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THE STRUCTURE OF CAPACITY FUNCTIONS FOR COMPOUND CHANNELSl)

R. Ahlswede and J. Wolfowitz
Ohio State Unlversity, Columbus, Ohlo, USsA
' and ,
Cornell Universitx Ithace, N.Y., vUsa

1. Definitions and introduction of the capaclty functions

C(R), C(rg), c(%y) .

let X ={1,...,a} and Y = {1,...,b] be, respectively, the
input and output alphabets which will be used for transmission

over a channel (or a system of channels). Any sequence of n

n
letters X, = (xl,...,xn) € E X 1s called a transmitted or sent

ol ny n '
n-sequence, any seqguence Y, = (y sy ) ET Y is called g

1 -
recelved n-sequence. o

Let S = {1,...,k}, and
C = nl-1-1s)]s e s,

where each w(:|-|s) 1s an (axb) stochastic matrix, also called

a channel'probability function (c.p.f.). For each

n : .

X, = (xl,...;xn).e Xn_= g X we define a probability distribution
n n bt

(p.d.) on v = TY by P (v lx ls) = mow(ytlx"ls), (v, e v).

| t=1 n
Pn(ynlxnls) is the probability that, when the n-sequence x  1is
sent, thé (chance) sequence received is Yo+ The sequence
(Pn(?l-ls)) n=12, ... describes a discrete channél without memory j

(d.m.c.).

)
1

L'
i

1)" Research of both authors supported by the U.S. Air Force
under Grant AF-AFOSR-68-1472 to Cornell University.
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Thus we have assigned to each s € S a d.m.c. We call the
gystem of channels
% _
2 o= (B (-11s)), n=1,2,..]s € 5]
a2 compound {or simultaneous) channel (cf. [6]), if the transmission
is governed as follows: each n-sequence X, is transmitted accord-.

: . *
ing to some channel in. ¢§ and the channel may vary arbltrarily

* o
in {7 from one such n-sequence to another.

Wwe define a code (n,N,k) for the compound channel as a system

{(ui,Ai)]ui € X, A © Y., Ay n’AJ =@ for L £ 4, 1 =1,...,N}

which satisfies
.Pn(Ailuils) 2 1-2 41=1,...N; s € 8.
As usual the entropy of a probability vector 7 = (vl;...,wt)
N 4
1s defined to be " H(w) = - Zl Ty log, m;. Denote the rate for the
1= ,

(row) probability vector 7 on X and c.p.f. w(-|-|s) by

R(m,s) = H(xr'(s)) - ? Ty B(w{-|1]s), where w'(s) = 7.w(.|.]|s).

Let N(n,\) be the maximal length of an(n,N,A) code for zj*. It

1s an easy consequence of Theorem 1 in [4], that
(131) © 1lim %-log N(n,A) = C
where C is a constant, independent of A, given by

C = max inf R(m,s).
T SE€ES
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(1.1) means that the coding theorem and strong converse of the

coding theorem hold. C 1is called the capaclty.

A code (n, N, X) with average error A 1s a system

((uy,Ay)luy € X, Ay © Yn;Ai nAy = 0 for 1 £ 3, 1 =1,...,
which satisfies

P;(Ai[ui]s) >1 -7 |, s € 8.

=l
{1 o ==

i=1

Let N(n,N\) be the maximal length of an (n,N,X} code for (f*. It

was proved 1n [3], that

~inf lim % log N(n,?) = C.
wo T

(The coding theorem and weak converse for average efror.)

when |S| =1 41t is immaterial whether we use maximal or
average error (cf. [6], Ch. 3.1, Leﬁma»3.ll). This has led to
the belief - widespréad among engineers - that this is_trﬁe even
for more complex channel systems. However, already for.compound
channels with ISI = 2 one has to distinguish carefully between

these errors, as was shown in [l],'example 1. 1In fact,

im 1 ., N{n, )

%
8
5

is in general greater than C. This means that, when we use aver-
age.errors for codes for zf*, we can achieve longer code lengths.

The following questions are therefore of ihterest:
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1) For which N does 1lim % log N{(n,A) exist?

n—>cow
What can wé say about the capacity function

where
c(?) = lim % log N(n,?)

n>ow

whenever the latter exists?

3)  When c(A) > C, which encoding procedure glves the
longest codes? ‘

We shall also study channel (;* under randomlzed encoding.

A random code (n,N,XR) i1s a system of palrs

((p},a) 10" p.d. on X ,a, ‘disjoint, 1 = 1,...,N}]

which satisfy

(1.2) 2 optx) P(aylx ls) 21 - g

€
Xn Xn

If we allow average error instead of maximal error we have

to replace (1.2) by

N. '

1 _
) T D (xn) Pn(AilxnlS) 21 -7y
i=1 xnexn ‘ o

=l

(1.3)

in order to define a random (randomized) (n,N,?ﬁ) code.

The use of a random code is as follows: A set of messages

N={1,...N} 1is given in advance. If messages 1 1s to be sent

-
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the sender performs a random experiment accordlng to _pi,’ and

the outcome of the experiment 1s sent. The receiver, after

recelving the n-sequence N € A decides that message J was

J',
intended. [This code concept was described in [2] under 2.1].

Questions of interest to us are:’

1)  For which values of A, h. does lim=< log N(n,A,)
| 'ge Mg 0068 Sy Lo R’

respectively lim<% log N(n,iﬁ), exist?

>

2) What is the structure of the capacity functions

-_— 1 —
¢(*;) = lim = log N(n,%r,)
R oo n MUOR
and
= 1
C(AR) =.1im = log N(n,AR)
} n-»>om

where these are‘well defined?

All our results will be obtained under the restriction that
(f contains only finitely many,'say k, c.p.f!'s.

A word about notation. The functions C(R), C(XR), ~and 'C(XR)
are distinguished only by thelr arguments; these will always appear
explicitly. The result 1s that all our results héve to be inter-
preted with this understanding. For example, one of our theorems

‘says that

= C(A) = C(7y)

c(n -

R)

under certain conditions when AR =N = ?ﬁ. -Taken litErally this

is & trivial statement. In the light of our notation it means that
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the three functlons coincide for certain values of the argument.

This notation will result below 1n no. confusion or ambigulty, and
has fhe advantages of suggestiveness and typographical simplicity.

Throughout this paper A, A, AR, and Xh take vaiues only

in the open interval (0,1). This assumption avoids the trivial

and will not be stated again.
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2, "Auxiliary results.

1) In the following we need:
Lemma 1:

et S = {1,...,d} and let {(ui,Ai)\i =1,...,N} be a code
T P (Ai[uils) >'1 - A. There exist sequences

lv =1,...,8} c {uili =1,...,N} such that

luy |s) > 1 - (X + €)d for v = 1,...,N
v v _

cand for s = 1,...,d.

i

Proof of Lemma 1l: Define the probability distribution P* on

*
{1,...,N} by P (i) = % for 1 =1,..,N. Define the random
variables .{Xsls =1,..,d} by Xs(i) =1 -'P(Ai\uils) for 1 = 1,...
Thus X_(1) 2 0 and '

EX =1 - %-ig p(a;lu;ls) (X
Hence
P*{Xslg d-EX, for s = 1,..,d4}
< P*{Xs a(X +€) for s =1,..,d)
Define

* _—
B = (X, d(xA+¢€) for s =1,...,d)
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and
B, = {X, > d(RA +¢€)}, s=1,..,d
Then
P*(B_) BUEs) A
5 d(F+e) d(¥+e)
Hence

and therefore

P*(B*)Zl'_}'\ — € )
A+

By the definition of P

* € € €
B 2 W - = 2N« T2 [N ]
Y 4+ e | 14+ € 14+ €
The elements of B* are the desired sequences. This proves Lemma 1.
In Lemmas 2 and 3 only we let |S| =1 and (Pn(~]-)), n=12,..

*
be the only element of ¥ . We then have:

Lemma 2;;'(Shannon's) Lemma 3.1.1 in [6])

Let {(ui,Ai)]i =1,...,N}] be a code for Pn(-l-) with
Ne

average errof N, then there exists a subcode of length Nl =
‘A 4+ €

with maximal error A + €.

Proof:

Denote l{uian(Ailui) C1-72- ejl by Z, then Z(1l-A-¢€)

€
N+ €

+ (N-2z) 2 N(1 - A) and therefore N, =N - 2Z) N.

1 e
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meaii

Given a random code. {(pi,Ai)li =1,..,8) for P (-]+)
with average error A, we can construct a nonrandom code of the
same length N with average error { % .

(As a conéequence of Lemma 3, for given length AN the avérage
error is minimized by a non-random code. Obviously the maximal
length of a code of average error A increases with increasing Q.

Hence, for glven average error, a nonrandom code is at least as

long as any random code.)

Proof of Lemma 3:

Let {(pi, Ai)]i = 1,...,N} be a random code with
1 Y 1 P |
= T Y P (xn) Pn(Ailxn) = 1 - A . The contribution of message
i=1 x_eX : IR
- n""n
i to N(1 - 7%) is clearly T pl(xn) Pn(Ailxn). Suppose now
. x €X . ) ' :
: n n
that P_(A l-x(l)) > P (A lx ) > ... 2 P (A Ix(an)) Instead of
n*"i'"n - = 'n"i'n ) «
n ' . n
‘ 1 .
using {xé ),...,x( )] with the probabllitles {p (x( ) ..,pl(xéa ))}
for message 1, now use xél) with probabllity‘l, and keep Ai as
the decoding set which corresponds to message 1. - The COntribution
of message i to N(1 - 7) is now replacéd by the larger quantity
iIx(l)) Using the same procedure for all 1 one achieves a
nonrandom code {(ui, Ai)li = 1,...,N} with average error (X,

(One can improve on the code even more by keeping the u1

of the'new code, and replacing the Ai by the maximum-likelihood

sets 'Bi.)
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2)  Averaged channels:
let § = {1,...,d}, and let g = (g,...,8y) Dbe a probability
vector on S. The sequence

d

1)) = (E

gS Pn (”"S)), n=1,2,
S . )

1

is called an averaged channel. Let Na(n,x) be the maximal length

of any code (n,N,A) for this channel. Denote Ilim % log Na(n,k)

N>

by Ca(A) for thase A for which the limit exists.

Theorem 1 and remark 2 of [1] imply that

Ca(k) = max max inf R(m,s)
~ {s'|8'es,g(S')) 1-A} T seS

at least for A ¢ {ziésygi|8'cs}. Furthermore, as a consequence

of Lemma 2 we have

C,(A) = c,(R) for A =1} ¢ { v ~gi|s' c S}.
1eS!? :
Also, as a consequence of Lemma 3 we have
Ca(xR) = Ca(h)
Obviously, | Ca(ié) Z_Ca(AR) Z_Ca(k) and therefore

ca(iﬁ) = ca(xR) = C,(A) =, (n) for A =X ¢ {iES' gi{sx c S8}.

3) Compound channels with side information were introduced in (47,
If the sender knows the c.p.f. in(ﬁ’which governs the transmission

-af & message'to be sent, an (n,N,A) code is defined as a system
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{(ui(s),Ai)lui(s) € X.» Ay c.Yn; Ay disjoint, 1=1,...,N; s e §)

which satisfies P_(A,[u,(s)]s) 2_1-A“for 1=1,...,N; s € 8.

‘The capacity is then given by inf max R(w,s) (Theorem 2
S5€ES T
of [41]).
| We will need a slightly more general theorem. In the situa-
‘tion just described the sender knows precisely the channel which
actually governs the transmission of any word; in other words, he
has completé knowledge. We shall_say that the sender has the

partial knowledge

K = {(sl,;..,sh)lsi c8,1=1,...,h},

1f the sender knows only that the governing channel haslan index

which belongs to a set of K, the set 1tself being known to him.

Lemma 4:

' _ *
The capacity of the compound channel Zf with the sender's

partial knowledge K = (Si"'f’sh) equals

inf max inf R(w,s):
i=l...h T seSi

The proof follows the lines of the proof of Theorem 2 of [4] and.

will therefore be omitted.
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3. The structure of C(A).

The determination of C(®) at its points of discontinuity
seems to be difficult, and it 1s even undecided whether

lim %-log N(n,A) exists at these polnts. (Compare also [5] and
n->o , ;

[1]. The determination of ¢C(\) becomes more and more complicated
as |S| increases, and it seems to us that a simple recursion formula
does not exist. However, thé following results help clarify the

structure of C(N).

Theorem 1.

GivenZ = {w(-|-]s)|s=1,...,k}, then C(%) is well defined
except'perhéps for finitely many points Al"”’xK*(k)" and for

every A + ki(i =1,...,K (k) ¢(X) equals an expression

(3.1) - C = max inf R(w,s)
. Ar. .. s 5=, rvas

belong to a finite set D* which is

Ly

The points Ai

characterized in Theorem 2 below.

Since 0 < log N(n,\) { n log a, cH(x) = Tim % log N(n, %)

n—>ow

and C™(X) log N(n,A) are well defined for all . Iet

frastmetanny

jofl 3

lim
n->

8

{(u,,A.)]1i =1,...,N} be a (n,N,X)-code for C* of maximal length.
s Il I ’ , I :
For every e > 0 define

(3.2) CGyrlL (e) = {uilPﬁ(Ailuils) D € forvsv= LT, ...

and for no other index]
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and
. Go(e) = {uian(Ai]uils) { e for all s e 8}.

The G's form a partition of the code into disjoint subcodes.
' Aéplying Lemma 2 with € sufficiently small for any one value of
's; say 8 = 1, we ohtain that ]Go(e)l is bounded by a fixed
multiple of N(n,A). Since ©N(r,A) grows exéonent;ally, we can,
and do, omit GO(E) from our code without any essential loss,

provided e 1s sufficlently small.

Define a (n,e) = e . Let n,,n,,..., be a
| AT... N(n,)\) 1 2

sybsequence of the 1ntegeré such that
(3.3) lim =- log N(nt,x) = C' (M)
tr Tt

We can now define

(3.4) Ay, .. (€)= EEE “Lr,.. (ng,€)
Let |
L(E) = {(LJr:"-:)laLr_:_ (€) > O]'

If (L,r,...,) € L(é) then, as a consequence of the strong converse
for compound channels (Theorem 4.4.1 of [6]), C+(X) ngLr ,

~and therefore

e o

(3.5) | ¢*(%) < 1nf {c,, | (1,7sv..,) € L{e)].
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Since € was arbitrary,

(3.6) G < mnf (0, |(4ries)e )
Define
ry(e) = Lty lp, (aglugle) > €l

for s =1,,..,k. Hence ft(s) + (N - ft(s)) € ) N(1-%)

and consequently

1-X- o | |
ft(s) 2 N( l-ee) (S = l:--v-:k)_
On the other hand,
- £, (s) O 1
(3.7) tN = r aLr...(nt,e) 2 llle€ ’ s = 1,...,k
(tyrs.) bmee - TI-e ~

s € {4,r...}

Clearly, for . ﬁ > 0 there exists a n (n) such that, for
ng Z_no(n), aLr.;_(nt; e) {n for (4,r...) ¢ L(e), because
there are only finitely many sets of indices. From (3.7) it follows

that, for s =1,...,k,

(3.8) (ngre) » BA2€ - g . o

z a
(L,7,...)el{e) “ T

s €(4,Teus)

Consider a code (nt,N“,w of maximal length for the compound

channel with the sender's partial knowledge
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K= {(4,r,...)[(2,r,...) € L(€)].

L’r,..'(e) indices from

1, «.. , N' (the choice is arbitrary, but different complexes

{
For each (L,r,...) € L(€) choose N .q

which are in L(€) must correépond to disjoint sets of indices),

g : v $ ! .
and for these indices use as message sequences (i.e., uis) only
those message sequences which would have been used if the sender
knew that the governing channel was in (4,r,...). By (3.8) and

Lemme 4 this leads to a code (nt,N,?“) for ff: of length
' : t
(3.9) N(nt,it) z-exP>[nt - inf {CLr...,(L’r"") é L(€)} - const. JEZ}

where lff' = (;:%Eé -n - Ek) (1-5). Using the same a's for all n

sufficiently large, we get

N(n,%') 2 exp [n - inf {CLr;I(L,r,.--) € L(€)} ~ const. ,/n ]

and consequently

CT (R 240t (€, e,y .a) € Le))

Furthermore, A = 1im X', and therefore
E:’HJG"O ' '

.!(L,r,...) € L(e)}

for every X which 1s a continuity point of C7(X). Using (3.6) we
get

(3.10) cH(x

g
I
Q
[
>
Sae”
I

C(®) = 1im inf {chf H(4,r,...)e L(€))
>0 ‘ol
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for all A which are continuity points of CT(N). HoWever,‘C"(X)
:is a monotonic¢ function on [0,1] and can therefore have only '
countably many discontinuities. Tt follows from (3.10) that
¢c™(*) takes only finitely many values on the set of its continuity
points. Hence ¢ (X)), and therefore also C(%), have7only finite1y
many discontinuities. This proﬁes the theoren. ) |

From the-définition_of c(¥), every point of continuity of
¢(X) is a point of continuity of CT(N). From (3.10) and the fact
that C* (%) is a stép function it folliows that every point of
continuity of C7(X) is a point of continulity of C(T)f Therefore ,
¢(*) and C7(R) have the same points'of'continuity. |

Theorém 1 says that, excépt perhaps for at most finitely many -
points, c(X) is given by an expressicn

Cprr = max inf R(m,s)
T B=L,Ty00.

For different Qhannels C(A) may be given by different expressions.
We now seek a formula for c(%) which dces not depend on the channel.
( The actuai values taken by this fcrmula\will, of coufse, depend on
‘the channel.) | | |

We introduce the class of formulas

(3.11) £ = {I|I is given by maxima and minima of expressions

C = max inf R(m,8)}.
LT T S=LsTyea-

The value of a formula I for & will be denoted by I(E). A partial

ordering is defined in T by
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(3.12) I _{_ I, if and only if Il((f) < Ig(é) for all € with

1=k

; need not be totally ordered. It can happen that, for 11,12 € f
and two channels 61, ‘62" Il( Cl) > 12( C‘l) and Il(ﬁe) < IQ(Cg).

We start our considerations for a fixed(f which,has‘k‘elements
- and develop an algorithm for the -computation of C(X). For any real

numbersg z; and z, define Zq n.zg = min(zl,ze)J z) Uz, = max(zl,zg).

2
Obviously
] o
(3.13) ¢ < 1lim = log N(n,n)
, 12...1{—-5:;; n ’
1 -
{ TIm = log N(n,7%)
N>« - ’
< A Cg
8=1,...,k :
Every term C:r which is & possible value of C(X) for some value

of N therefore has to satisfy

(3.14) c = C A\ C
Lr... LT... sé{L,r,...] s
Every Index 1,...,k appears in the right member of (3.14).  We now

write ch as

(3.15) ¢ = C AC. A... AC where
.{,I‘. . Llrl- - . . {,21‘2. .« "'trt,

&) no index can be added to any set {4,,r;,...} without

violating (3.15),
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b) no additional term can be added on the right without

viclating (3.15) or condition a).

The representation (3.15) is therefore unique. Let the number of
terms on the right of (3.15) be t. For s = 1,...,k and 1 = 1,...,t
define -

5(s,i) =1 1if s € (Li,ri,...)

Oon
—
w
A g

=
I
o
[,.J.
H
4]

% (Li’ri";')

Let a = (al,..‘,at) be a probability t-vector. We define

t
max min ¥ ay s(s,1).
Q 5 1=1 '

(3.16) *™Ma,r,...) =1

We will now prove that, for % D A(4,r...),

]

(3.17) lim = log N(n,X) > C

n_)m Lr.‘l

Let o be the maximizing value of a in (3.16). Let € » O be small

enough. For suitable m(€) > O we construct a code

(n,N = exp, {n’CLr.'. - Jn m(e)j,e)

for the compound channel wlth the sender's partial knowledge
K = {(Ll:rly'--): ses (Lt,rt,...)}.

Let the code be written as

(1) (t)

(uj ,._.,ui' sBy), 1= 1,...,N,

Consider the new code
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1
(ug_ );Ai_), i-= l,...,N-Ct;f
. * *
(U§2),Ai), i= (N-a;+ l),---,N'(_Cﬁl‘f' Gg)
. . . . . *. . -o *. . .
(u:(l.t)’Ai), i:N’(al +on-+ at—l) + l,~~-,N|

For s = 1,...,k the average error of this code is not greater than

(2
1-(l-€) min g a, 6(s,1).
s i=1

When € 1s small enough we obtain (3.17).

Now define

(3.18) v (X)) =

Core.. for X2 XMu,r,...)
LI‘...

0 otherwise

and -

(3.29) V(%) = max (v,
St

# * .

.(T)IS’-: {L,I’,--.}CS}

— . A many
V(X) is a step-function with at most finitely/jumps. It follows
from (3.17) that

(3.20) -]—‘-i—n-l'r]_; log N(n,X) > V(%)
n->w

at every point of continuity of V(%).

Let X be a point of continuity of C(X). and V(X). Let & >0
be so small that L(eo) = L(e) for 0 e ¢ €5+ From (3.6) we know
that C(AT) 1is the smallest, say C&r...’ of a finite number of
expressions of this type whose index sets belcng to L(eo). Passing‘

to the 1imit in (3.8) we nave, for g = 1,...,k,

D e T e e rh et B T ¥ e 5 sy I TN RN SR
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- A€y
’(3.21) z GH(EO) 2_*1:;5— ~n-* 2,

where the summation is over all index sets j which contain s and
belong to L(EO). Write CLr..; in the form (3.15) ahd suppose,
without loss of generality, that (3.15) is the actual representation.
Assign each element of L(€O) to some one of the sets in the'right
member of (3.15) which contains this element, ahd define a*(EO) of
the latter set as the sum of the a(EO) of the sets assigned to it;
a*(co) will be zero for a set to which no sets have been assigned.
A fortiori, for s = 1,...,k,

t M 1-N-¢
(3.22) = 5(s,i)aLiri...(€O) 2 e - n- 2%

i=1

Letting n and €, approach zero we obtain from (3.16) and (3.22)
that |

(3.23) Tm = log N(n,%) < V(%).

11->00 .
From (3.20) and. (3.23) we obtain that
(3.24) ¢(X) = V()

at the points of continuity of both func tions. c(R) is\defined and
continuous at all but a finite number of points, and monotonic.
V(*) is defined everywhere and monotonic. Both are step~functions.
Hence the two functions are ldentical at every point of continuity
of C(R).

wé now have that (3.15), (3.16), (3.18), and (3.19) determine
an algorithm for the computation of C(A). (See Section 5 for appli-

cations.)

- — - —_———— et s arare e i - R -
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It follows from (3.18) and {3.19) that any point of

discontinuity Ay of C(X) must be one of the set

(3.25)  {XMa,7,...)[(2,7,...)  5).

Now X(4,r,...) depends upon ‘the representation (3.15). However,v
1t does not depehd on the actual values C which enter into that
representation, but only upon the indices which enter into the
right member of (3.15). All possible sets of such indices are
finite in number. Moreover, for ahy glven Ciwith fSI = k, ‘the set

of indlces in the right member of (3.15) depends only on the

ordering according to size of the various C's of(fi and not at all

on the actual values taken by them. When |S| = k there are a fixed
(finite) number of expressions of'the form CLr...' A finite number
of channels with |S| = k and alphabets of sufficient length will
produce all the possible orderings of these expressions. . Call one

such set of channels

, (3.26) Q = {Tl,,,.,Tq},

We have therefore proved:

(3.27) For any channel € with Is| = k, the set of points of dig-

’ éontinuity of its function C(T) coincides with the set of
points of dlscontinuity of the function c(x) of T( Ci), where
T(€) 1s that member of Q whose C's have the same ordering

according to size as ‘those of Cf, and

(3.28) The set D¥ of all possible p01nts of dlscontlnulty of C(7R)

~ for all € with [S] = k consists of all points of ‘the form

T e I e e b AT AR S D S R T B A TR R I TR T A
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(3.25), and can be evaluated’by the algorithm implied by

(3.16) and (3.15), and

(3.29) Two channels, C, and s S8y, both with |S| = k, have
the same points of discontinuity for their respective

‘functions C(X) if the set
{CLT.}'](L,r,...) c S)
has the same ordering aécording tc size for bothléfl and sz.

The representation (3.15) is defined for a fixed (. To

indicate the dependence on éjwe write

C.-J . ) 100
e P P (SR FERTPL A

Suppose now that, for a fixed N not in D*,

(3:30) 0, (C)=cp o,

it
Q
My
>
«Q
)
n
=
i
M
>
>
Q
&

and for channel Tl

(3:31) Couw (W) =€ (1) (1) (T)A--.nC (1)r.$31)___(T1)

C(X;Tl)

In (3.22) let o correspond to channel C,and a** correspond to

channel Ty. Both {a*} and {a**} satisfy (3.22). Hence, by the

argument which follows (3.8) we have

(3°32) 0(7\-,8) 2_ CL(l) (l) (C)/\ "0/\0 (l) (l) ((f)-

i T Ly "It




ﬁence: fI‘Om (3'30) and (3032))

(3.33) CRC)=1c, . (CIA... ]
..

| C ()
V[Lg‘l)rgl)” (O ]

Repeating this argument we obtain

(3.34) ¢(7,E) =

[C‘f,lrl...' (ﬁ)/\'.... ]v
1\271-[041)4”...(5)/\“' ]
where, for 1 = l,.}_,q,‘
Cagi)r§i) . ALEE

1s the representation (3.15) of’G(X,'Ti) in terms of the C's of
channel Ti'

Assume temporarily that we can show that

(3.35) ¢(%,C) =Y [c (1) (1) (EIA... 1.

o i=1 417y .
We could then regard (3.35) as an identity in the "free variable"
(argument) Cf(vﬁiitlS[ = k) 1f we could show that the system of
-subscripts of the C's which cceurs in the right member of (3.30)
does not depend on Cf. (It may, and actually does, depend on the

fixed A.) To prove this it is sufficient to see that the system of
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gubscripts is determined by
V (3-36) C(X)Tl):"-:C(K:TqA)-

Write the points of D" as

(3-37) &y oy < oen Cagryy g

Also write aj = 1, 8 (k) = 1. Suppose a, ¢ &, 1 Then élearly
(3.35) is valid for all points in ‘the interval (az’az+l)’ because |
both members are cohstant in the interval.

The formula (3.35) depends upon the interval (az,az+l); there
may be a different formula for a different interval. However, since
C(T}(f) is monotonic in % for any Cf, the different right members
of (3.35).for different intervals are monotonic forbggx Ci, énd
thus are totally 6rdered.

It remains to prove that we can omit the first braéket on'the
right of (3.34). The subscripts in it are determined by the

representation (3.15) of

C (C) = c(x )

l,r. ..

in terms of the C's of Cf. We have already seen, in (3;27), that
this representation is the same as that in terms of the C's of T(&.).
Hence the first bracket on the right of (3.34) is already included
among the squareAbrackets in }%/[ ] in the right member of (3.34).
This proves (3.35). e

We sum up our results in

Theorem 2. For any integer k there is a finite set D*, described in
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(3.28). The points of discontinuity of C(X) for any Ciwith lS]’= k
belong to D*. The right member of (3.35) is constant in any X -
interval bétween tﬁo consecutive points of D*, and is determined by
this intérval. (Different such intervals in general determine

different right members of (3.35).) C(X) is given by (3.35).

Remarks
1.) It is not possible to use only formulas of f which are buillt

ﬁp only by minima. In Example 2 of Section 5, for instance, we have

C(R) = (Cq5 V Cy3 V Co3) A AL, ALy

It

(c12 /\0»3)\/ (013 /\02) V% (02'3 /\cl)

for by € (% :%)

suppose C,, /A C3 > Cp3 A Cy, Cys A'Cy then C(T) = Cyp /\'03, .
Permuting the indices we would get C(X) # Cip ACse

2.) It is not true that any two terms in sQuare brackets on the right
of (3.35) can be transformed into each cther by permutation of

indices, as can be seen from Example 3 in Sectlon 5 for

Te (25
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4. The relationships of C(\p), C(R), and C(¥)
Theorem 3:
C(rg) = ¢(¥) = c(hg) for Ay = A=,

at the points of continuity of C(?). [C(X) has only finitely
many points of'discontinuity.]' The proof will be given in several
steps}
‘ For any positive integer n there exists a random code for
s, |

n
(4.1) (™ a1 =1,...,N)

which satisfies, for any- s € 5,

N _
% pi(x) P (Aglx ls) > 1-T%g,
i=1 xnexn . .

(4.2)

=

and which is of maximal length  N(n, Xh). Define, for 1 = 1,...,N,

(4.3)_ BlLr . (€) = {xann(Ailxn[s) > €
for s = 4,r,.., and no other index}

and also

(4.4) v Bé(e) =.{xn|Pn(Ai|xn|s) { € for every index s € S}

There are 2k possible index sets {L,r,..;;}. Denote these sets

in some order by pl"""ék' For every i(i =1,...,N)
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!

{Béj(€)ld = l,-..,Ek] is a disJoint partition of X ’Define

the column vector

5 (c))
J.
(4.5) BPJ(E) = :
B (e)
P3
L J
and the matrix
(4.6)  B(e) = B;J(e) 1=1,...,N
| j=1,...,28

Henceforth we operate-only on the matrix B(e).

+ - 11 L
Define C (AR) = iiz = log N(n,AR)
c (Ay) = lim ;-log N(n,AR)
. R nrw
(4.7) |
U =
c'(Ay) = 1Im = log N(n,r_)
( R e O (n, R

P 1 -
C (AR) = lim = log N(n,AR) .

Let ny, Ny, be a sequence such that
1 . = + =
1im — log N{n,, A,) = C" (Ay)
oo nt ( t? 'R R

Assume now that for every n(n = 1,2,... ) a random code (n, N, iﬁ)
with maximal length N(n,?ﬁ) 1s given. To indicate the dependence

on n we now write Bi (e,n). Denote by ﬁp (e,n) the number of
J J

e A R N TR AT G R S
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components (rows) of ﬁp (e,n) which are non-empty sets. e
say that the index set py 1is e~essential if

(4.8) Im {[N(n,, ?k)]_l B

In pJ.(e,n)} =Bp (e) > o.

J

Let M(e) be the set of e-essential index sets py- It follows
from the definitions (4.7) and (4.8) and from the strong converse
'for compound channels (Theorem 4.%.1 of [6]) that

C+(Xh) < cpJ ) Py in M(e).l

Hence

c*(3y) { int (/o

3 in M(e))

This 1s true for every € ) 0. Hence, when Ag = Mg

(h9) c*(rg) < cF(Rg) < taf inf fcpjlpJ in M(e)},

the first inequality being obvious.
We now prove the converse. Since there are only finitely
many indices Py we can conclude the following for any n > O:

There exists an n_(n) such that, for ng Z.DO(ﬂ):

.(4.10), ﬁpJ(nt , €) { m, Py no@ in M(e).

Then, for n sufficiently large, in the matrix (4.6) for a code

(n,, N, X_), we delete column Bo(e) and all columns Bp (€)

t R
for which Py i1s not in M(e). As a result of this the average

.'.-ll."-'-lllll.lllllllll!llllllllllll!lllIIlllIIIIIIIIIIIIIIIIIIIIIIII
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error of the—resulting code is iess than
(4.11) Ag F 27 + e
Now take an (nt, N', &) code
{(ﬁi(pj), A;)[ i= l,...,Nf;ypj in- M(e€))
of 1eﬁgth

(112) W2 exp [t (0 [py € M(e))ny - K'(0) ol

for the compound‘chénnel with the sender's partial knowledge
K = {pslpy 1n M(e))
For any 4 € {1,2,...,N'} define

1y

(4.13) Py, (py)) = pi(Bpj for 1 =1,...,N; py € M(e).

Alsc define § =1 when s e p, and O when s ¢ py- Then

P3
we dan conclude that

4.14)A ) pi w,(p,)) 6. _ P AT Y|s)

( pyei(e) ‘ 1(pg)) 850 PRy ‘(PJ |
i | .

1-8 PN T P(A -
Z.[ | ] pjeM(e) XneBé D (Xn)‘( 1lxnts) €

J

for 1 =1,...,N; 5 € 854 =1,...,N!
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.It follows from (4.11) and (4.14%) that

1 X RV o
(4-15) T,E pjeﬁ(e)p (u,u(pa-))lipjS P(Ablu&(pj)ls)
U T . i ‘
2 [1-8] § = o) £, p(x,) P(aIx |s)-e

1=1 pJEM(e) xneBé.
' J

> [1 - Xﬁ - gk.ﬂ - €][1 - 8] ~ € for s € § and 4=1,...,N!

Defining now
(8} )
P

L N
(4.16) P(py) = B P B

- for pye M(e), we conclude, using (4.15), that

(%.27) pley) 8, ¢ PAy1 (pp)]0)

X
pjeM(e)

- K
2 [1 —.AR -2

n - €][l-8]-¢ for L =1,...,N'; s € 8.
Thus we now have a.random code with maximal error A' defined by

L= At = (1-T% - 2% n-e)(1-s) - e

and length given byA(4.12).

Now define
a.j = [p(PJ)'N'] fO? PJ €M(€)°

If necessary we renumber the elements of M(e) so that

M(e) = Lpyld = LoonK (e)]

Il-llllll-lllIlllI-lI-I-lllIIIllllll.ll-.l!-Illlll.lllllllllllllllllllll



Consider the non-random code

*

(518)  (u3(py)s AD)ees (ag (py)s A5 )
(udl+l(p2)’ A;l+l),' vy (uNI (Pk*(e))) A;Il)

It is a consequence of (4.17) that. this code has an average error
less than A'. Hence, passing to the limilt with €, n, and § we

obtailn, Just ae in the argument which led to (3.10), that

(4.19) ¢”(x) 2 inf inf { %)lp in M(e))

€0 34
at the continuity points of ¢ (%), and

(4.20)  cT(ng) 2 dnf inf {C |p

e b ' in M(e)}

‘&t the cbntinuity polnts of VY From (4.9) and'(h.zo) we

2
obtain that C(AR) exlsts at the points of continuity of C-(kR)

and that there

(4.21) o e(ag) = TR

From (4.9) end (4.19) we obtain that at the points of continuity
of ¢ (A), | |

(h22) TR 2CM2) . FeT,

the first inequality belng obvious.

e e ) T AN R R A S et S R R Sl F R R YR
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Finally, from (3.10), (4.21), and (4.22) we obtain that, at the

points of continuity of CT(X) and of CT(Ag) we have
Since C(A) and.C (%) have the same points of continuity, we have

that

(4. 24) c(?ﬁ) = c(xR) = c(i),'XR = Ag = A

at the points of continuity of C(A) and C'(XR).

Earlier we proved that C(X) has only finltely many points of
discontinulty, takes on the set of continulty polnts only finitely
many velues, and 1s monotonic. The function'C'(xR) 1s monotonic,
end hence has at most'denumerably many polnts of discontinulty. If
it had a point of discontinulty which 1s not a point of discontinuity
of C(X) this would result in a éontradiction of (4.24), Hence every
point of continuity of C(X) 1s a point of continulty of c‘(xR).

Theorem 3 follows from this and (4.24) .
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5. Evaluation of C(X) in several examples.

Example 1. S = {1,2}.
We shall show that then

mex inf R(w,s) for 0 <7< %
_ T s8=1,2
c(X) = '

inf max R(w,s) for-% (R< 1
g=1,2 T : '
Proof:
That C(N) > max inf R(w,s) for O <w £ l follows from Theorem 4.3.1

T 8=1,2
of [b] (coding theorem for compound channels) On the other hand,

|

|

_ \
glven . a (n,N,x) code for a A < 5 we choose € > 0 such that Ev

o(% + €) < 1. Application of Lemme 1 with d = 2 guarantees the i

. |

|

existence of a code with length {TEE N] and maximal error 2(X + €).
Hence, from Theorem 4.4.1 of [6] (strong converse for compound | |

channels) 1t follows that : ' |

c(x) < max inf R(w,s) for 0 <X <
T 8=1,2

Cese: _%-( <1 ‘ : .

Choose € { A - % .{(ui(l), ui(2), Ai) | 1 =1,..., N} be a code with maximel

error € for the compound channel wlth complete knbwledge by the

sender, Then
[(uy(1),4p) L3 =100 ml2]) U ((uy(2),29) 13 = (N]2] + 1. .H)

is a code for CZ* with average error less than A. It follows from
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Theorem 4.5.3 of [6] that 0(7\) > 131" mex R(w,s) for 3 ¥ < 1,
: g=1,2 T

and from Lemma 2 that

¢(%) { inf max R(m,s).
g=1,2

Example 2. S = (1,2,3}
We shall show that

c foro<"x<%

123

C13 /M Cp3

. L s
(Clgv 013V Cp3) ACIACACy for 3 (%< %

for % ¢ %
C, AC /_\03' ror §<F< 1.

1 2

Proof:
case: 0 < %K

Wi

Use the coding theorem for compound channels with maximal error

(Theorem 4.3.1 of [6] 1) for proving C(%) D 0123, and Lemma 1 and the

strong converse for compound channels (Theorem 4.4.1 of [6]) for
proving C(%) £ C1p3° ‘
1, = 1
Ca_se. -q < A < ‘é
o= 1 |
osee { N - 3 . Let {uy(12), w,(13), u(23), Ayl =1,...,N} ve a (n,N,€)code

for (i*, where the sender has the partial knowledge

= ({12}, {13}, 23}). Th (12), ... , 12), 3),.
} { } { } en ul u[N]( ) %[%]-*- l)(lS)
u[2'§l(%3) ([ “§]+‘l)(23),...qu(23); Ayseee Ay is & (n,N?))



- 46 -

code for Cf*. Applicatlon of the coding theorem for compound
channels (Theo?em 4.3.1 of [6]) give;-C(?) 2 Cio /1Cl3/N Cog
Suppose now, without loss of generality (w.l.0.g.) -

C N o

1o = Cy3 , then C¢(X) £ Cq, by example‘l.

23
l /=, 2
Casge: §-< % < 3
Choose € < A-5 and assume, w.l.0.g., that (012\(C13\/C23)(1
cy A 02_/\ 03 = Cy5 N 03. Then define K = ({12}, {3}). Apply

p(12), u (3)eers

Theorem 4.3.1 of [1] and select'ul(lz),... u
[] 3 }+ 1

uN(3). By the usual procedure we finally
get C(A ) > 012‘/\0 For proving the converse part we use the

result for averaged channels. If 03 /\03, obviously (%) < 03

Assume therefore that Clé'= Cip NCg [ 2_023, Cigl. An (n,N,7%)

code for Ci* 1s & (n,N,%) code for the averaged channel

VPn('I'ls): n=1,2,...)

i
—
i 1w

(Pn('|') n ;.1:2:'~°)

T Wof

Therefore C (77 = ( 1y > c(®), 1f A = X and not equal to O, %.,‘

% , or 1. We get for

th

by
Cx (< %- that ca(x) = Cips gince
_<_c

Hence C( )y This proves the desired result.

C1p 2 Cp3» C13-

Cage: %-( A<l | |
Choose € < X ,% and define X = ({1}, {2}, (3}). Apply

Theorem 4.3.1 of [6] and select

ul(l):l-' (l) 'N
[g] [31+ L = =y

(205w gy (20 % gy, 4 (3o f3

<
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prove C(X) ¢, A e » /A Cy &s usual. (%) < Cy A Cy A Cy 1s obvious.

The _converse parts could have been proved in all four cases

by using sultable averaged channels. This will be illustrated in

Example 3. s = {1,2,3,4)
Cipgy for € (O,er)

3 1

O1p3 ACyay A Cp3y N Oz for X € (f3)

o) = { sy 17 Oge 2 o) o7 T € (59

(C1o3 V Cypy V Cygy V Cogy) A Cpp A Cig A

A Cyy N Cyg (\CQAA Cgy for ¥ e (-g—,%—)

/ (012 N 034) V (Cl3 A 0214.) vV (Clll 4 023)'\/

\/((12311L /\Cl) for N € (%-’%)

(¢ 12/\013/\0 ACy) V (Cpp Ay Ay ACS) ..

V(012 /\034)\/ ... for X ¢ (_:3_ 2)

(C1pV €y V Oy V Ca3 v Coy v Cg)

Acy Aca AGgACy for ¥ e (5,7)

\ cl/\cz/\CB/\% for \ € (1%,1)
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1
proof: Case (0, )

X ' : d channel
obviously C(%X) 2-012342 Use the average

Pn(-\-) = T % Pn(-\-ls) for proving c(™) g_C1234
‘ s=1 . ' |
(3

Choose € < - %"LEt {%(123)’ ui(_124), ui(l3u‘); ui(234); Ai‘i.= l,---,N} b

Case:

a (n,N,E) code for Ci*, where the sender has partial knowledge

K = ({123}, (124}, £1341,4{2341>§

Then {ul(123),...,u[%)(123), u{%] R l(124), uN('23LL) ,
Aps . Ayl is a (n,N,X) code for (j*.

Application of Theorem 4.3.1 of [6] gives C(%) > 0123’«0124/\0134/\023U

We want to prove the converse in (%’XO)" Assume the infimum 1s
taken for 0123.

We introduce an averaged channel

L
P,(1) = B g Byl ls)
for which

(a) py+Ppt+pP32l -

(b) py + Py + Py, Py T Pyt Py p,+pg+py L1 %
and x, 1s the maximal value of x for which a solution of (a),

(b) exists.

T R
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We use the solution

R
pl = P2 —~P3 = 31.p4 =

S
o 3

It follows that

for X € (%,%), and therefore C(X) <

0123.

Co(X) = Cqypg

(3, 2

Case:

Assume that the maximum is taken for 0123 /\0124 /\034.

Then C(%) 2“0123 A Cypy ACgy follows as usual by taking

-]3; of the {u,(123) | L= 1,...,N} ,
3 of the fug(124) | 1= 1,...,n} ,
and %of the [ui(34) | 1=1,...,N}

In the future we shall say shortly that we use a (%,%,%) -

fraction (or in general a (al,...,an) - fraction). -

If now 034 = 0123 /\0124 /\034, then we use an average

P = (pl”"’ph) = (0,0,%y%) and obtain the desired result..

We'can therefore assume w.l.o0.g. that

G103 & Cioy £ O3y

123 2 Ca34 A Cou

G103 2 Cp3y A Oy
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If Cyg /A Cpy = Cpy [Or Cpogy ACyy = Cyyl, we immediately get

c(®) < Col by using an average p =‘(O,%70,%) [or p = (%HO,O,%).}

It remains tQ consider
C1p3 < Crpus Cguy
C1p3 2 Co34 C13n

In order to get an averaged channel with Ca(7§-= C in

I_.'l
W o
w

§’xo)’ p =—(pl,...,pu) must satisfy py + py + Pg > 1 -

py+ Py S1-x

Let x_ be the maximal x for which a solution exists. We get

. 1 ‘
x ‘=-52-, pl = p2= p4=—5- 5 p3=-§- as a solution.

We can assume the infimum = C123 /\Clﬂ~/\C24 /\034

Use the fraction (%3 %y %, %) for K = {(123),(14),(24),(341)} to

prove
C(R) 2 Cypg A Cpy A Coy A Cay

. . 101 11
If the infimum is taken for 0123 usep = (H’ T T E)’and if

o+

the infimum is taken for C,,, for instance, use p = (%, 0, 0,

In either case we get C(X) < Cipg N Cqy A Coy ACqy -

LR PR GRS, S TR PR VRN R [ FTRER SN 2
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Case: (’—]21, —g-)

That the expression given above in Example 3 is a lower bound,
is trivial; take the fraction (%,%). To prove that the expression

given 1s an upper bound, we consider first the case

1.) The maximum i1s taken by 0123 A Cy.

Subcase a.)

C123 MOy = C1p3

Thus Cy 3 2 Cyp A Cays Cy3 AN Cpys Cpog ACqy

Cips Cy3s Cp3 2 Cip3 implies 0'123.}_ Cays Cops Cqy -
We can assume that 0123.2 Cyxys because if for instance 0134~> C1 037
then C, = C123 and we can use the average (O,l,O,Q).

We have therefore finally Cj 2 Cy,q 2 Cays Coys Cpyps Cypq

L 1 1 2

Now define p = (53 5 B 5). Then c(H) g_Cé(T) = 0123.
Subcase b.)
Cy £ Cipg

Use p = (0,0,0,1).

2.) The maximum is taken by Cio A 034. W.l.o0.g. Cip = Cio A 034.

~ W.l.o.g. ¢, <¢C

3
Case b.) Cqy < C

Use (%, -51- %, %). C,p, » Cqp implies 4,h # 1, but then




= | ‘ | - 52 -

o(2) + p(hn) ~.§ <1 Con 2 Cyp implies {r,h,n} = {2,3,43.
<c

C. Use p = (1,0,0,0).

implies that C 12°

1

But C 4 /\C 12

. (32
| Casg. (5,3)
1.) The maximum is attained by (*) = Cio /\ClB'/\CQB A Cy -and by
no term (C1h /\Cn ).
111 2) to prove C(T) > (*).

* 5 5 50 T < |
= , then the convérse is obvious: p = (0,0,0,1). Assume
If C) = (*), then th syse 1s obvi p=(0,0,0,1). A

Use fraction (

therefore, w.1l.0.g., that Cy, = (* It follows that Cg) < €, and

12

).
% %) to prove C(%) £ ¢ alR) < (%)

- 1
alSO.Czu, Clqv< Clg' Use b —.(g

1
5) to

. : N ‘ 1
2.) W.l.o.g. assume Cin /\C3u = (*). Use the fraction (53

prove C(X) D (*).

Assume C,, < Cay  W.1.0.8 C13 < Cyn

Case.a.) 023 g 012
Use p = (%u %, %,'0)
Case b.) Cy) £ €5

~therefore Cq), Cqg P S_C34. Agaln, two cases:

a. ) .034 > Cl2 |
(Cgy AN Cpag A Cpy ACH) g_c12 A Cgyy implies either C) = Cy,,

and we are finished, or 023

107 and therefore w.l.0.g.

oy L C
111
Cps S.Clg' We have Cyq, Cypy, g_ < Cyye Use p ='(§u§u§uo)-
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B-) Cgy = Cqy
Therefore Coy = Cq, 2. Cons C Use p = (&, 0, &,
34 7 Yiz 413 tale 3 3 g

c,(%) = Cgy 2 C(F).

‘Case: (%,'%)
W.l.o0.g. 1let the value I of the formula be ClE/\CB /\04.
_ 1 1 1, - |
Use @he fraction (3, 3 3) to get C(X) Z ClQ‘A 03 A Cy-

, 1l 1 1 1
Suppose I = Cip) use p = (E’ g H,'H).-

Suppose I ='C3 for instance, then use p = (0,0,1,0).

3

Case: (E’ 1) is obvious.
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