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Table I presents the parameters [n, k, d] for the five new codes
C;, and for the 4;,,1 <i<5,1 < < 6, required by Construc-
tion XX. Of the twenty codes 4,;,1 <j < 4, all but 4;; and 4,;
are cyclic. 4,5 is a 5-dimensional subcode of A4,; that contains
the vector of weight 31. Likewise, 4;; = 4;, + 4,5 is a 10-
dimensional subcode of 4,; containing the vector of weight 31.
Of the remaining eighteen 4,;, 1 <j < 4, only ten are distinct.
Table II shows the roots of the check polynomial for these ten
cyclic codes. For example, 4,, and 4,, are the same cyclic
[31,6,15] code with check polynomial of degree 6 and having

roots 1 and a, where g is a primitive root of GF (32). 4,; is also .

a [31, 6,15] cyclic code whose check polynomial has roots 1 and

@, Ay = Ay, + Ay is a [31,11,11] cyclic code whose check -

polynomial has roots 1, @ and a°. The check polynomials in
Table II were selected to complement the generating polynomials
listed in [3, App. D]. The ten codes 4;;, 5 <j < 6, are, for the
most part, trivial. The existence of the [12,7,4] and [18,9,6]
codes is guaranteed by the tables in[1] and [4].

Clearly Construction XX has further applications. The five
codes described here were selected to have d < 29, in order to
enable comparison with the information in the table of [1)].
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Improvements of Winograd’s Result on Computation
in the Presence of Noise

RUDOLF AHLSWEDE

Abstract—Winograd’s result concerning Elias’ model of computation in
the presence of noise can be stated without reference to compntation. If a
code ¢: {0,1}* — {0,1}" is min-preserving (p(a A b) = @(a) A ¢(b)
for a,b € {0,1}*) and en-error comrecting, then the rate k/n — 0 as
k — oo. This result is improved and extended in two directions.

1) For min-preserving codes with fixed maximal (and also average)
error probability on a binary symmetric channel again k/n — 0 as
k — oo (strong converses).

2) Second, codes with lattice properties without reference to computing
are studied for their own sake. Already for monotone codes (¢(a) <
@ (b) for a < b) the results in direction 1) hold for maximal errors.

These results provide examples of coding theorems in which entropy plays
no role, and they can be reconsidered from the viewpoint of multiuser
information theory.

I INTRODUCTION

J. von Neumann [1] raised the question of how systems with
unreliable components can be used efficiently in a reliable way.
The most important example known, in which this program was
carried out successfully, is Shannon’s information theory. In
another direction, Elias and Winograd studied the question
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whether reliable computation is possible at a positive rate in the
presence of noise [3], [4]."? Surprisingly, this depends on the
Boolean operation used. If error correcting codes are used, for
“+ the answer is positive [3] and for “A” it is negative [4]. Here
we show that the rate is zero also if the noise is modeled by a
binary symmetric channel (BSC) and if maximal (resp. average)
error probabilities tending to zero are used as performance crite-
rion.> Moreover, we prove strong converses ([6]); that is, the rate
is even zero for an arbitrary large (but < 1) probability of error.
More abstractly, those problems can be studied as coding prob-
lems with algebraic constraints that have no reference to comput-
ing. Here we concentrate on lattice properties.

The proofs are based on elementary combinatorics. Standard
Fano-type arguments for weak converses fail. In contrast to
Shannon’s theory, parameters of codes are not related to entropy
here. Thus the present contribution can be viewed as another
example in support of our abstract coding theory [6].

II. ErLias’ MODEL
Two strings of data

X, = (xll,"';xlk)’ X, = (%51, 5 X2x)

are to be encoded by two separate encoders E;, E, into strings of
length n

EI(XI) =Y = (J’na"")ﬁn)
EZ(XZ) =Y,= (.)’211" ".VZn)-

The quantity of interest is

f(X%,%) = (fl(xu,le)sfz(xlzaxzz): T )

However, the computation is done by a computer, operating on a
bit-by-bit basis on Y}, Y,. In the absence of noise its computation
would be

F(Y,, %) = (Fl(J’u:.VZI)"") £Z=(z,"",2,).
In the presence of noise it produces instead
* = (zl*,“ -,z,’f) = Z + noise.

Here the noise is that of a binary symmetric channel. The
decoder accepts Z* as its input and performs the function D to
obtain

U= D(Z*) = (ul""’uk)'

The whole system performs reliably if U = f(X;, X, ). Note that
F can be different from f.
Elias makes the following assumptions.

1) X; and X, are encoded independently.
2) In the absence of noise D is bijective.
3) F operates bit by bit.

These assumptions mean that Y; only carries information about
X, (i = 1,2) and does not carry information about logical combi-
nations of the two blocks. Thus, none of the desired computation
f(X;,X,) is done in the encoder, which is also assumed to be
noiseless here, or in the decoder. This is to say that all calcula-
tions will be done by the computer.

I Thanks are due to A. El Gamal for drawing our attention to the work of
these authors.

2A referee kindly points out that [11] and [12] give related results and
extensions in a different direction, respectively.

3This result was conjectured in [4, Abstract].

0018-9448 /84 /1100-0872$01.00 ©1984 IEEE
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III. WINOGRAD’S RESULT AND PROOF
Theorem: Suppose that

f(‘_Xl’XZ) =f1(x11,x21)""afk(xlk’xzk)
=(xy A X91), (X A Xok)
and
F(YI’YZ) = (Fl(J’u’J’zl)v‘ ' "En(yln’yZn))

= (J’u AYnsa Aoyttt Vin A)’zn)-

Then, in order to correct en (0 < € < 1) errors, necessarily R =
k/n— 0(n— o).
Lemma: Let D™Y(X; A X,) = E (X)) A Ey(X,) and let

Voi(x) =1
all X
then

D Y(X)=E(X)=E,(X), forallX

and
X >X,=D'(X)>D7'(X,).
Here 1" = (1,1,---,1) and X; > X, ® X, > X,, fort=1,---,k
in {0,1}.
Proof of the Theorem: Given an error correcting code with
additional monotonicity properties on the lattice {0,1}", if 4

denotes the Hamming distance and if W denotes the weight of a
sequence, then ’

d(Z2,,2,) = W(Z)) + W(2Z,) —2W(Z, A Z,)

>25+1,  sfen (1)
Also
Z,>2,=>W(Z)=W(Z)+d(Z,2,). 2
Consider the chain
' 0 < - <TI0k i< .. <1k

By the lemma
D—l(lk) > D—l(lk—lo) > ..
Equations (2) and (3) imply

> D71(0%). 3)

k
n>w[D'(1¥)] = god(D‘l(l"_'ﬂ"),

D—l(lk—i—10§+1)) + W(D_l(ok))'

and thus by (1)
n > k(2s + 1) + W(D71(0)) = k(2s + 1).
Q.E.D.
Observation: Winograd’s proof only uses that ¢ £ D~? is
monotonic and injective. It does not use the property p(a A b)
= p(a) A p(b).
IV. LarTiceE CODES

To better understand the coding problem treated, we state it in
purely combinatorial terms without any references to computing,
Henceforth, the number of codewords M will be a power of 2:
M =2k,

Recall that an (M, n, t)-error correcting code is a set of words

{w, - up} < {0,1}"
with

d(u;,u) =2t +1, fori=j. (4

An (M, n, A, )-code (resp. (M, n, A, )-code) for the BSC with
the transmission matrix .

_(l1—¢€ €
w—( € 1—6)
is the set of pairs {(v;,D;): 1 <i< M}, where D,N D, =¢
(i #j), v; € {0,1}*, D, c {0,1}", and

M
max w( Df|v;) < Apax» (resp. % Y w(Dflv;) < Xa‘,).

i=1
(%)

Motivated by the computing problem in the presence of noise
as described earlier, Elias [3] considered the logical operation
“+? for f; and F,. In this case the codewords {v,,- - -, v, } carry
an additional algebraic structure: they form a group under mod-
ulo 2 componentwise addition or, equivalently, a subspace of
GF (2)". Moreover, he proved that those group (or linear) codes
achieve the capacity of the BSC. Replacing “+” by other logical
operations, algebraic conditions are imposed on the codes.

Generally, we define algebraic codes (M, n,t, ¢) (resp.
(M, n, A\, p)codes, A = A,,, or A,) by requiring that
{uy, -+, up} (resp. {vy," - -, vy, }) be parameterized by

{uy, -, upy } = {q)(z): z € {O,I}k}
(resp. (v, o) ={o(2): z€ {0,1}"}). (6)

In this notation linear codes are obtained by an isomorphic
vector space embedding of GF (2)* into GF (2)".

Motivated by Winograd’s theorem, we are concerned here with
maps ¢, which preserve lattice properties of {0,1}%, such as
monotonicity i

a<b=9(a)<o(b) (7)

or preservation of the min-operation “A”
¢(a A b) =op(a) Ao(b),
aAb=(a Aby, - -,a,ANb)--. (8)
We adopt the following notation: For a codelength M and a
block length »
alogM _k
R= T (9

is the rate of the code. For a specified class @ of maps, we define
the optimal rates

(€)= max{l(%{: I(M,n,t,p)-code
for some p € ® and 1 = en} (10)
RE(AL.) = max{lgg;h—!: (M, n, ALy, 9)-code
for some @ € <I>} (11)
R2(A,) = max{@: A(M,n,A,,,p)-code
for some ¢ € <I>}. (12)

The class of all y: {0,1}* - {0,1}" for some k,n that are
injective and A -preserving is denoted by ¥. In this notation
Winograd’s theorem can be considered as follows. For 0 < e <1

() < (2¢) a0 (13)

That is, an error correcting code cannot have a positive rate (as

(n - ).
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n - 00), if en (0 < € < 1) many errors must be corrected. This
“negative” result has not been éstablished anywhere in the litera-
ture for (M,n,A,¥)-codes. Next, we study the growth of
R¥(\_.,) and show that it differs from that of r¥(e).
V. A LoweR BOUND ON R‘,‘,’(Amx)
Theorem 1: R¥(Apa) = d(€,A) - (log n)™! for a suitable
d(e,A)> 0.

Proof: Choose n= b - k with b to be specified later. For

x € {0,1}, let (x)® £ (x, x,- -, x) be of length b and define ¢:
{0,1}* > {0,1}" as
o(x) = p(xm %) = ((x) 0+ (x) ). (1)

Obviously, ¢ is injectiveand A, Vv, Ereservmg Thus, particu-
larly ¢ € ¥. For the codewords {q)(x x* e {0, 1}"} define
decoding sets D« by maximum hkehhood decoding with respect
to the BSC (declare an error in case of ties). By symmetry the
individual error probablhtles are all equal and thus A, = A,

We calculate now A .

codewords that differ from a fixed codeword @(x*) in exactly /
blocks. The two-codeword error probability of ¢(x, ) and such a
codeword is less than e~ < for a suitdble constant c(€) > 0.
Therefore

. First observe that there are exactly (k

k k ! -k
>‘max < Z ( l)e—c(<)1b < Z kle—c(s)lb
=1

=1

< ke ¢OP[1 — ke @b if ke 0 < 1

<A, if ke_‘(‘;b < %7\.
This condition holds for any b with

1+ c(c)‘l[logk - log%] >b> c(e)‘l[logk - log%]
and therefore ] :

k
¥ L
R(x)zn

vh—'

-1

\
—_—

1- c(e)_llog% + c(e)_llogk)

c(e)
= 2logk’

which gives the result, because n > k.

fork > ky(e, )

VI. WEAK CONVERSES VIA CHAINS
One readily verifies

(15)

Thus ¥ c .#, the class of injective, monotonic maps. Actually
Winograd’s proof, which is based on the properties of a chain of
codewords, uses monotonicity (in the form x; > x, » D™ }(x;)
> D™ Y(x,) of the Lemma) rather than the A -preserving prop-
erty. Here we analyze how far this argument holds. Later we
derive sharper results by looking at antichains.

@ A -preserving = ¢ monotonic.

Theorem 2: (Weak converse for maximum error.) For any null
sequence (A,)2_,, we have lim, |, _R¥(A\,)=0
Proof: Consider any chain of length & in {0,1}*, such as
e,e Ve,,egVe Ve, -,eg VeV -

where ¢, = (0,0,0,1,0,---,0) with a one in the ith position.
Then p(e;) < p(e; Ve,) < -+ <@(e, V -+ Ve,), and there-
fore' there exists ¢;,- - -, ¢, € {0,1}" with

¢ Ac = 0= (0,---,0),

Ve,

(16)

i#j
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and

(e, V- Ve)=¢ Ve V- Vg, I=1,---,k.

(17)

For two successive codewords the two-codeword error probabili-
ties satisfy for a suitable constant f(€) > 0

A, = max (A(p(e Vi ve)):A(p(e vV --- Ver,))
> e_f(f)cl-o»l' (18)
Therefore,
1
1 = ———logA,,
1+1 f(e) 2
n>)y ¢> k logA,,
= f(9)
and
% < —f(c)[log?x,‘]_1 -0, (n- »). (19)
QED.

Next we establish a somewhat weaker result for average errors.

Theorem 3: (“Very” weak converse for average errors.) For

any null sequence (A, ) > withO< A, <e™® 8§>0,neEN
lim R¥(A,) =0.
n—oo

To apply the previous argument, we must find a subcode of
small maximal error probablhty that contains a chain of suffi-
cient length.

In the multiuser information theory [8], the attempt to extract a
suitable maximal efror code from an average error code led to the
combinatorial problem of Zarankiewicz. The situation here is
similar. We are led to‘another combinatorial problem that was
solved by Erdos [9] (Theorem 2.3 in [10]). For arbitrary & C
{0,1}*, |®| = B, what is the guaranteed length L(B,k) of the
longest chain in %?

Define N, by

N, = maximal integer with

Ni k k
) k+ +| k| < B, k is even
=1 \27F 2 2)
k k (
Y2l k-1 +5| =B kisodd.
s=1 2
Erdés proved
2N, +1, if k is even
L(B,k) = {sz, if & is odd. 1)
Proof: Consider the subcode
¢={p(x*): x* € (0,1}*
and
w( Dlo(x*)) <2A,}
which by a pigeonhole argument satisfies
%] > %2". (22)
Since (k%) < 2%/Vk, (22), (20), and (21) imply the existence
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of a chain %, € ¥ with
|%,] > const. Vk . (23)

The argument given in the proof of Theorem 2 can now be
applied to the chain %,. The corresponding quantities c¢;,- -,
Ceonst. /& Satisfy

e %k > g~ fl9a,

Thus,
ok
T f(e)
const. yk y Sk
n> ¢; = const. Vk ——
i§1 f(e€)
and finally
k < const. k™12
n
QED.
Remark 1: Of course, the proof still works for
A, <e ™t g0

Remark 2: Notice that we have not proved the strong
converse [6] that says here
lim R#(A) =0 (resp. lim R#(A) = 0)
n—> o0

n— oo
for every constant A & (0,1). (24)

In contrast to many situations in coding theory, where (the
question whether both the weak converse and the strong converse
hold is often just of academic interest; the strong converse is of
great significance for computing problems. If it does not hold in
a certain situation, then computing in the presence of noise is
possible at a positive rate for certain error probabilities. Unfor-
tunately the strong converse does hold, and thus the desired
phenomenon does not occur for the class ¥. For this class the
sharper result can be derived by looking at antichains.

Remark 3: As an instructive exercise in abstract coding
theory [6], we propose a problem: does (24) hold for maximal (or
even average) errors?

VII. STRONG CONVERSE VIA ANTICHAINS

Theorem 4: (Strong converse for maximal error.)

im R¥(A) =0, Ae(0,1).
o]

n—

More precisely,
dy(e,\)(logn) ™" < RY() < dy(e,\)(logn) !

for suitable constants d;, d,, and n > 2.

Proof: )

a) Suppose that ¢(0,---,0) has a one in some compo-

nents, then because of monotomc1ty all codewords ¢ (x*) have a

one in those components. They therefore add nothing to the error

performance and just decrease the rate. Thus without loss of
generality (w.l.o.g.) suppose that

¢(0,...,0)=(0,... (25)

b) Since e; Ae; =0 (i =#J), we have p(e; A €;) = p(e,)
A q)(e )=0; that is, tp(e) (1 <i < k) have d.lS_]Olnt supports

8. < {1,2,---,n}, ‘and a fortiori {p(e): 1 <i<k}is
an antichain.

,0) € {0,1}".

By the previous argument we can assume
k
Us = {12} (26)
i=1

Thus, for ¢, £ |S,]

M=

(27)

¢; =n.

i=1
We will derive the desired bound on the rate by analyzing the
error performance of the antichain only.

c) Next, we modify this antichain so that the new sup-
ports have all equal cardinalities. Define ¢ £ ¥*_,c,/k. Then |{i:
¢; > 2¢}|2¢ < k¢ = n and hence [{i: ¢; > 2c}| < (n/2¢)=k/2.
For the sake of convenience, set m = k/2 and d = |2¢]. Thus
we have a subantichain {p(g;): 1 <i<m} with ¢, <d. To
simplify the calculation of the error probability, extend all ¢ to
d, disregarding the increase in the total length or equivalently the
loss in rate. An antichain, which each codeword has by symme-
try, is obtained for the same error performance in strict (disre-
garding ties) maximum likelihood decoding. We upper bound the
probability of correct decoding for one codeword by a rough
estimate.

d) For the strict maximum likelihood decoding code

{((9(a;); Dp(oy): 1 <i<m}
Dyayc {y"€{0,1}": y" 2 9(a), forall j#i}
(28)

because y" > p(a;) implies w(y"|p(g;)) = w(y"|p(q;)). Obvi-
ously, from (28)

w(Dyoylo(a)) = (1 -(1—9))" (29)
and necessarily with 7 2 1 — ¢
(1-79)""21-A. (30)

This gives a lower bound on d, and thus the desired upper bound
on the rate is

k 1 2
R=S=%<2
since d < 2¢. From (20)
log(1 — A)
— —er> M7
log(l L m— 1

and therefore necessarily from log(1 — x) < —x,

2 log(1 —A) ,
m—1

log(1l — A)]iE .
dz(]og[————m_l )log 7.
Thus

R <

< 2logn

il

loglog (1 —A) ™" — log(m — 1) -

Since 7 =1 — €, m = k/2, a constant p(A, €) exists for which

k

R="~< p(\,e)(logk)™!, k=4

(31)
e) Finally, this bound is expressed in terms of n. Since
R < 1, substitution of Rn for k in (31) yields

1

R=< plogR+ logn’

(32)
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Suppose now that for every k>0R> k/logn for n large, then

ko I
logn = logx — loglogn + logn

or
log « — loglbgn +logn < %logn,

a contradiction. Thus, R¥(A) = O(1/logn) and by Theorem 1
this bound is best within a constant for the first-order term.

Theorem 5: (Strong oohvérse for average error)
lim R¥(A\) =0, Ae(0,1).
n—oo
Actually,
d(e,A)(logn) " < R¥(A) < d,(e,\)(logn)
for suitable constants d;,d,, and n > 2.

Proof: '

a) Auxiliary combinatorial lemma: Paralleling the proof of
Theorem 3, we find a sufficiently long maximal error subcode
with A_ .. = (1 + 8)A that now has the structure of an antichain
and an addmonal “disjointness property” like the one used in the
proof of Theorem 4. For this purpose, we first derive an auxiliary
combinatorial result.

Let ¢ be a directed graph with vertex set ¥". For v € ¥
denote by #(v) (resp. @(v)) the set of vertices reaching v (resp.
reached from v) by an arrow. Further, let

Toa # max|Z(0)|, TP L |1F(0)]
v_e vey
denote the maximal and the average in degrees.
Lemma 1: Let ¥ U ¥, be a partition of the vertex set
¥ of a directed graph ¢ such that

31> 71 =1 = o) IIL,). (33)
Then there exists a v, € ¥~ with
10(v0) N 73| 2 ol. (34)

Proof: Suppose that (34) does not hold. Then
X 1£(0)1= XL 10(v) n#| < |,

vEY] vEY

and therefore
13l e = 2 |F(0)|> 771 = 0)].
vEY,

Thus
173> 1711 — o) I3,

in contradiction to |¥7| = |¥7| + |#5]| and (33).

b) Definition of the graph: The followmg definitions are
motivated by the fact that most words x* are in the “middle” of
the lattice and that we are interested in those with “good”
codewords. Write A(x*) £ w(Df|p(x*)) and consider for 0 < p
< 1/2 and y with (1 + y)A < 1 the sets

7= 9(p) & {x* € (0,1}*: |d(x*,0) — 1k| < pk)}
(35)

71 =71(v,0) = {x* € ¥ (p): M(x*) < (1 + )R},
%Ev-9 (36)
%(v.p) = {p(x5): x* € 71(v,p)}. (37

Now define a directed graph ¢ with vertex set ¥"= ¥"(p) by
(38)

u—-veu<v
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where u, v differ in exactly one component.

. ©) Application of Lemma 1: To apply the lemma to the
graph ¢ and the partition ¥"= ¥] U ¥5, we must first estimate
1l |71h Ipax, 2nd I.

It is well- known that

1=17(p)] 2 (1 — e7/P¥)2*
for a suitable constant f(p) > 0. Since

A2k ¥ AR 2 {xFA(xF) > (1 + )R} +¥)A
xke{0,1}*

(39)

we have

I{x* € (0,1} A(xF) < (1 + A} |2 1 I

2k
Y

which together with (39) implies

Fl =1l (T - e @tz ()
Obviously, from the definitions it follows that
L = (3 + p) &/ (41)
and
G -p)k<I<(}+p)k (42)

Actually, T is almost equal to (1/2)k.

Next, we insure condition (33). Choose ¢ £ y/4(1 + v), then
0<p<1/4 and so small that (1/2 — p)/(1/2+p)>1 — 0.
Thus,

¥
1+

=202 20— 02

=

[S1e]
©

=1-(1-0)’>21-(1-0)-

N=

+

©

> (1 -o0)IIZ)
and for k > kq(y, p)

1 v ~Fo)k
21+y =€ ’
Therefore
Y Rk —(1 = o¢)FI-} 43
L - Ot 21— (1= o) I, (43)
This, |#7] < 2%, and (40) imply condition (33).
The lemma gua.rantees the existence of a vy, € ¥~ with
vy 1
Iw(UO) N Vil = UI 2 4 1 _|_ 4 (44)

by the definition of o, (42), and p < 1/4.
d) The desired antichain in ¥(y,p): For k' = yk/
16(1 + y) consider a subset

{ai, - a} € O(v) N, (45)
and define the subcode )
¢*={9(a):1<i<k’} c%(y,p). (46)

By the definitions of the graph and the a;, p(q;) = p(v,) for all
i and a; A a; = v, for i #j. Since ¢ € ¢, we have

?(a) A 9(a) = 9(a, A a)) = p(vg). (47)

This means that the supports of the ¢(a;) contain the support of
@(vy) and are disjoint in its complement. Dropping the compo-
nents in the support of qp(vo) leads to a code of the same rate
and error performance. This is exactly the maximal error code
used in the proof of Theorem 4, and the proof of Theorem 5 can
be completed in the same way.
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Another Proof of Theorem 5: The preceding proof was based
on a rather general idea. Using more of the lattice structure, we
can provide a simpler proof.

Define .Q;k = {x* € {0,1}*: d(x*,0)=j}. From the argu-
ment leading to (40), for any 0 < p < 1/2 an / exists, k/2 < [ <
(3 + p)k, such that for

77 & (xR 1k e ZF AM(xF) <A1 +v))
5%, v.0)(¥) (4)
for a suitable 8. The following (44") replaces (44). From there the

proof can be completed as in d.
Lemma 2: A vy € [, exists such that

1771

\%

10(v0) N 77} 2 8(k —(I-1)). (44)

Proof: Look at the bipartite graph
(%5, 24,6)
where
(x*, y¥) € & & x* < yk.

Obviously,

er=(, 5 Je-a-m=(¥)r. @

The number of edges leaving ¥7" is bigger than S(IIC)I. Now
suppose that for all v € £/,

[0(v) N7} < 8(k —(1-1)).

Then the number of edges to 7’ is smaller than

(lfl)s(k——(l— 1)) =s(’;)1

which is a contradiction. Q.E.D.
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TABLEI

Allowable Relative Error

107" 1072 1073 107" 107° 4078
Lower Bound in [1] 2.06 3.96 7.28 13.09 23.35 *
Q2.9 9.91 31.6 % * *
Q. 1.54 3.4 6.8 11.8  21.1 x

Q 1.16 2.3 3.83 5.95  8.98  13.4

Q. .95 1.83 2.89% 4.21 5.89 8.08

Qs .83 1.55 2,39 3.38 4.55 5.98

Q .73 1.37  2.08 2.88 3.8 4.87

Asterisks denote values that were not computed due to underflow in the
computer.

A Sequence of Upper and Lower Bounds
for the @ Function

THOMAS K. PHILIPS AND AHMED SAHRAOUI
Abstract—A sequence of upper and lower bounds for the Q function

defined as Q(x)=1/V27 [Pexp[(—y?)/2]dy is developed. These
bounds are shown to be tighter than those most commonly used.

It has been shown [1], for the Q function defined as

o(x) = -i/%fxwexp-——(_; ) dy,

that for x > 0

1 (,_ 1) exp(=x%/2) 1 exp(-x%/2)
V2m (1 2) x < 0(x) < s x :

X
Our aim is to develop tighter bounds. Consider rewriting the Q
function as

)y,

and note that if y/x > 1, then B,(y)=1— {1 - (y/x)}" is an

upper bound for 1 if n is odd and a lower bound for it if n is
even. Now define
(=»*)

4,8 = [Tn0) e g

1 )
Q(x)=‘/—2—;fxl'exp
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