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The Rate-Distortion Region for Multiple
Descriptions Without Excess Rate

RUDOLF AHLSWEDE

Abstract—During recent years there has been strong interest in a certain
source coding problem, which some authors call the “problem of multiple
descriptions.” Old and new wringing techniques enable us to establish a
single-letter characterization of the rate-distortion region in the case of no
excess rate for the joint description.

I. THE RESULT

SINCE THE ORIGIN of the problem of multiple de-
scriptions and motivations for its study have already
been described in an extensive literature [1]-[9], we present
our result immediately. It goes considerably beyond those
of [17], where the reader also will find a detailed discussion
of previously known results.

We are given the following.

1) A sequence ( X,)%.; of independent and identically
distributed random variables with values in a finite set %,
that is, a discrete memoryless source (DMS).

2) Three finite reconstruction spaces 2’0, 56‘ 1» and flz,
together with associated per-lettter distortion measures

d: Ix &, —»R*,  fori=01,2.
With d, = max (d(x, &,): (x,%)€Zx %}, i=0,12,
define
2 ~
= [0, 1og 211" x TT[0, 4].
The quintuple (R,, R,, Dy, Dy, D,) € # is called

(«, B)-achievable, if for all large n there exist description

functions f;: " -» %, with
R, + a > rate(f)), i=1,2 (1.1)

and reconstruction functions g;: %; — 98” (z =12), g

F, X Fy > £ such that for X" = (X, g( )=
g(f(X"), i=12 and for X7 —(Xm, LX) =

go(f1(X™), f,(X™))
(Di + :8)" > E i di(

=1

X, x,), i=012 (12)

(R, R,, D,, Dy, D,) is called achievable, if it is (a, B)-
achievable for all positive a and B.
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The set Q of achievable quintuples is a compact subset
of the five-dimensional Euclidean space.

The problem of multiple descriptions consists in finding
a single-letter characterization for Q. This is a difficult task
and the literature shows that even very special cases are
hard to handle. Even the uniform binary source is far from
being completely understood. Therefore one studies first
projections and cross sections of Q.

Here we concentrate on a case of no excess rate at D,

R, + R, = R(Dy,), (1.3)

where R denotes Shannon’s rate-distortion function. For
any fixed D, > d,,, where

dy= Y Py(x) min dy(x, %),
xE€X koeZy

define the set
Q(D,) = {(Rl, R,, Dy, D;, D,) € Q: (1.3) holds].
(1.4)

El Gamal and Cover [6] have shown that (Ry, R,, Dy,
Dy, D)) & A& is achievable, if there exist random variables
X,, X,, X, jointly distributed with a generic source varia-
ble X such that:

1) R,> I(X A X)fori=12
2) R, + Ry > I(X A X, X %) + I(X, A Xy);
3)1) Ed(XX)forz—OlZ

If % denotes the set of these achievable quintuples, then
timesharing yields that conv(%) is also an achievable
region,

In a related paper, “New results in binary multiple
descriptions,” Z. Zhang and T. Berger have shown that in
the case of an excess rate even for the very special binary
symmetric source with the Hamming distortion measure,
conv(%) # Q.

For this source they have also established a bound on
Q(D,), which is not tight. It does, however, imply tightness
of Witsenhausen’s hyperbola bound. The proof for this
result is entirely different and seemingly more complicated
than the one we gave in [17]. In that paper we also proved
tightness of the hyperbola bound for O-distortion and
arbitrarily small excess rate.

Now let €* denote the subset of ¥ containing all those
quintuples satisfying 1)-3) for random variables )2'0,
X,, X,, with the additional property that X, and X, are
independent. Since I(X A X2) 0 now, 2) can be re-

0018-9448 /85 /1100-0721$01.00 ©1985 IEEE



722

placed by
2%) R, + R, = I(X A X, X X,).

Clearly, conv (¥¢*) C conv(¥) is an achievable region and
therefore for every D, > d, the region

conv(€*)(D,)
= {(Ry, Ry, Dy, D, D,) € conv(¥*):

R, + R,=R(D,)} (1.5)

is achievable.

Theorem 1: Let (X,)%, be a DMS. A solution of the
multiple description problem in case of no excess rate at
D, is

Q(D,) = conv(€*)(D,), forD,=>d,.
It is clear from the foregoing explanations that only Q(D,)
C conv (% *)(D,) remains to be proved.

In Section II we state elementary continuity properties
of €*, and in Section III we discuss the ideas and present
the techniques on which the proof in Section IV is based.

II. PRELIMINARIES

The elementary continuity properties to be stated in
Propositions 1 and 2 are used in the proof of the theorem.

A. Definition of #*

Let #* be the set of vectors I = (Iy, I,,---, Is) for
which there exist independent random variables X, X,
and a random variable X, such that I, = I(X A X)(i=
1,2, L =I(X A XX %), I, =d(X, X) (i=0,1,2).
Clearly, #* is compact in the topology 7,, which is
induced in the six-dimensional Euclidean space by its
metric “dist.”

For a finite set & let P(Z’) be the set of probability
distributions on Z.

Since £ * depends on P, € #(%), we can interpret it
as a map

F* P(X) — comp (B*), (2.1)

where comp (£*) is the set of compact subsets of #* =
[0,1og [Z])° X TT2_,[0, d;].
B. Total-Variation, I-Divergence, and Hausdorff Metric

In #(Z) we have a topology .7; induced by the total
variation

|P— Py = X IP(z) — P'(2)],

z€Z

P,P e P(2).
(2.2)

(P(Z), T,) is compact.
Pinsker’s inequality [16] relates the I-divergence to the
II - |l;-norm:

D(P||P’) = c|P— P’|}, caconstant. (2.3)
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In comp (% *) one has the Hausdorff metric
m(A, B)
= max(max min dist (a, b), max min dist (a, b)),
beB acA

a€Ad bEB
for A, B € comp (%*). (2.4)

The metric m induces a topology .7, and (comp (%*), >)
is a complete metric space.

Proposition 1: #*. P(Z) - comp(#*) is uniformly
(Il - 1|y, m)-continuous.

Proof: Write

Y q(2)w(xlz) = p(x). (2.5)
We now keep ¢ fixed (and therefore also X,, X, indepen-
dent) and change Py slightly, that is, we replace p(x) by
p’(x) such that
p'(x) = p(x) +e(x)
le(x)|<e, xeZ,
where € < 27'p and p = min{ p(x): p(x) > 0}.
We show that there is a stochastic matrix w’ with the
following properties:
1) X.q(2)w'(x|z) = p'(x);
2) T.ocaw(x]z) —w(x|z)| < el +2p~1)|Z), forall
z € Z

(2.6)

Since information and average distortion quantities are
| - ||,-continuous in the distributions, this implies the con-
tinuity of £ *. Uniform continuity follows since #(%) is
compact.

‘Now start with the identity

Y q(2)(w(xlz) +e(x)) = p(x) + e(x) = p'(x).

z. q(z)>0

Since w(x|z) + e(x) need not be stochastic, we choose

now instead
wi(x]z) = {(1 — M) (w(xlz) + e(x)) + Ap(x),q(z) >0
w(x|z),q(z) =0

A=2e(e+p) "
which obviously satisfies 1). Since

[w'(x|z) — w(x|z)|

<|=Mw(x]z) + (1 = X)e(x) + Ap'(x)]

[ —Aw(x|z) + e(x) + Ap(x)]
—e+A=¢(1+ 2(2(+p)71)
e(l+2p71),

2) also holds. It remains to be seen that w’ is stochastic.

(2.7)

IA
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Since ¥ w’(x|z) = 1 we have to verify only
0<w/(x|z) <1, forg(z)>0. (2.8)

Case p(x) = 0: Here p'(x)=e€(x) and w(x|z)= 0.
Therefore w’(x|z) = (1 — M)e(x) + Ap'(x) = p’(x) and
thus (2.8) holds.

Case p(x) = 1: Here w(x|z)=1 if g(z)>0; — ! <
€(x) < 0; and therefore 0 < w'(x]z) = (1 ~ A) +
I =Me(x)+Ap'(x)< 1.

Case 0 < p(x) < 1. Since |e(x)| < 27 'p, here p(x) >
27'pand27'>p

(1= A)(w(xlz) + €(x)) +Ap'(x)
(w(xlz) +e(x))

+2¢(2e + p‘)_lp'(x)

=pQe+tp)

> (2 +p) " '(pe(x) + 2¢p'(x))
> (2¢ +p) (pe(x) +ep) = 0.
Finally,
(2¢ + p)‘l(pw(x|z) + pe(x) + 2ep’(x))

< (2¢ +p)_1(p + pe(x) + 2¢p'(x)).

This is smaller than 1 if pe(x) + 2ep’(x) < 2¢. Since
e(x)<eand p2 1+ p(x)<p2 '+ (1 -p)+27p <
1, this is the case.

Replacement of the independence property in the defini-
tion of #* by

(X AX)<n, >0 (2.9)
leads to a set S, £, D S *, respectively, a map
F,: P(X) - comp (B*). (2.10)

Proposition 2: F (Py) ﬁ]*(PX) uniformly in P, €
P(Z)as 1 - 0.

Proof: Consider an I = I(Pxx % x,) € Z(Py). Write
Pxxoxlxz(xxoxﬁz) = w(xx0|x1x2) PX X(x1x2) and define
random variables X, X7, X/, X; with the distribution

Px'i'g,i'()"(;(xxoxlxz) = w(xx0|x1x2)Px,l( 1)P,~(2(x2).

Since I(X, A X,) = D(Py g |IPy X Pg) <, by Pinsker’s

inequality
1Ps,5, = Py, X Pyyll < Ve ' (2.11)
and therefore also
1P, ity ~ Prosssizl < fe™tn,  (212)
1Py = Pelly < e, (213)

Since information quantities and average distortions are
uniformly continuous on (P(ZX %, X £y X Z3), || - I,
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(2.12) implies, for all I € %,(Py),

L(Paosiia) = T(Pogszns) | < ea(n), (219)
where ¢,(1) = 0 ( — 0).
Also by Proposition 1 and (2 13)
m(I*(Py), F*(Py)) < e2(n), (2.15)

where ¢,(7) = 0 (g — 0).
Finally, since I(Py. g 5 %;) € F *(Py-) and since S, (Py)
D #*(Py), we conclude by (2.14) and (2.15) that
m(jn(PX), ]*(PX)) < ¢y(m) + ca(m)-

The same bound holds for all P, € #(Z’) and the proof is
complete.

III. WRINGING TECHNIQUES
Suppose that (Ry, R,, Dy, Dy, D,) is (a, B)-achievable

and that f, (i =1,2), and g, and X, i = 0,1, 2, satisfy
(1.1) and (1.2). Then we have for n > n(a, B8)

n(R,+a)>n- rate(f)>H(f)>H(X")

Z I(Xl A Xil)
=1

(X" A X >
(3.1)
(since the X, are independent) for i = 1, 2.
n(Ry +a+ R, + a)

> H(f,) + H(f,) 2 H(f,/5)
> H(XpXp&p) = 1(x" A RpRpRD)

> é](x, A XX, %,), (3.2)
n(D; + B) = Ed,(X{X!)
> Z"‘,Ed,-(X,,)?i,), fori=0,1,2.
=1
I (3.3)

Since a, B can be made arbitrarily small and conv (% *)
(D,) is compact, these relations would imply Q(D,) C
conv (€ *)(D,), if the random variables X;,, X,, were inde-
pendent for every t = 1,2,---, n
This is obviously not the case. However, we show next
that if there is no excess rate at D,, then X/ and X can
be made to be close to independence. More precisely, for
an arbitrary small positive number ¢ we can achieve
(X AXp)<en (3.4)
for n large enough. For this first notice that by the
continuity of the rate-distortion function R we can choose
a and B so small that

R(Dy) — R(Dy + B) +2a < e. (3.5)
Since R; + R, = R(Dy), (3.2) implies
n(R(Dy) +2a) =2 H(f,) + H( /) (3.6)
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Furthermore, by the converse to the source coding theorem
n 1 A
rate (XJ) > —H(XJ) = R(D, + B)
n

and since X, is a function of f, and f,
H(f,/,) = nR(D, + B).
The inequalities (3.6), (3.7), and (3.5) imply
I(fy A f,) < n(R(Dy) +2a — R(Dy + B)) < en,

and thus (3.4) follows by the data processing inequality.

Now notice that only independence properties of the
component variables X, , X, are actually relevant. If they
were arbitrarily close to being independent, then by Prop-
osition 2 this would be good enough. However, this is not
the case.

We overcome this difficulty with the help of what we
called in [15] a wringing technique. These techniques
originated with [13] and were first made a powerful instru-
ment for proving strong converses by Dueck [14]. (For a
systematic analysis and improved forms see also [15].)

Wringing Lemma 1 [14]: Let U" = (Uy,---,U,), V"=
(Vy,- -+, V,) be random variables with values in %" resp.
.

If XU"A V")<o then for any & > 0 there exist
t, 4, € {1,--+,n}, k <a/8, such that

I(U, A V[|U[1th,...,U’kVtk)Sa, fort=1,2,---,n

(3.7)

This lemma says that conditional on suitable, relatively few
component variables all corresponding component variables
are much closer to independence than are U”", V". The
lemma was used by Dueck in [14] for strong converse
proofs with 0,8 constant, but it turns out to be good
enough also in the present rate-distortion situation, where
o = en (e arbitrarily small).

In addition, we need Wringing Lemma 2 to follow,
which gives a wringing technique for distributions rather
than just for information quantities (for another result in
this direction compare also the quite different [15, Lemma
4]. Tt ensures that for “most” values of the conditioning
variable the conditional distributions of the component
variables X, are close to the distribution of X, for “most
t”

Wringing Lemma 2: Let (X,)$2; be a DMS that has a
joint distribution with a random variable Y taking values
in a finite set %. Define for p € (0,1)

(p.) = {y € 95 B Py (x1) = Po(x)| < o).

Then for any y > 0 and every n there exists a set of
components A" (n,y) C {1,2,---, n} such that

¥ (n, ) 2y +7) 'n
H(X)|Y) = H(X,) - (1+vy)n"'H(Y),
forall t € #°(n,y)
1- p’l\/(l +y)c 'nTH(Y)
forall t € 4 (n, 7).

(3.8a)

(3.8b)

Py(¥(p, 1)) =
(3.8¢)

Here ¢ is the constant in Pinsker’s inequality [16]. (Inde-
pendently, Csiszar, Kemperman, Kullback have shown that
an optimal choice of ¢ is (2In2) ! (see [10]).)

Proof: Choose A'(n,y)= {t: H(X|Y)=>= H(X)—
(1 + y)n 'H(Y)}. Then (3.8b) holds by definition. Since

élH(XllY) > H(X"|Y) = nH(X) - H(Y)
H(X) = H(X|Y),
we also have
| A (n, ¥) [H(X) + (n = |4 (n,7)])

(H(X) = (1 +y)n 'H(Y))

> Z H(X,|Y) > nH(X) — H(Y).

t=1

Therefore, | A" (n,v)|(1 + y)n 'H(Y) > yH(Y) and thus
(3.8a). Finally, we derive (3.8c) from (3.8b) by Pinsker’s
inequality.

We can restate (3.8b) as

(1+y)n 'H(Y) 2 I(X, A Y) = D(Py||Px, X Py),
and thus by (2.3)
(1 +y)n™'H(Y)

= £ [Partx ) = Po(0)P5 () i

= C(Z(Z‘PXAY(XU)) - Px,(x)l)PY(y)) )
or, equivalently,

J@ +v)n

H(Y)e !

> §(§|Px,.y(x|y) = Py ()| Pr(»).

Application of Chebyshev’s inequality gives (3.8c).

IV. PROOF OF THEOREM

We can assume that (3.1)~(3.4) hold. With the choices
Ur=2Xr, V=X, o=en, and 8=¢/, 1 </<mn,
Wringing Lemma 1 guarantees the existence of 1, 7,,

,t, €{1,2,---,n} such that for t = 1,2,-- -, n
I(Xlr A erp?hl)?zrz T Xlz,‘erk) <, k<nl™h.
(4.1)
We use the abbreviation ¥ = X,,X,, - )A(I, f(z, and ¥

for the range of this random variable. Since for i=1,2,

H(X") + H(Y) = I(X" A XY), we have
n(R, +a)= H(X") 2 1(X" A X"Y) - H(Y)

> i I(X, A X'Y)— H(Y)
iI(Xt A XHY) - H(Y):

-1

~

%
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and thus

R +azx=

I | =

Y 1(X, A % Y) ~ ~H(Y). (82)

Similarily, since H(X;XX})+ H(Y) = I(X" A K X7
X7'Y) from (3.2),

n(R +a+R,+a)=I(X"AXpXrR;Y) - H(Y)

> Z 1( Xt A )?Otf?lt)?my) - H(Y)a
=1
and thus

1 A 1
R, + Ry +2a= — Y I(X, A X, X, X,,|Y) - ;H(Y).
n =1

(4.3)

Define now for every y € # random variables X, () and
X(y), 1=012 1<1<n, with the distributions
Pr(X,(») = 2) = Pr(X, = 2] = »), Pr(X,(y)=x)=
Pr(X,=x|Y=p) (};,€%,x €Z). Clearly, from (3.3)
fori=0,1,2

1 .
D, + B> —Ed/(X", X")
n

l'l
=Z_

n §1Edi(Xl(y)5 X,u(.}"))PY(y)

(4.4)

With the abbreviation g = loglﬁ‘f“ﬂ |52"2| we have H(Y) <
k - a and since kn~! < ["1 also

nT'H(Y) < al™ . (4.5)

Now we inspect for a moment (4.1)—(4.5) and observe that,
for instance, with the choice /! = €'/? (e — 0) the desired
result would follow if X,(y), y € %, 1 <t <n, had the
same distribution as X. This is not the case. However, in
the sense made precise in Wringing Lemma 2 it is ap-
proximately true, and by the continuity property of %
described in Proposition 2 the desired result will follow.
Choose now / = ¢ ?/% and define

¥ (e,1) = {y € @ I(Jyy A Y = y) < )

(4.6a)

¥(p.0) = {1 € ¥ L|Py(xly) - Py (x)| < o)
(4.6b)
Y(e,p,t) =Y (e,t)NY(p,1). (4.6¢)

By (4.1) and Chebyshev’s inequality
P (%' (e,t))=1—-€7  fort=1,2,---,n.
(4.7)
By Wringing Lemma 2 there is a set A (n,y) with

| A (n,y)| 2 y(1 +y) 'n

(4.8)

such that

Pr(¥(p, 1)) 21— p Y1 +y)c ' 'H(Y),
teN(n,y). (4.9)
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Choose now 1 + y = ¢ - a” % '/® and insert this and (4.5)
in (4.9). Thus

Po(@(p, ) 21-p @0, (e (ny),
(4.10)
and also from (4.8)
[ A (n,v(€))| = (1 — ¢ aeS)n £ »(€)n.
(4.11)
Since €, p < 1 (4.7) and (4.10) imply
P (ep,0) 21— 2716/
u(ep),  teH(n ().
(4.12)
Using (4.11), (4.12), and n 'H(Y) < ae*/®, we derive from
(4.2), (4.3), and (4.4)
(R, +a+ aez/s)u(c)—lp,(e,p)_1

>[N (n,y(e))|

)y Y (X)) AK(»)
teN (n,y(€)) ye¥(c,p,1)
Py(y)

Po(@(e.p.1)) (4138)

(R, + Ry + 2a + acz/s)v(()_lp(f,p)\l
2|4 (n ()]

)» )»

tEA(n, () yEF (€, p,1)

I(X,(y) A X,Or(y)

'Xfu(J’)Xm()’))
] PY(J’)
Py(¥(e,p,1))

(D, + B)v(e) 'u(e,p)

(4.13b)

' -1
>| A (n,v)|
Z Z di(Xr(y)”?il(y))
teN(n,y(€)) yEF(e,p,1)
Py(y)

P @(ep0) (4139

The astute reader can see already that (4.13a)-(4.13c)
imply the desired relation (R, R,, Dy, D, D,) €
conv (€ *)(D,). A formal argument may proceed as fol-
lows. We can choose a = a(e), 8 = B(e = 0), (¢ = 0) so
that for n > n(a(e), B(e)) (3.1)-(3.4) and thus
(4.13a)—(4.13c) hold.

Now since »(€) = 1, p(e, p) = 1, € — 0, the quantities
on the left sides in (4.13a)—(4.13c) converge to R, (i = 1, 2),
R, + R,,and D, i=0,1,2, as € > 0. Next recall that for
Ve (e, p, 1), 1 € H'(n,¥(€)) We have [|Py () — Pyl < p
and by Proposition 1 £ *(Py ) = F*(Py), p > 0 uni-
Jormly iny,t €.
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Furthermore, by Proposition 2 and (3.13a) uniformly in
e tp.

fel/f(PX,(y)) "j*(Px,(y))’ e~ 0.

Thus for any 8 — 0 we can choose p and €(8) so small that
m(.ﬂEI/S(PX’(y)), j*(PX)) <38

for y € (e, p, 1), 1 € H(n, (), n = n(a(e), B(e)).
By definition of the Hausdorff metric, therefore, for

s U U Icl/s(PX,(y)),

Y€ (e, p, 1) 1EN(n,¥(€))

we get m(F, F*(Py)) < 8 and thus also

m(conv (£),conv (£ *)) < 8. (4.14)

Since the vector having components as specified by the
right sides of (4.13a)—(4.13c) is in conv(.#), letting § and
€(8), p(8) tend to zero (4.14) implies the existence of a
cluster point I € conv(#*) of the right side vectors.
Therefore,

R,<I, i=12
R, +R,< 1
p,<I,, i=0,172

and thus (R, R,, Dy, D, D,) € conv(€*)(D,).
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