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Hypothesis Testing with Communication
Constraints

RUDOLF AHLSWEDE anD I. CSISZAR

Abstract—A new class of statistical problems is introduced, involving
the presence of communication constraints on remotely collected data.
Bivariate hypothesis testing, Hy: Py, against H;: Pﬁ, is considered
when the statistician has direct access to Y data but can be informed about
X data only at a prescribed finite rate R. For any fixed R the smallest
achievable probability of an error of type 2 with the probability of an error
of type 1 being at most ¢ is shown to go to zero with an exponential rate
not depending on ¢ as the sample size goes to infinity. A single-letter
formula for the exponent is given when P = Py X Py (test against

independence), and partial results are obtained for general Pﬁ. An
application to a search problem of Chernoff is also given.

I. INTRODUCTION

N THE simplest hypothesis testing problem
Hy: P = (P(x))cqs

H): Q = (Q(x)) ses

the statistician has to decide on the basis of a sample of
size n between H, and H,, of which only one is true.
Often his task is to find a test with a minimal probability
of an error of type 2 for a prescribed probability of an
error of type 1, i.e,, to find B C &" with P*"(B)>1—¢
and Q"(B) = B(n, €) where € € (0,1) is given and

B(n.e) & min (Q"(A)|4 27, P"(A) 21~ ¢).

Z finite,

The exponential rate of convergence to zero of 8(n, €) as n
goes to infinity has been determined by Stein [5].
Stein’s Lemma: For any € € (0,1)

'llin:oilogﬂ(n,e) - -D(P|Q).
Here
P(x)
Q(x)

is the familiar Kullback—Leibler informational divergence
[11}, [12] called simply divergence in the sequel.

D(P|Q) £ X P(x)log

x€EX
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It is commonly understood in statistics that the data
(samples) are known to the statistician. We add here a new
dimension to the problem by assuming that the statistician
does not have direct access to the data; rather, he can be
informed about them only at a prescribed finite rate. In
the problem formulated earlier, this assumption is not a
significant constraint if the data are collected at a single
location. In fact, the transmission of one bit then enables
the statistician to make an optimal decision in the sense of
minimizing the probability of an error of type 2 for a
prescribed probability of an error of type 1; the informa-
tion to be transmitted is simply whether or not the ob-
served sample belongs to B as described earlier. New
mathematical problems, similar to those in multiuser Shan-
non theory (see [7]), arise for testing multivariate hypothe-
ses if the different variables are measured at different
locations.

In this paper we consider the simplest problem of this
kind, namely, bivariate hypothesis testing when one of the
variables is measured remotely, and information about it is
transmitted over a noiseless channel of finite capacity.
Mathematically, we are led to seemingly important con-
nections between statistics and multiuser source coding
theory. In another direction, Maljutov and his coworkers
[4, appendix] have found connections between the design
of screening experiments and multiway channels. A more
intensive exchange of ideas between information theory
and statistics should extend the frontiers in both areas and
give further support to Fisher’s thesis that “statistics is
data reduction.”

Of course, numerous papers are devoted to this general
theme. The fomiliar concept of statistical sufficiency re-
lates to data ->duction. Models based on an information-
theoretic poiut of view can be found in [12] and, for
instance, als-: in the work of Perez (cf. [13] and the
references therein) where the notion of e-sufficiency plays
the role of a measure for data reduction.

The novelty of our approach is to measure data reduc-
tion (or compression) by the rare needed to transmit the
reduced data and the performance of the best test based
on those data. Let us emphasize that here data compres-
sion is meant in a wider sense than in standard source
coding or rate distortion theory. In particular, the original
data are not required to be recoverable in any sense.
Rather, the only requirement on the code, in addition to
the rate constraint, is that a good test between the given
hypotheses could be constructed based on the encoded
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data. An application of our results to a search problem of
Chernoff [6] will be discussed in Section V.

II. STATEMENT AND DISCUSSION OF RESULTS

Throughout this paper we restrict attention to distribu-
tions on finite sets. The distribution and joint distribution
of the random variables X, Y taking values in finite sets
Z,% will be denoted by Py, Py, and Py, respectively.
X" = (X, -, X,)and Y" = (Y},-- -, Y,) will denote sam-
ples with joint distribution Py.y« £ P}, where

Pyy(x", ") & I:[1PXY(xi’ J’i),

x" = (xl’“ 'vxn)’ yn = (ylf "t yn)' (21)

The cardinality of a finite set 4 and of the range of a
function f will be denoted by |4| and || f||, respectively.

Test Against Independence with One-sided
Data Compression

First we will consider a special case for which a com-
plete solution is available, namely, that of testing the
hypothesis of a given bivariate distribution Py, against
the alternative of independence given by

HO: PXY = (PXY(x’ y)xeﬂ‘,ye@h
H;: Py X Py = (Py(x)Py(y))ce.,ca-

Notice that while the alternate choice Hy = P, X Py,
H, = P, is more frequent in statistics (test of indepen-
dence), our setup (test against independence) is also rea-
sonable. Further, it will lead to an interesting application
in search theory (cf. Section V). In the present case the
divergence appearing in Stein’s lemma is equal to the
mutual information I(X A Y):

Pyy(x,
D(PyylIPy X Py) = Y. Pyy(x, y)log mﬁ%
=I(XAY). (2.2)

Suppose that the statistician observes Y samples directly
and can be informed about X samples indirectly, via
encoding functions of rate R, that is, instead of the sample
X", he is given only f(X") where

1
~log|f] < R.

Then, for the probability of an error of type 1 not exceed-
ing a fixed € € (0,1), we are interested in the asymptotic
behavior of the smallest possible probability of an error of
type 2, defined as

Br(n,€) £ mfin{B(n,e,f)llogIIflls nR} (2.3)
where

B(n,e, f) & min{ Py X Py )(A)|4 € f(Z7) x ",

Piymp(A4) 21 -€}.  (24)
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Obviously, Bz is monotonically decreasing in both »
and e. Define for k = 1,2, ---

1
Bk(R) 4 Sl}p{;D(Pf(Xk)Yk”Pf(Xk) X PYk)|log||f|| < kR}

(2.5)

and

6(R) £ supf,(R). (2.6)
k

Theorem 1: For every R > 0 we have

1
a) limsup ;log,BR(n,e) < —-0(R) forallec(0,1)

n=o0
1
b) lim liminf —log Bx(n,€) = —6(R).
€e—>0 n—ooo N
Proof: a) Application of Stein’s lemma to

HO: Pf(Xk)Yk, Hli Pf(xk) X Py, k fixed

yields

1
lim sup Elog Br(lk,€e) < —8,(R)

!/ — o0

for every ¢ € (0,1). Since for /k < n < (I + 1)k we have

Br((1+ 1)k, €) < Br(n,¢€) < Brlk, ¢),
it follows that
1
lim sup glog,BR(n,e) < —6,(R) 2.7
for every € € (0,1). Since k was arbitrary, this proves
assertion a).
b) For every function f defined on 2" and every
ACf(Z")X ¥" we have

a 1-a
D( Py xryyrll Py xmy X Pyn) 2 alogg + (1~ o) log =— 3
(2.8)

where
a2 Pryny(4), B2 (Pyym X Pr)(4). (29)
By (2.3) and (2.4) we can choose f and A such that

log|| |l < nR B = Bgr(n,e).
Then (2.5), (2.6), and (2.8) give

a>1—c¢

1
6(R) 26,(R) > ;D(P,(Xn),,”npf(xn) X Py)

> - 1 €logBR(n;e) _ M)
n n

where
h{a) 2 —aloga — (1 — a)log(1 — a).
This completes the proof.

Remark 1: An implicit assumption underlying the defi-
nition (2.3) of Bx(n, €) is that any encoding function f of a
rate not exceeding R can be used to transmit information
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about the X sample. It might be more realistic to restrict
attention to the block codes of block length & much less
than the sample size n, i.e., to functions f obtained by
concatenation from a function f, defined on Z'* as

f(xl""’xn)
£ (fk(xl""vxk)>'”’fk(x(lfl)kﬁ—la“"'xlk))’
lk<n< (14 1)k

where log || f,]| < kR. Such a restriction has, however, no
significant effect on the result. In fact, if f is so restricted,
part a) of Theorem 1 holds with #,(R) instead of §(R) by
the same proof. This is an arbitrarily small difference if a
sufficiently large k is admitted. Of course, the converse
part b) is not affected by an additional restriction on f.
Moreover, under this restriction the converse can be ob-
tained directly from Stein’s lemma, even in the strong form
(for every € € (0, 1) rather than for € = 0).

Next we consider two questions: 1) how can one give a
single-letter characterization of the quantity #(R) and 2)
can one improve Theorem 1 to the statement

1

lim " log Bz(n,€) = —8(R)
for all € € (0,1)? The answer to the first question can be
obtained as an immediate consequence of the
Ahlswede—Korner solution [1} to the problem of source
coding with side information. In fact, by (2.2) we have
1
xRy A YE)

1
;D(Pf(xk)yknpf(xk) X Pyi) =

1
= H(Y) = ZH(YM/(X");
thus #(R) defined by (2.5) and (2.6) can be written as

: 1 k k <
0(R) = H(Y) — int{ LH(Y1/(X*)llog 1 < k).
(2.10)

The problem of giving a single-letter characterization of
the infimum in (2.10) is a special case of “entropy char-
acterization problems” playing a fundamental role in mul-
titerminal source-coding theory (cf. [7]). The solution to
this problem was a key step in [1]; the infimum appearing
in (2.10) was shown to equal the infimum of H(Y|U) for
all random variables U such that Ue X©Y (ie,, U, X,Y
form a Markov chain) and I(U A X) < R. Moreover, here
the range % of U may be supposed to satisfy the con-
straint |%| < || + 1. Thus we obtain Theorem 2 from
(2.10).

Theorem 2: For every R > 0
8(R) = max{I(UAY)|Ue XoY,
U
I(UA X) <R,|%| <\%|+1}.

Later we also prove that the answer to the second question
formulated earlier is “yes,” even in a more general context
(cf. Theorem 6). Thus the following sharpening of Theo-
rem 1 is true.
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Theorem 3: For every R > 0 and € € (0,1)

1
lim —log Bz(n,e) = —0(R).
n—oo N
Remark 2: The reader might wonder what happens if
not only the X data but also the Y data are compressed.
Application of Stein’s lemma leads to the following prob-
lem: find a single-letter characterization for

Ry Ry) % sup {Z((X%) A 5(r")

log || fIl < kR y,log |igl| < kRy}-

This problem appears to be of formidable mathematical
complexity. \

General Bivariate Hypotheses with One-Sided
Data Compression

Let {(X,, Y;)};2, and {()_(,-, }_’,»)}j’il be two sequences of
independent pairs of random variables having bivariate
distribution P, and Pxy, respectively. The hypotheses to
be tested are that the first resp. second sequence is being
observed:

Hgy: Pyy, H;: P+.

As before, we suppose that the statistician observes Y
samples directly and can be informed about X samples
indirectly, via encoding functions of rate R. Generalizing
(2.3) and (2.4), define

B(n.e, f) & ngn{Pj()_(")T’"(A)lA cf(zx") x o,
Py (4) =1 - €} (2.11)
Be(n,e) 2 mfin{ﬁ(n,e,f)|log||f|| <nR}. (2.12)

Again, we are interested in the limiting behavior of B,(n, €),
the smallest probability of an error of type 2 achievable
when X data are compressed to rate R and the permissible
probability of an error of type 1 is e. Similarly to (2.5) and
(2.6), we now define

1
f,(R) 2 st;p{—D(Pf(xnyk||P,()—(~m)llogufu < kR}

k
(2.13)
and
8(R) = supf,(R). (2.14)
k
Theorem 4: Both assertions of Theorem 1 remain valid
for the present B, and #(R).

'Proof: The proof of Theorem 1 literally applies to this
more general case.

Notice that Remark 1 also applies in the present situa-
tion. Some simple properties of 8( R) are stated in Lemma
1.

Lemma I: a) (R) = lim,_, .8,(R), R > 0; b) 8(R) is
monotonically increasing and concave for R > 0; and c)
6(R) is continuous for positive R.



536

Proof: a) By time-sharing we get the subadditivity
property
(k+1)8,,,(R) = k6, (R) + 16,(R).
This implies assertion a).

b) The monotonicity of 8, extends to the limit §. Fur-
ther, again by time-sharing, for R;, R, > 0 and every &

02k(£1—%£2') = %(0k(R1) + ak(R2))

Hence, also in the limit

R, + R, 1
—— | 2 7(8(R,) + 8(R,)).
2 2
¢) A concave function can have discontinuities only at
the boundary.

Remark 3: Clearly, 8(0) = D(Py{|Ps). Since for R > 0,
D(Py||Pz) contributes to #(R), this function does have a
discontinuity at R = 0, at least if

D(Pyl|Pz) > D(Py||Py).

Now we turn to the two questions formulated after

Remark 1. As to the first one, in the present more general

case we have only a partial result, a single-letter lower
bound to 6(R).

Theorem 5: For R > 0 let U be any random variable
satisfying I(U A X) < R and the Markov condition
U-e X-eY. Then for 8(R) defined by (2.13) and (2.14), we
have

0(R) > D(Py||Pg) + D(Pyy|Pys)
where Y denotes a random variable with U & X & ¥ whose
conditional distribution given X is the same as that of Y
given X.
Corollary: For every R > 0,
8(R) = D(Py||Px) + D(Py||Py).

We originally believed that the lower bound in Theorem
5 was tight when optimized for U. Unfortunately, this is
not generally true (cf. a counterexample in Section III).
Still, the bound is tight for R > H(X). In fact, U= X
may then be taken, and by the easily checked identity

D(PXHP,Y) + D(PXY”PX?) = D(PXY“PW)

we get O(R) = D(Pyy|| Pxy). Clearly, the strict inequality
is impossible here. Of course, it is intuitively obvious that
the rate constraint does not matter when R > H(X), and
it is easy to prove directly that

1
lim ;log,BR(n,c) = —D(Pyyl|P%), if R > H(X).
n-—= oo

The answer to the second question is positive.

Theorem 6. For B; and #(R) defined by (2.11)-(2.14)
we have

lim llogBR(n,e) = —6(R)

n—oo N
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for all R > 0 and € € (0,1), provided that P(x, y) > 0
foreveryx €4, y € %.

Actually, we expect this result to hold in general but do
not have yet a complete proof without the positivity as-
sumption on Pxy. Notice that Theorem 6 implies Theorem
3. In fact, for P33= Py X P, our positivity assumption
reduces to

PX('x)-> 0,

and this can be assumed without restricting generality.

Theorems 5 and 6 will be proved in Sections III and IV.
The proofs are rather similar and rely on techniques
familiar in multiuser Shannon theory. In particular, we will
use the covering lemma from [3] and the blowing up
lemma from [2]. The missing step to a complete solution of
our problem appears to be comparable in difficulty to
problems arising in multiterminal source coding. As dis-
cussed in [7], one encounters entropy characterization
problems whose prototype was the one solved in [1]. The
problem we are facing now, namely, that of getting a
single-letter characterization of #( R) defined by (2.13) and
(2.14), is similar in nature and may be termed a divergence
characterization problem.

The independence of the limit in Theorem 6 of the error
threshold e is a “strong converse” in the terminology of
the Shannon theory. It is remarkable that it could be
proved without having a single-letter formula for the limit
because in the literature of the Shannon theory, strong
converses are not available for problems to which a single-
letter solution is not known.

Py(y)>0forallxeZ, ye %,

III. Lower Bounp 10 (R)

First we recall some basic facts about types and typi-
cal sequences. The rype P,. of a sequence x”
(x4,"++,x,) €EZ" is a distribution on & where P.(x) is
the relative frequency of x in x". The joint type P» .. of
two sequences x" € " and y" € #" is a distribution on
XX ¥, defined similarly. We denote by £, the set of all
possible types of sequences x” € ", and for a given
P e #, we denote by 7,(P) the set of all stochastic
matrices V = (V(y|x)),c ¢, o Such that

2
foralx € %, ye %.

1
V(y‘x) < {0, m, m,--

For P € 2,

Ip & (x"|P.=P) (3.1)
denotes the set of sequences of type P in ", and for
x"e X" Ve v,(Pn),

TP (x") & {y"|Pe u(x, p) = Po(x)V(x]y)
forallxe &, ye ¥} (3.2)

denotes the set of sequences in %" that are V-generated
by x".
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Given a random variable X and a positive number 7, we
call 7 € Z, an (X, n)-essential type if

max|P(x) — Py(x)| <,

P(x) = 0 whenever Py(x) =0. (3.3)

The conditional distribution of a random variable Y given
X is the stochastic matrix Py, y, defined by

PY|x()’lx) £ Pr{Y=p|X=x)
(and arbitrary if Py(x) = 0).

For x" e &" with Py(x") > 0, we call ¥ € ¥ (P,.)
(x", Y| X, n)-essential if

n;figIPﬂ(x)V(ylx) — P (x) Pyy(ylx) < m,
V(y|x)=0 whenever Py 4(y|x) =0. (34)

The set of (X, n)-typical sequences in Z" and the set of
sequences in ¥" (Y|X, n)-generated by x" are defined by

I, U g
(X,m)-ess. P

yﬁx,u(xn)é i U

(x",Y|X,n)-ess, V

THx").  (3.5)

We will use the following well-known facts (see, for exam-
ple, [7, sec. 1.2]). In (3.7) &,(P) denotes an “exponentially
negligible” factor or, more exactly,

(n+1)™<o (P)<1.
Similarly, in (3.8) _
(n+1)¥ ¥ <y (Pv)<1.
It follows that

1Zl< (n+ )P, 7(P) < (n+ 1), (3.6)

|77 = 8,(P)exp[nH(P)], Pe2, (3.7)
and
|77 (x")| = 8,(P,V)exp [nH(V|P)];
x"eJg, ve¥,(P), (38)
where
H(V|P) 2 LP(x)H(V(-|x))
= = L P(x)V(ylx)log¥(ylx). (3.9)
x,p
Further,
(X esy,)>1— ! (310)
X 4ny? )
and
Pr{Y"egy, (x)NX"=x"} 21~ 1191
Y|X.n - 4nn2 ’
if P2(x")>0. (3.11)

As immediate consequences of (3.7) and (3.8), we also
have for any sequence of independent and identically
distributed (i.i.d.) pairs {( X}, ¥;)}2, with generic distribu-
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tion Py,
Pr{X"€ 7} =9,(P)exp[-nD(P||Pz)], Pe2,
: (3.12)
and
Pr{Y"e gy (x")| X" = x")
= 8,(P,V)exp [-nD(V||PyzIP)]
if P(x") >0, x" €T, Ve ¥,(P) (3.13)
where
D(V||Pyx|P) = LP(x)D(V(-1x)|Pyz(-|x))
V(ylx)
= 5P(x)V(y|x)1ogP—m_Zy,—x). (3.14)

We notice that if Py, (x, y) = 0 whenever P3xH(x, y) =
0, then (3.12) and (3.13) imply, by continuity and (3.6), .
that to any 8 >0, 5, >0 an n, exists such that for
0<y<mgand n =n,

exp [~ n(D(Pyl|Px) + 8)]
< Pr{f" Ef,}',,'}

<exp[-n(D(PAPg) —8)]  (315)
unless Iy, = @ (which may happen if 3 < 1/n) and

exp [—n(D(Py;x”PTq)T’lPX) + 8)]
<Pr{YreTp, (x")|X"=x")

< exp [~ nD( Pyl P7zIPy) — 8)] (3.16)
for every (X, n)-typical x" € Z", unless Ty, , = 2.

As a final preparation to the proof of Theorem 5 (as
well as of Theorem 6), we state a covering lemma from [3,
Part 2]. For any permutation = of the integers 1,-- -, #n and
x"=(x,"--, x,) € X", we write

"(x") = (xﬂ(l)" T xﬂ(n))
7(C) = {#(x")|x" € C},

ccxn.
Covering Lemma: For any type P € #,, set C C Jy,

and integer N > |C| YT log |7F, N permutations
w5, Ty exist of the integers 1,- - -, n such that
N

Um(c) =97

i=1

Now we can prove the following.
Proposition 1: Suppose sets C C " and D C %" exist
such that for each x" € C

€
Pr{Y"eD|x"=x"}21-

Pr{(Y"eDX"=x"} <y (3.17)
and
IC NI > exp[n(H(X) - R+ 8)]
for each ( X, n)-essential P € &, (3.18)

where 7 = (]Z|/2ne)!/% Then B(n, ¢) defined by (2.11)
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and (2.12) satisfies

Br(n, €) < yexp [—n(D(Pyl|Ps)
provided that n > ny(8, €).

-8)] (3.19)

Proof: Apply the covering lemma to C N J}' in the
role of C, for each ( X, n)-essential P € £,. Since for such
P (3.7) and (3.8) imply (if n is sufficiently large)

IC N T, "1 T7|log |T7| < exp [n(R - 8/2)] -1

for each (X, n)-essential P, one can select permutations

Ty ps** > Ty, p SUch that

N
L_Jl'”i.P(C) ST
Let m,, + -+, m, be all the permutations so selected as P
runs over the (X, n)-essential types. Then (3.20) implies by
(3.5) and (3.6) that

N <exp[n(R-8/2)]. (3.20)

M
U (C) 2Ty, M<(n+1)Texp[n(R-8/2)].
! (3.21)
Now consider the function f: " — {0,1,---, M} de-
fined by
ifx" &Iy,
f(x ) = : n n °
smallest i with x" € 7,(C), ifx"edgy,
(3.22)

Then || f|| < exp (nR) (if n is sufficiently large); thus (3.19)
will be proved (cf. (2.11) and (2.12)) if we find 4 C
{0,1,---, M} X %" such that

Pf(X")Y"(A) Z 1 — €
Pf()'(")?"(A) < yexp ["n(D(PX”P)_()
We claim that

-9)]. 3.23)

M
4% U {i} x (D)
satisfies (3.23). To see this, notice that by construction
Pj‘(X")Y"(A) =Pr{(f(X"),Y") € 4}

- Y % P

i=1 x"ef'(i)

Pr{Y"em(D)|X"=x"}. (3.24)

A significant observation is that
Pr{Y"e€m(D)|X"=x"}
=Pr{Y" € D|X" = n'(x")}

because of the i.i.d. property of {(X,, Y))}2,. By (3.22), for
x" e f~Yi), i =1,---, M we have #,7'(x") € C. Thus by
assumption (3.17) the last conditional probability is at
least 1 — €¢/2. Hence (3.24) gives

P (4) 2 23( U001 - 2

= Py(Ty )1 —¢/2). (3.25)
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This establishes the first part of (3.23) because of (3.10)
and the definition 5 £ (|Z|/2ne)!/2
The same reasoning that led to (3.25) also gives
Py (4) < PE(TY L) (3.26)
Hence by (3.15) and (3.6) we get the second part of (3.23),
completing the proof of Proposition 1.

Proof of Theorem 5: We will show that Proposition 1
implies

lim sup —logBR (n,€) < —D(Py||Pz) —

n— o0

D(PUY“Puf/)
(3.27)

for every e € (0,1) and R’ > R. Because of Theorem 4
and Lemma 1 c), this will prove Theorem 5.

Let # designate the set of possible values of U; we may
suppose that P,(u) > 0 for each u € %. Fix 7 > 0 suffi-
ciently small as specified later. Pick for every n a u" €
T 4> and set

o .Tx"w,,,(u"),
Dn 2 .7—;3'0’ ,,.(u"),

= (1Z1+ Dn. (3.29)

Then

y}qux,n("",X") cD,, if x"e C,.

Hence by the Markov property U-© X-©Y and by (3.11)
Pr{Y" € D,|X"=x"}
=Pr{Y"eDjU"=u", X" =x"}
> Pr{Y" € TPyx (u", x")U" = u", X" = x"}

12119

>—, ifx"€C,. (3.29)

4nq

Notice further that Pr{Y" € D | X" = x"} is constant
for x” € 7/ (u") if V is fixed; denote its value by v,.
Thus by the Markov property U-© X-© Y and the identity
Pyx = Pyx, we have

Pr{¥"e D, U" = u"}
= Y Pr{Y"eD|X"=x"}Pr{X"=x"U"=u"}

>y, Pr{X" e T (u,)lU" = u"}. (3.30)

Fixing an arbitrary 8 > 0, (3.13) gives for each
(u", X|U, n)-essential ¥ and n sufficiently large that

Pr{X"eJ,(u")lU"=u"} = exp (—nd)

provided that n has been chosen sufficiently small. Simi-
larly,

Pr{¥"e D, U" = u")

D(PY|UI|P?|U|PU) - 8)]

by (3.16). Thus (3.30) gives for each (x", X|U, 5)-essential
V

- 2)],

Sexp[—-n(

Yy < €Xp [_n(D(PY|U||P?|u|PU)
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that is
Pr{Y"e D,|X"=x"}
Sexp[—n(D(PYlullPﬁulPu) _28)], if x" € C,.

(3.31)

To apply Proposition 1, we still need (3.18) for C, and
R’ in the role of C and R, recalling that the 7 of (3.18) is
n, 2 (J%|/2ne)'/? rather then our present fixed 7. Clearly,
for n sufficiently large, u” € 7], can be selected in such
a way that the types of the sequences x" € Iy, ,(u")
include all ( X, n,)-essential types P € #,, that is, to each
(X, m,)-essential P a (u", X|U, n)-essential ¥ exists such
that J)(u") € 7. Then by (3.8)

IC, T 21T 3w 2 (n+ 1) WFlexp [nH(V|P,n)].
(3.32)

Since u” is (U, n)-typical and V is (u", X|U, n)-essen-
tial, here H(V|P,») = H(X|U) — 8 if n has been suitably
chosen. Thus using the assumption I(U A X) <R, (3.32)
gives for a sufficiently large n

IC, N I7| = exp [n(H(X|U) — 28)]
> exp [n( H(X) — R — 28)]

> exp [n(H(X) — R’ +8)], if R” >R+ 38.

(3.33)

The relations (3.29), (3.31), and (3.33) show that Prop-
osition 1 is applicable, yielding

Br(n,€) < exp [—n(D(wallelPu) - 28)]
-exp [—n(D(Py|Pg) — 8)] (3.34)
if n is sufficiently large and R’ > R + 34. Since here

D(PYIU”P)"WIPU)

_ u 2lo PY|u()’|“)
= u,ZyPU( )PYgU()’l ) log Pﬁu—(yw)
Pyy(u, y)

= Y P,y(u, y)log ——
LFor(e)le g 0

= D(PUY“PU?),

and 8 > 0 is arbitrarily small, (3.34) proves (3.27) and
thereby Theorem 5. Finally, we show that the lower bound
in Theorem 5 is, in general, not tight.

Example: Let = %= {0,1}, Py(x)=Px(x)=1/2
forx € &,
Prnle) 2 WO = {520
rix\ y 0, x#y’
and
1-—c¢, x =
Prz(ke) 2 W) = {1 e

Choose R = 1/2. Then for k = 2, taking the indicator

539

function of 4 = {(0,0),(1,1)} as f, (2.13) gives

ZxZEAW(yzlxz)
> w( y?|x? —_—7
2( ) 822 )l 5 )
ExzeA‘W(yzlxz)
+— W(y?|x2)lo
8 § XZZE:AC (y | ) & ZxIEArm(yzlxz)

1
~§[1og T w(00x?) +log ¥ W,(11]x?)

x2eA4 x¥€A

+log ¥ W(101x%) +log ¥ W(01x?)

x2e 4

1 .
—Elog((l—e) + € )

XZEAF

Thus for the choice e = 1/4 we have

8(1) = 6,(3) = —31og((1 — )" + ¢?)
3~ llog5 ~ 0.339,

whereas our computer value for max D(Py||Pyy) subject
to the constraints in Theorem 5 is ~ 0.187. This value is
assumed already for || = 2 for the parameters

@X,U=(g 1‘1‘"‘), a~0773  P,(0)=(2a)”"

IV. INDEPENDENCE OF € OF THE EXPONENT

In this section we will prove Theorem 6, using Proposi-
tion 1 and the blowing up lemma [2]. We state the latter in
its uniform version, [7, lemma 1.5.4], although for the
present purpose the original version in [2] would suffice.
Blowing Up Lemma

To any finite sets %, % and sequence ¢, — 0, a se-
quence of positive integers /, with /,/n — 0 and a se-
quence Y, = 1 exist such that for any ii.d. sequence of
pairs of random variables ( X, Y;) with values in 2" and %
and for every n,x" € &", FC ¥"

Pr{Y"€ F|X"=x"} > exp{—ne,}
implies
Pr{Yy"e T#F|X"=x"} 2 ¥,.

Here T''F denotes the Hamming [-neighborhood of F, ie.,

T'F&{jneddy(y",7") <1

for some y” € F },
dy(y", 3") 21{i: »# 5},

= (yli' ) yn)a i" = (}_"13' Ty yn)

To prove Theorem 6, only the case R > 0 has to be
considered. Because of Theorem 4 and Lemma 1 c), it
suffices to prove the following.
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Proposition 2: Under the assumption of Theorem 6, to
any 0 <A <e <1and a > 0 an n, exists such that

1 1
- log Br(n,€) > -~ log Br-(n,A) — a
whenever n > ny and R’ > R + a.

Proof: Consider a function f defined on £" with
log|lfIl < nR and aset A C f(£") X " such that

P_f(X")Y”(A) 2 1 - € Pj(?rl)?n(A) = BR(n, f) (4.1)

(cf. (2.11) and (2.12)). We may assume that the range of f
is f(Z") ={1,---, M}

M < exp(nR). (4.2)
Thus
M
A=U i} xG, Gco" i=1,-- M.
i=1
Then (4.1) means that
Pr{Y"e Gy} 21-¢
Pr{Y" € G,z ) = Br(n,¢). (4.3)

Fix 8 € (0,(1 — €)/2) and take 5 £ n~'/3. We first show
that a set E C &' " exists with

2M "’
such that for every x” € E f(x") = i, (for example) and
with F £ G,

Pr{X"€E} > Ecdy, (44

Pr{Y"eF|X"=x"}>8 (4.5)
and
Pr{Y"e F|X"=x"}
< Br(n, €)exp [n(D(Py||Pg) + 28)]. (4.6)

Next we will “blow up” E and F to obtain sets C and

D satisfying the hypotheses of Proposition 1, with A and

R’ in the roles of € and R and with

y = Br(n, €)exp [n(D(P,||Pg) + 48].
Then the proof will be completed by application of Prop-
osition 1.
Forx"e 7y, write

s(x") £ Pr{Y" & G| X" = x"}

Pr{X"=x")
t(x")—————
Pr{Xx”=x"}

and set

B2 {x"E.?}'.nls(x") <1-8,
t(x") < Br(n, €) exp (nd)}.

r{Y"e Gxny) X" = X"}

Since by (4.3)
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we get—using (3.10)—that

€
Pr{X"eB)2Pr{X"e7gy,} - 1-5 exp (—nd)
Sl 4.7
> -
> — (a7)
if n is sufficiently large.

Let iy € {1,---, M} beavalue of f maximizing Pr { X"
€ B, f(X™) —1} and set E 2 B N f !(iy). Then (4.7)
implies (4.4), and by the definition of B we have for every
x" € E with F4 G,

Pr{Y"e FiX"=x"}=1~s(x")2>8 (4.8)
_ _ Pr{ X" =x")
PI'{Y" € F|X" = x"} = mt(x")
Pr{Xx"=x"}
< mﬁn('hf)
-exp (nd). (4.9)

Here (4.8) is _]ust the desired (4. 5) wh11e (4.9) implies (4.6)
because for x" € Iy, withn = n~

Pr{Xx"=x"} B Py(x) | ")
Pr{X"=x"} xeg( P,—((x))
= exp [n XZE:ngn(x) log i;gi; ]

< exp [n(D( Pyl Pz) + 8)]

if » is sufficiently large.
Now we blow up E and F and take
CETENTY, D=THF (4.10)
with k& and / to be specified later. We then check the
hypotheses of Proposition 1 for C and D in (4.10).
Notice first that (4.4) implies

IENTF|2 - |75

for some ( X, n)-essential P € . (4.11)
Let P € #, be any other (X, n)-essential type. Then

max|P(x) — P(x)| < 29 =2n"173,
X

hence for k £ [2n?/*|%|}, say, the Hamming k-neighbor-
hood of every x" € 97 intersects J7'. Since for this £ the
cardinality of the Hamming k-neighborhood of an x” € "
is less than exp (n8) if n is sufficiently large, then

|E N T#| < ITX(T*E N I3)| < [TXE N Tlexp (n8).

Y Pr{X"=x"}s(x")=Pr{X"€Ty Y"&Gym} <k

n n
x"egy ,

Y Pr{Xx"=x"}t(x")=Pr{X"€T}, Y"E Gyzn} < Br(n,e),

eI,
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Hence by (4.10), (4.11), and (3.7) we obtain
1
ICNIP| = IT*E N T = 27 P [n(H(X) — 28)]

for every ( X, )-essential P € &, (4.12)

if n is sufficiently large.

Consider now any X" = (X, -+, X,) € C and pick an
x"=(x,, -, x,) € E with dy(x", X") < k. Then to each
)’"=(}’1,"'a}’n)EF take a yn=(}_}1"”s.}7n)erkF
such that y, =y, if x; = X; and jy; maximizes Py y(y|X,)
otherwise. Then, clearly,

Pr{Y"=j"X"=X"}) 2 |¥| *Pr{Y"=p"|X"=x"}.

Since for fixed X" and x" at most |#|* different y" € F
can lead to the same y" € T'*F, it follows that

Pr{Y" e T*F|X"=x"}
> || *Pr{yY"e F|X"=x"}.
On account of (4.5), this gives
Pr{Y" e TkF|X" = X"} > || 243,
forevery X" € C. (4.13)
Since k = [2n%3| X[}, the right side of (4.13) can be
written as exp (—ne,) with ¢, — 0. Take /, and vy, to these
€, in the blowing up lemma; in particular, for any fixed
£ > 0 and n sufficiently large, I, < énand y, > 1 — (A/2).
It follows that for sufficiently large n an / < £n exists such
that (4.13) implies
A
Pr{y"eT*/Fix"=3"} 21 - 5
for every X" € C. (4.14)
Finally, for any X" € C and x" € E with d(x", xX") <
k, assign to each 3" € T¥*/F a y" € F with d(y", y")
< k + . Then
Pr{Y"=y"X"=Xx")}
< Pr{Y"=p"X"=x"}p @D (4.15)
where
pe min Py (ylx) > 0;

(this is where we need the positivity hypothesis of Theorem
6).

By our choice of k and /, here p~@®**) < exp (n8), and
also the number of different 3" € I'**'F to which the
same y" € F is assigned is less than exp (n8) if n is large,
provided that £ > 0 has been chosen sufficiently small.
Thus (4.15) and (4.6) give

Pr{Y"e Tk'F|x"=x"}
<Pr{Y"e F|X"=x")}exp(2nd)
< Br(n, ) exp [nD(Py||Px) + 48)],
forevery X" € C. (4.16)

Equations (4.12), (4.14), and (4.16) mean that the hy-
potheses of Proposition 1 are fulfilled for C and D in
(4.10), with A in the role of e with y =
Br(n, €)exp[n(D(Py| Pg) + 40)], and any R’ > R + 38
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in the role of R (recall (4.2), and that our present n 2 n~1/3
is larger than the 7 in (3.18)).

Thus Proposition 1 gives

Br/(n,A) < Bg(n, €)exp (5n8)

if n is sufficiently large and R’ > R + 38. This completes
the proof of Proposition 2 and thereby of Theorem 6.

V. IDENTIFICATION IN A LARGE POPULATION

Chernoff [6] suggested the following model for the iden-
tification of an element of a large population in the
presence of noise. Suppose that N items X;,---, X, are
stored in a library and that these items may be regarded as
independent observations from a distribution P,.

Let Y be a new observation which with prior probability
7 > 0 is a “noisy version” of one of the items X stored in
the library, while with prior probability 1 — # it does not
correspond to any one of the items. Here “Y is a noisy
version of X,” means that the joint distribution of these
random variables is Py, while otherwise this joint distri-
bution is Py, X Py. When Y =y is observed, Chernoff’s
model calls for searching in a subset () of the range of
the X,’s for the item to which ¥ corresponds. A cost ¢ > 0
is incurred for each X, € §(y), and a cost k > ¢ is in-
curred if the “true” X; is not in §( y).

Let L denote the number of those st XJ € 8(y), that
do not correspond to Y. Then the expected total cost is

C=cEL+n(cPr{Xed8(Y)} +kPr{Xed(Y))})
=c(N — 7)EP,(8(Y))
+a(k—c)Pr{X&8(Y)} + mc. (5.1)

The ‘“search regions” &(Y) should be chosen so as to
minimize C. It readily follows from (5.1) that the minimal
expected cost C* = min C satisfies

(5.2)

The expected cost (5.1) can also be expressed in terms of
the error probabilities of first and second type of a (non-
randomized) test for the hypothesis P, against the alter-
native Py X P,. In fact, define a one-to-one correspon-
dence between such tests and specifications of search
regions 8( y) by letting the test accept the null hypothesis
Py, if and only if the sample point (x, y) is such that
x € 8(y). Thus, denoting by € and B the error probabili-
ties of first and second type of such a test, (5.1) may be

written as
C=c(N-m)B+nlk—c)e+ mc. (5.3)

This model is well-suited for deriving asymptotic results
in the case where the role of the X, and Y is played by
n-tuples of random variables X" = X,,-+-, X,, and Y" =
Y,,- -+, Y, such that the pairs (X, ¥}),---,(X,,, ¥,) are n
independent drawings from the joint distribution Py, or
P, X Py, depending on whether Y" represents a noisy
version of X or not. We shall refer to this case as
Chernoff’s model for n-tuples and denote the minimum
expected cost for this model by C}*. Since the joint
asymptotic behavior of the error probabilities of first and

mc < C* < wk.
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second type for tests with sample size n — co between
simple hypotheses is well understood (Hoeffding [10],
Csiszar and Longo [8]), (5.3) enables us to get tight bounds
on C* when n is large. In particular, it follows from (5.3),
simply by Stein’s lemma, that for arbitrary 0 <7 <1,
k>c>0,and 5 > 0, § > 0 we have

1
Cr<mc+n for—logN<I(XAY)—-8 (54)
n

~ 1
C*>nk—1n for—logN>I(XAY)+8 (55)
n

if n is sufficiently large. Let us make a few comments at
this point.

a) The formula for expected cost in [6] contains a slight
error. In fact, (2.2) there is incorrect because the condi-
tional probability of X; € 8(y) given that Y = y equals
the unconditional probability only for the X;’s not corre-
sponding to Y. This error does not substantially affect the
results of [6], except that the expected cost C is not exactly
equal to a linear combination of the error probabilities of a
hypothesis test (as stated in [6, (2.6)}), rather, an additive
constant wc also enters.

b) Chernoff [6] implicitly assumed that for each X; €
8(y), one could unambiguously determine, presumably by
using additional information, whether it was the true item
of which Y = y was a noisy observation; he interpreted c
as the cost of such a determination. Whether this assump-
tion is justified or not, the collection of items X; € 8(y)
may be considered as a “list decision” about the true X,. It
is natural to measure the goodness of a list decision rule by
a linear combination of the expected number EL of incor-
rect items on the list and of the probability Pr { X & 8(Y)}
that the correct item is not on the list. Thus we recover
formula (5.1), up to the constant term mc.

¢) The mathematical problem that Chernoff’s model
leads to is formally equivalent to a channel-coding prob-
lem involving random codes with list decoding. In fact,
consider a random code of block-length one for a channel
with a transmission-probability matrix Py, encoding the
messages 1,---, N by independent random variables
X, -+, Xy with common distribution Py. Use list decod-
ing specified by a family of sets 8(y) so that the decoder,
when observing y, prints the list of those messages ; for
which X; € §(y). Then supposing for simplicity that 7 =
0, the terms EL and Pr{ X & 8(y)} in (5.1) are just the
expected erroneous list size and the probability of list
decoding error. Channel codes with list decoding have
been studied with respect to these performance criteria by
Forney [9] for block length n — oo (rather than n = 1). Of
course, random codes of block length n correspond in the
foregoing sense to Chernoff’s model for n-tuples.

Chernoff also raised in [6] the problem of data compres-
sion, suggesting that it might be possible to store a com-
pressed version of the items in the library without much
adverse effect on identification. As an application of our
results, we now describe an asymptotic solution to this
problem within the context of Chernoff’s model for n-
tuples.
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Let & and % be the (finite) sets of possible values of
the random variables X, and Y, respectively. A compres- -
sion of the library items is a mapping f: 2" — Z, where
Z is some finite set. For the compressed items Z, £ f( X/")
(1 <i < N) any specification of search regions &(y"),
y" € #" gives rise to an expected cost defined as in (5.1),
with Z, and Y" in the role of X; and Y. Let us denote by
C*(f) the minimum expected cost for a given f, and by
C*(R) the minimum of CX*(f) for all f: " —» Z with
171l < exp (nR).

Theorem 7: For any positive n and 8§ an n exists (also
depending on 7, k, c) such that for n > n, we have

C*(R) < mc + n,

(5.6)

if (1/n)log N < I(U A Y) — 8 for some random variable
U with

UeXeY IUAX)<R |%|<|Z|+1, (5.7)

and, on the other hand,
C*(R) > wk —n (5.8)

if (1/n)log N > I(U A Y) + 8 for every U with the prop-
erty (5.7).

Proof: The result follows immediately from the repre-
sentation (5.3) of expected cost and Theorems 2 and 3.
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