y|SVQ) — 4¢)]
= exp [—n(I(SX,; YIVQ) — I(S; Y|VQ) — 4¢)].
(3.15)
On the other hand,
|@,| < exp [n(HS|VYQ) + 2¢)]
= exp [n(H(S|VQ) - I(S; Y|VQ) + 2¢)].
(3.16)
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From (3.15) and (3.16),

% £,(s)) < Ex(je), - maxP,(5))
se@,

P = Ex(
s€@|

< exp[—n(I(SX;; Y|VQ) — H(S|VQ) — 6¢)].

Consequently, condition (3.4) yields

P <e¢ (3.17)

for sufficiently large n. B _
b) Evaluation of P,: Noting that V|, -+, V; (= V*) are
all uniformly distributed on T,(V'|q), we have

P, = Ex( Y, Pr{(E(S", v*)FR(S", T",V*)})
o= g
_(L-Dexp [n(H(V|SX,YQ) + 2¢)]
T (- gexp[n(H(VIQ) - 26)]
< (L—-1)exp[-n(I(V; SX,Y|Q) — 5¢)] (3.18)
for sufficiently large n. Since R (L = exp[nR]) can be
arbitrarily chosen so long as R > I(T; V|Q), we may set
R=IT,V|Q) +e
Therefore,
P, < exp [—n(I(V; SX,Y|Q) — I(T; V|Q) - 6¢)]
= exp [—n(I(V; Y|SX,Q) — I(T; V|SQ) — 6¢)],
(3.19)

which implies by condition (3.5) that
P,<ce (3.20)

for sufficiently large n.
¢) Evaluation of P;: Set

@3 = {(s> v*)ls = S" 0% = V¥, (s’ v*) € Te(SV|Y"q)>’
and for each (s, v*) € &,,
By (s, v*) = T(X\|s0*Y "),

g;(s,v*) = max Pr{x,(s)=x,).

X €By(s, 0%)
Then for every (s, v*) € @,
Py(s, v*) = Pr{E(s, v*)|E(S", V*)}
< EX( max (1D, (s, 0*)| - ¢;(s, v*))
so*el,

< exp [n(H(X,|SVYQ) + 2¢)]
-exp [—n(H(X,|SVQ) — 2¢)]
=exp [—n(I( X,; Y|SVQ) — 4¢)].
Therefore,

P, = Ex(

E rs.0)

s e,
= Ex{|@;yexp [~ n(1(X,; Y|SVQ) ~ 4¢)]
= Ex(|@3|) exp [“"(I(SX:V; Y|Q)

—I(SV; Y|Q) — 4¢)]. (3.21)
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On the other hand, again from the uniform distribution
property of V,,---, V1. (= V*) on

T.(Vig)(L = exp [n(I(T; V|Q) + €)]),
we have
Ex {|&;])
_ (L= Dexp [n(H(VIYQ) +2¢)]
T (1-e)exp[n(H(VIQ) - 2¢)]
-exp [n(H(S|YVQ) + 2¢)]
< (L - 1)exp [n(H(S|VQ) ~ I(SV; Y|Q) + T¢)]
<exp [n(I(T; V|Q) + H(S|VQ)
—I(SV; Y|Q) + 8¢)].
From (3.21) and (3.22),
P, < exp[—n(I(SX\V; Y|Q) — H(S|VQ)
-I(T;v|Q) — 12¢)].

(3.22)

Hence, condition (3.6) yields
Py <e (3.23)

for sufficiently large n.
Summarizing (3.11)-(3.14), (3.17), (3.20), (3.23), we can
conclude that P, < § + 4e. Q.E.D.

We present now several special cases of Theorem 3.
Corollary 1: If there exist X|, X,, Y such that

Pr{S=s5,T=t,X =x,X,=x,,Y=y)}
=p(s, 1) p(x1s) p ([ ) w(ylx,, x5)
(3.24)
and
H(S) < I(SX;;Y),

then the source (S, T') is S-admissible.

(3.25)

Proof: Let Q =V = ¢ (¢ is a constant variable) in
(3.2), (3.3) of Theorem 3 (also, cf. Remark 1). Q.E.D.

Remark 4: The right-hand side of (3.25) may be inter-
preted as follows. First, decompose I(SX,; Y) as

I(SX,; Y)=I(S; Y) + I(S; Y|X,).

The first term J( X;; Y) represents the information pass-
ing directly from the input X, to the output ¥ when we use
the given multiple-access channel M, as a single-user chan-
nel with the “random state T correlated to the source S;
the second term I(S;Y|X;) represents the information
passing from the input S via the intermediate terminal 7 to
the output Y, without passing through X.

Here, in order to establish some application of Corollary
1, let us consider a single-user channel with “random state

T” as follows. The transition probabilities are specified by
w(y|x,t), xe€X,yed, te9,

where X, % are the input and output alphabets, respec-
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tively, and ¢ indicates a value of random state distributed
according to the random variable 7. We are required to
reliably send a source S (taking values in &) which is
correlated to 7. The encoder ¢: &" — X" maps S" =
(S,,- -, S,) to the input n-sequence X", and the decoder
Y: Y" — 5" maps the output n-sequence Y" to an estimate
S" of §”. The random state 7, for the ith channel use is
correlated only to the ith source output S;, and the joint
distribution of (S;, ;) is i.i.d. of the generic random vari-
able (S, T). We designate this kind of channel by C(T).

Theorem 4 (Coding Theorem for C(T)): If there exists
X, Y such that

Pr(S=5,T=t,X=x,Y=y)

= P(s, 1) p(x|s)w(ylx, t) (3.26)
and

H(S) < I(SX;Y), (3.27)

then the source S is admissible for the channel C(7T') with
correlated random state T.

Conversely, if the source S is admissible for C(T'), then
(3.27) with < replacing < holds for some X, Y satisfying
(3.26).

Proof: See Appendix I.

Remark 5: Theorem 4 establishes a necessary and suffi-
cient condition for the admissibility of the source for the
channel with random state, but with no statement on the
admissibility for a trivial situation H(S) = I(SX; Y|Q).
This situation should be further examined not in general
but depending on specific characteristics of each particular
channel.

Corollary 1 treats a case where the encoder ¢, for the
side source T" no longer carries out block encoding. On
the other hand, the following example demonstrates another
case where the encoder ¢, for the principal source S”
attains no block encoding, but componentwise random
encoding. (That is, ¢,: T " — % is called a componentwise
random encoder if there exist n independent random func-
tions h,---, h, from I to %, such that ¢,(1) =
(h\(2),-- -, h,(2,)), where t = (2,,---,1,).) In this latter
case, the auxiliary variable V actually intervenes and hence
block encoding is essentially needed for the source T".

To show an example, let us consider a special multiple-
access channel M; with some deterministic function f:
% — %X, such that w(y|x,, x,) = 0 for x, = f(y). In other
words, the channel M7 is such that one of the inputs x, is
noiselessly transmitted to the receiver.

Theorem 5 (Coding Theorem for M?): If there exist some
0, V, X,, X,, Y such that

Pr{S=s5,T=t,0=q,X,=x,,X,=x,, Y=y}

= p(s,t)p(q) p(olt, ) p(xils, q)
p(x300, Q)w(ylx,, x,)  (3.28)
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for which
H(S|VQ) < I(X,; Y| X,VQ), (3.29)
H(S|VQ) + (T, ViQ) < I(X,X,;Y|Q), (3.30)

then the source (S, T) is S-admissible for My by a compo-
nentwise random encoder ¢,: " — X7. Conversely, if the
source (S, T) is S-admissible for M) with a component-
wise random encoder ¢,: " — X", then conditions (3.29),
(3.30) with “ < ” replaced by “ < ” have to be satisfied for
some Q, V, X, X,, Y satisfying (3.28). Here it is sufficient
to consider only V, Q such that

VI <IT1- 1%, + 3,
Proof: See Appendix II.

2l < 4.

Example 1: Consider the case where My is a pair of
noiseless channels, i.e., Y = X, X,. If we put in (3.28) of

Theorem 5 Q = ¢, p(x,ls, 9) = p(x), p(%,3]0, 9) = p(x,),
then conditions (3.29), (3.30) are reduced to

H(SIV) < R19
H(SW)+I(T;V) <R, +R,,

where R, = H(X,), R, = H(X,). Clearly, these conditions
are implied by the conditions H(S\V') < R,, I(T; V) < R,
established by Ahlswede-Korner~Wyner [11}], [12]. There-
fore, Theorem 5 may be regarded as an extension of the
noiseless source coding theorem with side information.

Example 2: Consider a case where S, T are indepen-
dent. If in Theorem 3 we put p(x,|s, 9) = p(x,),
p(x,|v, ) = p(x,), replace V by VX,, and then set V' = ¢,
conditions (3.2), (3.3) reduce to H(S) < I(X,; Y|X,), and
can therefore be replaced by

H(S) < max I(X,; Y|X, = x,). (3.31)
XZEGXZ
Example 3: In the case § = T (total cooperation), The-
orem 3 does not cover the optimal condition
H(S) < max I(X,X,;Y).
)

p(xy, x2

(3.32)

This optimal condition is covered by Corollary 2 to appear
in Section IV,

We conclude this section by giving a limiting expression
of the condition for the admissibility. For any interger
m=12---, let ¢;: 8" > X7, ¢,; ™ > X} be any
random function such that X|" = ¢,(S™), S, T"™, $,(T™)
= X7” form a Markov chain in this order, and indicate by
Y™ the corresponding output variable on %Y.

Theorem 6: If
H(S) < sup iI(S’"X{"; Ym),
m
m,d), ¢,
then the source (S, T') is S-admissible for M,. Conversely,
if the source (S, T') is S-admissible for M,, then

1
H(S)< sup —I(S"X"Y™).
m’¢lu¢2m
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Proof: The former part immediately follows from
Corollary 1 by considering S™, T™ as “supersources” of
length m instead of S, 7. The latter part is derived as
follows: put

r(A) = nAlog|S| + A(A)
X (h(A) = —AlogA — (1 = A)log(1 — 7)),
then by Fano’s inequality,
mH(S) —r(\) < H(S™) — H(S™|Y™)
= I(S™; Y™) = I(S™X!M Y™),

where A is the probability of error, m is the block length of
the code, and X"Y™ are defined with respect to the
encoders ¢, ¢, under consideration. Note that 7(A)/m — 0
asA — 0. Q.E.D.

Remark 6: Of course the “naive” characterisation given
in Theorem 6 cannot be used even in principal for numerical
evaluations. However, since the so called single letter char-
acterization involving auxiliary variables is often hard to
get in multi-user theory, one should try as an alternate
approach to get estimates on the speed of convergence in the
“naive” approach. This may be a hard task, but there are
no obvious reasons why this should be impossible.

IV. RESULTS FOR A MORE GENERAL SYSTEM

In the field of multiterminal noiseless source coding
theory various kinds of source coding systems have been
devised and studied. After Slepian-Wolf [4] treated the
most basic and simplest case, a new dimension was added
by Ahlswede—Korner [11] and Wyner [12] (and earlier, but
in a weaker form, by Gray-Wyner [18]) by considering not
only principal sources but also side information sources. In
channel coding a certain kind of side information had been
studied much earlier already by Shannon [21]. Various
extensions of those results have been found and presently
the most general ones seem to be those of Csiszar—Kérner
[19] and Han—Kobayashi [16]. A new direction in source
coding was recently provided by Ahlswede [7], where mul-
tisources are described by specifying conditional distribu-
tions rather than joint distributions, that is, less knowledge
about the source is assumed.

Here we stick to classical correlated source systems with
several principal sources and several side information
sources (helpers) as components whose coded versions are
to be transmitted over a multiple-access channel with a
“single” receiver.

Let M, be a multiple-access channel with r input al-
phabets % ,- - -, %, (finite), an output alphabet % (finite),
and the transition probability

w(ylx, -, x,), forye® x €%, -, xe%X,.
(4.1)
S,) be a collection of cor-

S )

4

Let S, = (S, -, S.“’ S, -
related sources with values in &, --, §

a’ “a+ 1’
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(finite sets), where S,- - -, S, are the principal sources and
Sa+15° s S, the side sources. Let

20 ={l,---,a), E@={(a+1,---,p).

The encoders ¢, - -, ¢, with cross observation at the en-
coders are defined as follows. For eachj = 1,-- -, r, the jth
encoder ¢, observes a subset Sg, of (87, -+, S} and maps
the S3 to an input n-sequences X" € X"

¢ 05 = X,

where 2, is a prescribed subset of = =(l,---, p}, and
83, = (8 )kes, SE, =Tliex S;. The decoder ¢ observes
an output n-sequence Y" € %" and maps it to an element
(ST, -, 8Hedix - x&

YY" - ST X - X

The purpose of the decoder ¥ is to reliably reproduce the
principal source informations S7,---, S” alone (0 < a <
p)-

Definition 3: We shall say that the source S, is (S)," - -,
S,)-admissible for the channel M, if there exist ¢,," - -, ¢,
and ¢ for which the probability of error Pr{$/ --- Sn =
S -++ 87} approaches zero as n — oo.

To describe a sufficient condition for the (S, - -, S,)-
admissibility, we introduce many auxiliary variables as
follows. Let Q,Uy, -+, U,; ¥V, 41, **, ¥, be any random
variables with values in ; ,,-- -, Ups Voo os Yy, E-
spectively, such that

Pr{Q=q;S=s,U=u(i€5); ¥, = o (keIO)
=p(@)p(si -, Sp) llp(vilsiaQ)lE—[P(qunvis q),
ie i€

(4.2)
where for notational simplicity we have set
Vi=S8,-,V,=8,. (4.3)
Next, choose r arbitrary deterministic functions
/}:%z,‘*%p j=1,--,r. (4.4)

and define the input variables X; on X, of the channel M,
by X; =fj(Uzj) (j=1,---,r). Denote by Y the output
variable with values in ¥ induced form the X, via the
channel M,. The relation among S, V;, U, X, Y is
illustrated in Fig. 5 (Q is the time-sharing parameter).

Theorem 7: If there exist some Q; V, 1, -, V,; Uy, -+,
U; fi.- . £y Xi,- -+, X,; Y as above for which for all 4
p? r r
withA C =, AN 2D = ¢,

I(S; VAIViQ) < I(W,; YIWgQ), (4.5)
where we have put W, =SU, for j€ =D, W, = V¥, for
Jj € =@, then the source S, is (S, - -, S,)-admissible for
the channel M,.

Remark 7: In (4.5) we may omit the corresponding con-
dition if its left-hand side vanishes.
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Fig. S.

Region for modulo-two sum problem.

Proof: Both the test channel argument in Section II
and the argument used in the proof of Theorem 2 can be
extended to the general case under consideration (cf. Han
[9]), from which condition (4.5) follows. Q.E.D.

We shall next give a limiting expression for the condition
of the admissibility for this general system. Consider any
integer m = 1,2, -+, and let ¢;: 5" — A" be any random
functions (i € X) such that

Pr(S"=s,U"=u;i€cZ} =p(s,.i € z) ]._[p(uilsi)’
i€X

where U™ = ¢;(S/"). Let f;: UF — A" be any determinis-
tic functions (j = 1,---, r) and set X "= fj(Uz ). Denote
by Y™ the output vanable on Y™ 1nduced from X" (j=
1,-- -, r). Indicate by (o,) the vector with components o,
indexed by A € 2 (A4 = ¢) and define

1
Cp = {("A)|°A < ;I(SAmUAm; Y™|SgU) for someqbi,f},

where A¢ indicates the complement of A in *M: and

0
C=UZC,.
m=1
Note that € is a bounded set because C,, (m = 1,2,---)
are all within a bounded set. Denote by C the closure of ©.

Theorem 8 (Limiting Expression): Let h, = H(S,|S,)
for A with ¢ = 4 ¢ =D_If (k) is an internal point of @,
then the source (S), -+, S,, Syu1o7 715 Sp) 18 (Sp,e -+, S,)-
admissible. Conversely, if the source (Sl, S, S
S,)is (S, -, S,)-admissible then (h,) € @

Proof: The former part is an immediate consequence
of Theorem 7: Let ¥V, = ¢ (i € =) and apply to the super
sources S instead of S;. The latter part follows analo-
gously to the proof of Theorem 6. Q.E.D.

We are now in the position to prove a stronger version of
Theorem 3. Let S, = §, S, = K, S; = T (K is the common
variable of S and T in the sense of Gacs and Korner) and
apply Theorem 7 to the special system depicted in Fig. 1
with (87, $7, $7) replaced by (87, $7), where S, S, are
principal; S; is a helper (2 =(1,2),p=3,a=2,r = 2).
Then we have the following result for the equivalent side
information system depicted in Fig. 4.
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Theorem 9: If there exists some Q, O, V, X,, X,, Y such
that

Pr{S=s,T=t,K=k,Q=q,0 =4,
X X3, Y=}’>
=p(s, 1) p(@)p(dlk)p(xils, 4, q)p(vlt, q)
.p(x2lt9 09 q! Q)W(J’|x1sx2)

=_x1’X2=

(4.6)
for which
H(S|KVQ) < I(SX,; Y|KVQQ),
(4.7)
H(S|VQ) < I($X,0; Y|VQ), (4.8)
H(S\KVQ) + I(T;, V|KQ) < I(SX,V; Y|KQQ),
(4.9)
H(S\VQ) + I(T; V|Q) < I(SX,VQ; Y|Q), (4.10)

then the source (S, T') is S-admissible for the channel M,.
Here it is sufficient to consider only V, Q, Q such that

WI<IT|- 1 Xl +7, |2l <
101l < 16,1+ 1%, - 1K | + 4.
Remark 8:

1) It is easy to see that Theorem 3 is a special case of
Theorem 9. In fact, if we set O = ¢ (a constant) in
(4.7)-(4.10) then (4.8), (4.10) imply (4.7), (4.9), re-
spectively, yielding Theorem 3.

2) The variable Q seems somewhat similar to the time-
sharing parameter Q, but is different in that Q is used
here also to carry the common information K as is the
case in the theorem of Cover-El Gamal-Salehi.

Corollary 2: Suppose that there exists a deterministic
function T’ = f(S), i.e,, K = T; then the following holds. If
there exist Q, X, X,, Y such that

Pr{(S=s5,T=1, 0=§,X =x,X,=x,,Y =y}
p(s,t)p(@)p(xls, q) p(x3lt, @)w(ylx,, x,),

(4.11)

for which
H(S|K) < I( X;; Y|KQ), (4.12)
H(S) <I(SX,0;Y), (4.13)

then the source (S, T) is S-admissible.

Conversely, if the source (S, T) is S-admissible, the
conditions (4.12), (4.13) with “ < ” replaced by “ < ” have
to be satisfied for some 0, X, X,, Y satisfying (4. 11) Here
it is sufficient to consider only Q such that ||Q]| < |%,| -
19,1 + 2.

Proof: See Appendix I1L

Remark 9: If S = T = K, conditions (4.12), (4.13) re-
duce to the optimal condition (3.32) in Example 3: for any
distribution p(x,, x,) we can set Q = X, X;.
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V. A CHANNEL WITH SIDE INFORMATION AT THE
DECODER

Shannon introduced in [21] a one sender-one receiver
channel with finitely many states & selected from use to use
independently at random and also independently of the
letters sent (cf. channels with random state described in
Section III). This channel can be viewed as being com-
posed of a multiple-access channel with transmission prob-
abilities w(y|x, ¢) for y € ¥, x € %, t € ¥ and a random
mechanism selecting letters (states) 7, 7,, -+ € 9 that is a
sequence of ii.d. random variables T}, T,, - - - with values
in §. When neither the X-sender nor the %-receiver know
anything about the outcome of 7}, T,,- - -, T, we are just
dealing with an ordinary discrete memoryless channel.

Shannon investigated a case of side information at the
%-sender: we know the outcomes of T, - -, T, before we
send X . Wolfowitz [17] studied this and other cases.

Here it is assumed that the %-sender has no side infor-
mation, but that the Y-decoder can be informed about the
outcomes of T7,- - -, T, via a separate noiseless channel at a
fixed rate R (partial side information). Denote the capaci-
ties of this channel in dependence of R by C(R).

Conjecture: For R > 0,

C(R) = max{I( X; Y|V ) I(T; V|Y) < R,
Vo T Y, |VI<ITI+ 1)

It is not hard to show by the argument exploited in Section
III that the expression at the right-hand side is an achieva-
ble rate; the problem is to prove optimality, that is, a
converse.

This channel is somewhat related to, but much simpler
than, the interference channel (see [22], [23]) and represents
one of the simplest cases in channel coding where the
converse is still not known. A fairly simple example of this
kind in source coding was formulated in [7, part II, sect.
VIH].

VI. A NEw ACHIEVABLE RATE REGION FOR THE
BiNARY MoDULO - Two SuM Two HELPER PROBLEM

Let us consider a correlated source with three generic
random variables X, Y, Z taking values in X = Y = Z =
{0, 1), respectively, such that Z = X & Y, where X @ Yis 0
if X =Y, and 1 otherwise.

Suppose there are two encoders

6 X" >, =(1,2,---, M}),
¢2: Oy" - (")TZ’Z = {1,27“" MZ)
and the decoder
Yo, X M, - Z",

which is required to reliably reproduce Z" based on the
knowledge of ¢,(X") and ¢,(Y™).

Definition 4: (R,, R,) is said to be an achievable pair of
rates, if for any 0 < A < 1, 0 < 5 and all sufficiently large
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n there exist some ¢,, ¢,, ¥ such that

1
7 logflo\l < R, +n,

1
-~ logllgal < R, + 7.

and Pr(Z" = Z"y < \, where Z" = (¢,(X"), ¢,(Y™),
and ||¢,|| denotes the cardinality of the range of the func-
tion ¢;.

Denote the closure of the set of all achievable pairs of
rates by R, The problem of determinng Ry is a very
special but also very interesting case of the two-helper side
information problem stated by Ahlswede—Korner in [24].
Clearly, if the Slepian-Wolf conditions

R, > H(H|Y),
R, > H(Y|X),

R, +R,> H(X,Y) (6.1)
are satisfied, then (R,, R,) € R .. Kérner—Marton proved
in [13] that (R, R;) € R, if

R, > H(Z), R,>H(Z). (6.2)
Moreover, they showed that (6.2) gives the exact rate
region if Pr(X=0)=Pr(X=1) and Y is the output
variable of a binary symmetric channel with input variable
X.
Here we present an achievable region 4 which contains
the regions described by (6.1) and (6.2), and is in general
larger than @ ,, the convex hull of both of them.

Let U,V be finite-valued random variables such that
U, X, Y,V form a Markov chain in this order:

U->X->Y->V,
and let R (U, V') be the set of all (R, R,) satisfying

(6.3)

R > I(U, X\V) + H(Z|UV), (6.4)
R,>I(V,Y|U) + H(Z|IUV), (6.5)
R, + R, > I(UV; XY) + 2H(Z|UV).  (6.6)

Denote by & the convex closure of U, , R (U, V), where
the union is taken over all U, ¥ satisfying (6.3).

Theorem 10: R C R .

The proof is given in Appendix IV, which is based on a
combination of a standard technique in source coding [15]
and the method of Elias [26] (cf. Gallager [20]) for finding
linear codes, which was previously used by Korner—
Marton for proving their result stated above.

Remark 10: Theorem 10 contains the previous results
for the modulo-two sum problem. In fact, if we put U = X,
V' = Y in (6.4)-(6.6) we obtain the Slepian-Wolf condition
(6.1).

Next, if we put U=V = ¢, we obtain the Korner—
Marton condition (6.2).

The region @, established in Theorem 10 strictly extends
AR , for general binary sources, as is seen from the following
example.
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Example 4: We choose X, Y with the probability distri-
bution:
Pr{X=0,Y =0} = 0.003920,
Pr{X=0,Y =1} = 0.976080,
Pr{X=1,Y =0)=0.019920,
Pr{X=1,Y = 1} = 0.000080;
Pr{X = 0) = 0.980000, Pr{Y = 0} = 0.023840,
Pr{Z = 0} = 0.004000,
for which we have in bits
H(X)=0.1414405, H(Y) = 0.16248%4,
H(Z)=0.0376223, H(XY) = 0.1790629.
Choose auxiliary variables U, V taking values in {0, 1} with
Pr(U=0X=0}=0.55 Pr{(U=0X=1}=045,
Pr{(V=0Y=0}=095 Pr{V=0Y=1}=0.05
then the point P = (R,, R,) with
R, =I(U; X)+ H(Z|UV),
R, = I(V;Y|U) + H(Z|UV)

has the value R, = 0.0251286, R, = 0.1096321. The region
%R, is illustrated in Fig. 6, in which the boundary line AB is
specified by

f(Ry, Ry) = (R, — H(Z))(H(Y) - H(Z))

+ (R, — H(Z))(H(X) — H(X|Y)) = 0.
For the point P we have

f(R,, R,) = —0.0000443
which implies that at least the point P lies outside ..

VII. CORRELATED CODES: AN ALTERNATE
APPROACH TO THE PROBLEM OF TRANSMITTING
CORRELATED MESSAGES

We first take a closer look at the quote from [1] given in
the Introduction and emphasize the following observations.

a) In sentence 1) Shannon asks whether it is always
possible to achieve the outer bound G, to the capacity
region of the two-way channel for messages with a suitable
dependency structure.

b) Sentence 4) seems to indicate that he has in mind that
the message structure is that of a memoryless correlated
source, but in sentence 1) the message structure is not
specified.

3) In sentence 2) Shannon assigns rates R,;, R, to
whatever “source-channel-code” he has in mind. It seems
to us that only with two parameters such as R,, R, no
reasonable code of this kind can be satisfactorily described.
Note that Cover-Fl Gamal-Salehi avoid talking about
rates at all in their approach (Definition 1, also cf. Han
[27D).

d) It is by now well-known that in the problem of
transmitting correlated messages over multiway channels
the classical separation principle- of Shannon (separate cod-
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Fig. 6. Region R .

ing of the source and the channel for single-user channels)
fails in the sense that separate coding results in loss of
efficiency (in rates, if defined). The approach indicated in
[1] as well as the particular “source-channel-code” (or
matching) chosen in [6] take this into account. An obvious
drawback of such an approach is that it is only meaningful if
the message statistics are known exactly. We tend to share
the opinion expressed by Gallager in [20, p. 14): “In many
data transmission systems the probabilities with which
messages are to be used are either unknown or unmeaning-
ful.” Therefore the results of [6] and also our results in the
previous sections should probably be considered to be
more of the nature of providing theoretical insight than of
direct practical importance. The least one should try is to
safeguard against classes of message distributions (see [25]
and [7]). Another way of coming closer to a real communi-
cation situation with our models consists of enforcing the
separation principle (in spite of its suboptimality in an ideal
situation) and investigating what can be done (also optim-
ally) if source and channel coding are carried out sep-
arately.

A first approach is to study correlated codes for channels
without any reference to sources. In particular it is interest-
ing to know whether the question raised by Shannon,
namely, the achievability of the outer bound, can be for-
mulated for correlated codes and whether then the answer
is positive. We shall focus here on the multiple-access
channel, because it is better understood than the two-way
channe]l. We find it now more convenient to denote the
input alphabets by %X, %, and the output alphabet by Z.

Definition 5: An (n, M, M,, M, , a, A) correlated code

xXy?
for the MAC M, is a system (9, I, a, D), where

L3“’)( = (ul" T "Mx} c G'X/"’ |%x| = Mx (71)
M, ={o, o} ¥, |OM|=M, (72)

y v w,
a:%xx%y—» 0, 1}; Z Z a(“isvj)=Mxy

i=1j=1
(1.3)
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D ={D; ¢ Ze(u;, 5) = 1},
DN Dy =9, for(i,j)= (1)), (74)
( i ,) =>1-A, for every u;, v,
with a(u;, o) = 1. (7.5)

Other quantities of interest are

Z(X(",,U y|t=Za(ui’vj)7

J

ll

EI—

/M!

y

lI

EKI

Z
Z y\z xy/M s (77)

M, = (MM)

Xy ylx = M,M;,

y iyl T MM—

x|y -

(7.8)

Clearly, M,,,, My|x’ and M, , uniquely determine M,, M,
and M,,, and vice versa.

Definition 6: An (n, M_, M, M, o N)x correlated

side-information code for M2 is a system satisfying

(7.1)=(7.3) and

D=(D,c 2" <i<

D.ND,=¢,
w(Du,v)>1-2,

M.},

(7.9)

fori = i’,
for every u;, t;

witha(u;, 5) = 1. (7.10)

This code concept is for the case where only the messages
in 9, are to be reproduced. Note that these code defini-
tions do not necessarily imply that u, = u,,, for i = i’ (resp.
v * v forj = j").

To the parameters M, ,, M , M, M » M., we can

assngn the rates Rn = (l/n)log . = (l/n)log M,

(l/n) IOg (l/n) log x|y Ry|x =
(l/n)log M,,. Clearly, Rx|y + R”x <R, <R,+R,

Definition 7: (R, R, R, ) is an achzevable rate- trrple
for the correlated code problem (resp. correlated side-infor-
mation code problem) for M,, if for anyn > 0,0 < A < 1,
and evcry sufficiently large n there exists, for some
R, R, R, suchthat|R, — R ]<mn|R,—R/|<mnR,,
- ny| < n, an (n, exp[nR ], exp[nR ] a, }\) correlated
code (resp. correlated side-information code). Denote the
region of achievable rate triples (R,, R, R,,) by R,

(resp. R

cor-side )

A. A Partial Result for R,

Using the identities

R,y =R, —R,, Ry,

=R, - R, (111)
one can equivalently transform ® ., into the set R ., of
achievable triples (Rm, yix» Rxy),_and vice versa. It is

often more convenient to work with R ..
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Define R* as the set of triples (R
ing

xly> Rypxo Ry,) satisfy-

Ry, = I(X; ZI¥0),
R,, = I(Y; Z|XQ),
R, = I1(XY; Z|Q),

for some correlated input variable pair (X,Y) and the
corresponding output variable Z, where Q is the time-shar-
ing parameter. With a slight modification of the standard
argument used to establish the coding theorem on MAC,
we can easily prove the following theorem.

Theorem 11:

R, D R*. (7.12)

It should be noted that the result of Slepian—-Wolf [5] for
the MAC with correlated sources can be viewed as a
coding theorem for correlated codes with an « having the 1
in disjoint equal-sized rectangles placcd along a diagonal.
For those o they show that (R R,,) is achievable

if x|y? )’Ix’
R,, <I(X; Z|Y0Q), (7.13)
R,. <I(Y: Z|XQ), (7.14)
R,, + R, < I(XY; Z|0), (7.15)
R,, <I(XY;Z), (7.16)

for some O, X, Y, Zwith X > Q > ¥, 0 - XY — Z. This
region is in general smaller than R . for the multiple-access
channel.

cor

B. Remarks about R

cor-side

In this case of side codes the achievability of
(R,,R,,, R,,) implies that (R,, R, cR,) is also
achrevable for ¢ > 1, because one can always take the ¢,
with multiplicity. Therefore one should look for the smal-
lest R, such that the triple is achievable.

One may also study first the projection (R,, R, ). This
already constitutes an amazing new problem. Let &, ..
be the region of those achievable pairs.

Obviously, (0,0), (maxy/(X; Z|Y), maxyl(X; Z|Y)),
(max y yI(XY; Z),0) and their convex combinations are in

cor-side*

Problem 1: What is the exact region of R 4. (resp. of
its projection)?

With this short discussion we hope to have made clear
that there are several new problems for the code concepts
defined (and others one might think of) if used for the
MAC, and there is a whole collection of problems if one
considers various multiway channels such as the TWC,
broadcast channel, interference channel, etc. Instead of
going into further details, we now give some ideas about
source-channel matching,
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C. The Subcode and Minor Problem

The following problems strikingly demonstrate the rich-
ness of multi-user information theory in comparison to the
classical single-user theory. First notice that for the two
code concepts defined above one can already pass from
average error to maximal error codes without essential loss
in rate and hence the rate (capacity) regions are the same.
We can therefore pass from a code (M, M, a, D) to a
(minor) subcode (M}, M, &, ') without increase in er-
ror probability, where (’JR,’ c ‘z)ll, M, €M, o is the
restriction of a on I, X %’ and &’ is a new decoding
rule, which can, but need not, be obtained by restricting D.
Denote the collection of all such subcodes by
e, M, a, D).

A similar but larger class of subcodes is the collection of
all subcodes, denoted by C*(IM, M, a, D), obtained if
we replace « in the above by any «” with o’ < «, where
“<” means that a(u;,v;)=1 whenever o (u;, 0,) = 1.
Clearly, C(9_, M, a, GD) < C*(IM,, M, a, D). Ass1gn-
ing rates (R, R}, R’ ) to these subcodes one obtains two
spectra of rate triples from a single correlated code,
which we denote by SPC(IM,, M,, a, D) and
SPCH M, M, a, D), respectively.

Problem 2: Which spectra SPC* (resp. SPC) are
achievable with arbitrarily small error probabilities for n
large?

Note that the same correlated code can be used for
several message sources by suitably selecting its subcodes
(in this sense it may be called a multi-user code) and the
richness of the spectrum SPC* (resp. SPC) is a criterion
for its capability to meet various demands.

Some hard problems arise. For instance, to what extent
does the spectrum of a code allow to reconstruct this code
(at least in an approximate sense)? There is a relation to
reconstruction problems of bipartite graphs from sub-
graphs, because both problems are based on the same kind
of incidence structure a.

D. Matching

An abstract correlated source is simply a pair of random
variables (S,7T) where S, 7T take values in finite sets
Sresp. I

We say that this source can be a-matched with the
correlated code (M, M., D, a) if there exist functions

f:gﬁ%x,g:‘g%% Y M XM, - & X T such
that
Pr{y(f(S),8(T)=(S,TH=>1-¢ (1.17)
and
Pr{a(f(S),g(T)=1}>1-¢ (7.18)

Now imagine that the component sources S resp. T are not
directly placed at the channel *X-encoder resp. %U-encoder,
but are linked to them, respectively, by the channel which
may be assumed to be noiseless. Then the cardinalities of
the ranges of f and g become an issue, because the channel
can transmit only at limited rates R, resp. R,. We say that
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(S, T) can be (R,, R,, €)-matched with (9., M, D, a) if,
in addition to (7.17), (7.18), also ||fil < R,, ligll <
R, Finally, we say that (S, T') is (R,, R,, €, A)-transmissi-
ble over the channel M,, if it can be (R, R,, ¢)-matched
with some correlated code (9, M, D, a, A).

Remark 11: Cover, El Gamal, and Salehi [6] assumed in
their approach that the source outputs of the component
sources are available at the corresponding channel encoders.
An interesting more general problem arises if, as above, the
outputs of the component sources are to be transmitted via
channels of rates R,, resp. R, to the corresponding encoders
of M,.

E. Continuous Transmission and the Embedding Problem

Suppose that the correlated code (9, G.)]Ly, D, a, A) is
to be used repeatedly. If we place a probability distribution
B on M, X M, such that for instance

(T atune)] itau,o)=1

i,y

B(u;, ”j) =

then we obtain a correlated code (9N, I , D, a, B, A)
with an average (taken with respect to 8) error probability
less than A.

If we denote by I, J random variables with values in O
resp. "J]Ly and joint distribution S, then the repeated use of
the code can be described by (I,, /)%, where the (1, J,)
are independent copies of (I, J). For simplicity let us
assume that the message statistic is that of a correlated
source (S,, 7,)7,, which is to be transmitted and repro-
duced according to some fidelity criterion. This situation is
quite complex and as a first step for its analysis one may
consider the following problem, which is also of interest in
itself.

Embedding Problem: For two (correlated) sources
(X, Y)i—, (U, V), and 0 <e <1 it is to be decided
whether there exist functions f: X" —» U™, g Y* —» Y™
P U X V™ - X" x Y* with

Pr{y(f(X"),g(Y"))=(X"Y")}>1~-c¢,
(7.19)

and

)3

(u™, o™ Ef(XT) X g(B")

IPl(um’ vm) - Pz(um9 vm)l <€,

where
Py(um, o™) = Pr{(f(X"), g(¥Y")) = (u™,v™)},
P, (um, o) = Pr{(U™, V™) = (u™, v™)}

Pr{(U™,V™)ef(X") x g(¥")}’

Further, what are the minimal rates of f and g?
APPENDIX I

Proof of Theorem 4

As will be seen from the way of generating the random codes
in the proof of Theorem 3, the admissibility of § based on
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r(N) > H(S"Y"Xy) = ¥ H(S|Y"X38'71) > X H(S,|Y"X5Ti~1§7+1)
i=1

i=1

) X e
2 Y H(S)XTS) = ¥ H(S VX0,

i=1

condition (3.25) can be attained even if we use instead of ¢, the
encoder ¢,: T - %7 as follows, i.e., ¢, maps T" = (T}, -, T,)
to X7 =(X,, -, Xp,) in such a way that X,, is randomly
generated from T, according to the probability p( X,; = x,|T;, = )
as specified in (3.24).

This implies that block coding ¢, is no longer needed in this
special situation. Thus, if we replace X, (resp. x,) by X (resp. x)
and interpret w(y|x,, £) = 2, p(x,[t)w(y]|x,, x;) as the transi-
tion probability of a channel C(T) with random state 7, then the
direct part of Theorem 4 immediately follows.

Now consider the converse part of Theorem 4. Suppose that we
have an encoder ¢ and a decoder § for C(T) yielding the
probability of error 0 < A < 1. Set X* = (X|,- -+, X,) = ¢(S"),
S§"=(S,,"*+, S,), and denote by Y" = (Y17, - -, Y,) the output
n-sequence induced by X", T".

Using Fano’s lemma H(S"Y") < n) log|S| + h(A) = r(D),
where A(A) = —Alog A — (1 — A)log(l — A), we have

nH(S) < H(S") — H(S"Y") + r(\)
=I(S";Y")+r(A)=I(S"X"; Y") +r(\)
=H(Y")-H(Y"S"X") +r(A)

n n
< XL H(Y) - L H(YS"X"Y'") +r(M),
i=1 i=1
where Y'~!=(¥,,---, ¥,_,). Note that Y, §;X, SUixty'~!
form a Markov chain in this order, where
st = (Sls"'s Si— 1S Sn)’
X = (X X X0, Xp)-
Hence

WH(S) < ¥ H(Y) — ¥ HGS,X) + r(A)

i=1 i=1

YIS X:Y) 4 r(A)
i=1

< nl (S X Vi) +r(A), (Al)

where 1(S, X,; Y;) = max, I(S;X;; ¥,). Set § = 8§, X=X, Y =
Y., then (Al) can be rewritten as

H(S) < I(SX;Y) +r(7).

Letting A — 0 we have the desired converse. Q.E.D.

APPENDIX I

Proof of Theorem 5
1) The Direct Part: Replace V by VX, in (3.2), (3.3) and use
the relations

I(8X,; Y| X;¥Q) = I1(X,; Y| X,VQ),
I(SX\VX,; YIQ) = I(X, Xy, Y|Q).

Note that the replacement of ¥ by VX, does not violate the form
of condition (3.28) because p(x,|v, q) is not of the form which
depends on ¢.

2) The Converse Part: We use the same notation as that in the
proof of Theorem 4 (Appendix I). Set ¥, = X2T'~'§'+!, where
§i*! = (8,1, §,) Then, by Fano’s lemma,

n
i=1

where equality (1) follows from the fact that Y'~'¥'*!
XJT!='§i*! 8, from a Markov chain in this order, indicated as
YIT'¥i*l 5 xpTi 187+ > 5, which holds because ¢, is com-
ponentwise.

Since ¥; contains X,;, we have

i H(S|V;) < i H(S;|Vi Xy;)

i=1 i=1

n
= X H(S|Y, Xy, V) + r(A)
i=1

n
= Y I(8; Y| X, 1) + r(X)
i=1
< X I(S X, Y| X, 0,) +r(X)
i=1

= Z I(Xy; Y| X, V7)) + r(N),

i=1

(A2)

where in the last step we have used the memoryless character of
the channel.

Next, noting that Y” contains X5 by assumption, we have
H(S"X}|Y") < r(A). Hence,

H(S"X2)-r(A) < H(S"X}) — H(S"X5|Y")
=I(S"X§;Y") = H(Y") — H(Y"|S"X})
< LH(Y) - ¥ H(Y)s"x3v""")

i=1 i

= i=1

n n
< LH(Y) - X H(YS"XX;7'™")

(A3)

where step (2) follows from the memoryless character of the
channel. On the other hand,

H(S"X3) = H(S"|X}) + H(X})
= H(S"|X5) + I(T"; X7);

H(S"1X7) = ¥ H(S|X;8™")

i=1

= Y H(S|XgT7'§")
i=1
n
+ L I(8; T |X587+ 1)

i=1

n
H(S\V)+ L I(S; T\ X587+,

n
i=1 i=1
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1(77; X2) = H(T") — H(T"|X})

= L H(T) - L H(TXT)

i= i=1

imm—memﬂ%m)

i=1

i=1
n

- X (T; §xT )
i=1

n

2 I(T;

i=]

V) - ¥ I(T; §7 1),

i=1

Therefore, using the lemma of Csiszar and Korner [28]:

=

I(S,, Ti—-l|X2nSvi+|) = Z I(E;§i+1tX;Ti_l),
1 i=1

we have
H(s"Xg) = ¥ H(SIV) +
i=1 i
Hence, from (A3) and (A4),
£ H(sI¥) + E1(T %) < L1055 7) +r()

i=1 i=1

" (T, (Ad)

(A5)
We notice here that the property
X, 8~ T~

1

Vi Xy

i

holds because ¢, is componentwise.
Finally, define Q, S, T, V, X,, X,, Y by

Pr{(Q=i})=1/n, i=1,"--,n;
S=Si9 T=7:" V= VH X1=X1i,
X,=X,,, Y=Y, given Q = i,

then (A2) and (AS5) yield the required result if we note that
1O, IV can be finitely bounded. Q.E.D.

APPENDIX III

Proof of Corollary 2

Letting V = Q = ¢ in (4.7)—(4.10) yields (4.12), (4.13). Note
that I(SX;; Y|KQ) = I(X;; Y|KQ), because K = T, yielding the
former part of the corollary. Consider the latter part.

With the same notation as in the proof of Theorem 4 of
(Appendix I), we have

H(S"K") = r(X)

< I(S"; Y K") = I(S"X!, Y'|K™)
= H(Y"|K") — H(Y"|S"X{K")
=Y H(YK"Y""") = ¥ H(Y|S"X[K"Y'"")
i=1 i=1
< ¥ H(YK, 1) - Y H(Y)| X, K,T!)

i=1

= Y I1(x; Y k,1M),
i=1
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where T = (T,,- -, T,_,, Ti\, - -, T,). Hence, defining Q, Q’,
S, T, X, X,, Yby

Pr{(Q=i)=1/n, i=1,--+,n;
S=Sj9 T=7;’ K=Kis Q’=T“]’
X1=X“, X2=X2,', Y=Y; giVenQ=i,
we have
1
H(SIK) = —r(A) <I(X;; YIKQ'Q). (A6)
On the other hand,
H(S") — r(A\) < I(S"; Y") = I(S"X]; Y")
= H(Y") - H(Y"|S"X{)
< LH(Y) - LH(YS" XY )
i=1 i=1
= Y H(Y) - X H(Y|s"X;T!")
i=1 i=1
= Y H(Y) - ¥ H(Y)$:X,T")
i=1 i=1
= X I(5X,T"; 7))
i=1
= nl(8§X,Q0’; Y|Q) < nI($X,0'Q;Y).
Hence,
H(S) —%r(?\) < I(SX,0'0; Y). (A7)

Inequalities (A6), (A7) with Q = Q’Q yield the latter part. QE.D.
APPENDIX IV

Proof of Theorem 10

By the time-sharing argument it suffices to show R (U, V) C
R, for any (U,¥) and for this we have to consider only the
extreme points of R (U, V), say,

R, = I(U; X) + H(Z|UV), (A8)
R, =I(V;Y|U) + H(Z|UV). (A9)
Decompose the rates (R,, R,) as follows:
R, =R{"+ R{®, R,=RY"+ RY, (Al0)
where
R{"=1(U; X), RP=H(Z|UV), (All)
RV =1(V;Y|U), R =H(Z|UV). (A12)

We use the rates (R{"”, RY) in the first step, and the rates
(R{?, R$) in the second step.

Step 1: Denote by U,,- -, U; mutually independent random
variables distributed uniformly in 7,(U), and by V,,- - -, ¥, mut-
ually independent random variables distributed uniformly in
T.(V), where 7 > 0 is a positive number, and

Ly =exp[n(1(U; X) +0/2)].
= exp[n(R{” + n/Z)],
J=exp[n(I(V;Y) +0/4)].

(A13)
(Al4)
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Then, tl}ere cxi~st functions U* = g*(X"; (71,- s 01.) Vr=
VX(Y"; Vi, --, V;) such that U* = U, for some i = 1,--, L;
and V* = V, for some j = 1, - -, J; and for sufficiently large

Pr{(U*,Vv* XV, Y")}) € T(UVXY)} > 1 — §,, (Al5)

where §, = 8,(¢,») = 0 as € — 0 (cf. [16]).

Put £, ={1,2,---, L)), £ ={1,2,--+, L,) where L, =
exp[n(RY + n/2)], and partition {¥,,- - -, ¥;} into L, subclasses
of the same cardinality. Let us define the subencoders h{":

X" R, B Y" L, by BN(X") =i if U* = Uj; and by

hSP(Y") = j if V* belongs to the jth subclass of {¥,,- - -, ¥;). The
corresponding subdecoder

ki€, X Ly = (U, -, Uy x{V, -, V) (Al6)

is defined by k(i, j) = (U,, V,,,) if ¥,, is one and only one element
of the jth subclass such that (U, V,) € T.(UV); otherwise let
k(i, j) be an arbitrary element. Then, by virtue of the standard
evaluation technique in multiterminal source coding,

Pr{k(i, j) = (U*,V(U*, v*, X", Y") € T.(UVX))

=>1-29,,
(A17)
where 8, = 8,(¢,v) > 0ase— 0.
Step 2: Let
m=n(H(Z|UV) + n/2)/log2 (A18)

and consider the random linear mapping f: {0, 1)" — (0, 1) = 9%
such that f(s) = As, where A4 is an m X n matrix whose elements
are all independently and uniformly distributed in {0, 1}. Here we
regard {0, 1} as forming the Galois field GF(2).

Denote other subencoders A(?: %" - 9, hP: Y" > N by
RBX™) = f(X"), RP(Y™) = f(Y"). Note here that

(1/n)log|N| = R + n/2 = RP + /2.

Step 3: Let us now define the composite encoders ¢,: X" —
Ly XN=9M,, ¢y Y" > £, X N =M, by ¢, = (A, hD), ¢,
= (h), k), and the composite decoder : M, X M, - " by
Y(i, /, f(X™),f(Y") =17 if z is one and only element of
T.(Z|k(i, j)) such that f(z)=f(X") + f(Y") = f(Z"), where
ief,jekl,.

To evaluate the probability of decoding error, consider the
following exhaustive error events:

E;: (U*Vv* X") & T.(UVXY),
E, k(i,j )= (U*V*),
Ey: (k(i,)),Z") & T.(UVZ),
E;: f(z)=f(Z"), forsomez *= Z" such that
(k(i,)),2) € T(UVZ).
Thus, by putting Z" = (¢ ,(X"), $,(Y")), we have
P=Pr(Z"=Z")
< Pr{E\} + Pr{E,|E{) + Pr{Es| E{E5)
+Pr{E,;|Ef N E5 N Ef).
By (Al5) and (A17),

(A19)

Pr{E) <8, (A20)
Pr{E,|E{} < §,. (A21)
Since UVXY uniquely determines the value of Z= X @ Y the
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event E{ N E5 implies the event E5, so that

Pr{E;|E{ N E§) = 0. (A22)

On the other hand,
Pr{E,|Ef N E, N Ef)

<ix( X Pr(s(2) = f(ZNE 0 B 0 B,

t=Z"
z € T(Z|k(i, /), (A23)
where the random variables in (A23) are 4 in addition to X", Y",
z", U, V. /
As all the elements of 4 are independently and uniformly
distributed in {0, 1}, by counting all the cases satisfying f(z) =
f(Z") it follows that for any z = Z"

Pr{f(z) = f(Z")Ef N E5 N Ef) = (2" "/2")" =
Hence, by (A18),
Pr{E,|Ef N ES N Ef} < |T.(ZWUV) - 27"
<exp[n(H(ZIUV) + 2¢)]-27™
=exp[—n(n/2 - 2¢)] < 85, (A24)

where 8; = 8;(n, €, n) can be made arbitrarily small by choosing
¢ small and then #» large.
Consequently, we have

P, <8, +6,+8;.

27,

(A25)

Finally, note that the total rates (R;, R,) used for the composite
encoders ¢, ¢, are

R =R"P+RP+9=R,+1
Ry=RP+RP +9=Ry+n,

and hence the rate given by (A8) and (A9) is achievable. Q.E.D.
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Estimation of Spatial and Spectral
Parameters of Multiple Sources

BOAZ PORAT, MEMBER, IEEE, AND BENJAMIN FRIEDLANDER, SENIOR MEMBER, 1EEE

Abstract—The problem of estimating spatial and spectral parameters of
multiple sources by sensor arrays is considered. A parametric model is
derived for the multichannel measurement vector. The model parameters
are the time delays and the autoregressive moving-average parameters of
all the sources. A suboptimal parameter estimation procedure is proposed,
and simulation results are presented to illustrate its performance.

I. INTRODUCTION

ASSIVE surveillance systems are often required to

detect sources of acoustic or electromagnetic energy
and to estimate their location and spectral characteristics.
Examples include sonar systems, acoustic arrays for detec-
tion of low-flying aircraft, and geophones for detection and
localization of seismic events. These systems consist of
multiple sensors arranged in some pattern such as a linear
array. The relative time delays between the arrival of
signals from a point source to the various sensors contain
information about the location (bearing and range) of the
source. For moving sources and sensors additional location
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information is contained in the differential Doppler shifts
of the signals arriving at different sensors.

The estimation of time delay and Doppler shift has been
studied extensively in the past two decades. The subject of
optimum (or maximum-likelihood) processing has received
particular attention [l]-[4]. The structure of the
maximum-likelihood estimator (MLE) of delay and
Doppler has been developed for various situations. Some
of the key results are discussed briefly in the following
paragraphs.

The MLE for the time delay between signals arriving at
two sensors (with no differential Doppler shift) can be
implemented by a generalized correlation procedure [5]:
the sensor data are filtered and then cross-correlated; the
location of the peak of the cross correlation function
provides the delay estimate. The optimal filters depend on
the spectral characteristics of the signal and noise and on
the signal-to-noise ratio (SNR).

When more than two sensors are available it is possible
to combine the pairwise delay estimates (obtained by gen-
eralized cross correlation) to get a global delay estimate [6].
An alternative implementation of the delay estimator is
provided by a conventional beamformer configuration in-
volving a set of steering delays followed by filtering,
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