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On Multiple Descriptions and Team Guessing

RUDOLF AHLSWEDE

Abstract—Witsenhausen’s hyperbola bound for the multiple description
problem without excess rate in case of a binary source is not tight for
exact joint reproductions. However, this bound is tight for almost-exact
joint reproductions (Theorem 1, conjectured by Witsenhausen). The proof
is based on an approximative form of the team guessing lemma for
sequences of random variables. (This result may be of interest also for
team guessing). The hyperbola bound is also tight for exact joint reproduc-
tions and arbitrarily small, but positive, excess rate (Theorem 2). The
proof of this result uses our covering lemma.

1. THE PROBLEM OF MULTIPLE DESCRIPTIONS

URING the last years a strong interest has devel-

oped in a certain source-coding problem called the
“problem of multiple descriptions.” Since the origin of this
problem and the motivations for its study have already
been extensively described (see [1]-[9]), we begin im-
mediately with the formal setup.

Let (X,)?., be a sequence of independent and identi-
cally distributed (i.i.d.) random variables (RV’s) with val-
ues in a finite set &', that is, a discrete memoryless source
(DMS). We are given three finite reconstruction spaces,
#,, #,, and £, together with associated per letter distor-
tion measures

d: X%, ->R,, i=01,2. (1.1)

For a function F defined on a product space #” we use
the notation

1
rate(F) = - log || F|,

|F|| = the cardinality of the range of F. (1.2)

The quintuple (R, R,, D,, D,, D,) is achievable, if for all
large n description functions f: 2" - %, (i =1,2) and
reconstruction functions g;: #; — £ (i=1,2), 8, %
X %, - &7 exist such that

a) rate(f;) < R,, i=12
and for
X = ()’2‘1’ “7)"(in)=gi(fi(Xn))’ i=1,2
)?o" = ()?01’ T X,On) = go(fl(X")’fz(X")),
b) Eid,-(X,,f(i,)sD,-n, i=0,1,2.
=1
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II. WITSENHAUSEN’S HYPERBOLA CONJECTURE FOR
A BINARY SOURCE

We now consider a seemingly special characterization
problem, which alone has already received great attention
in the literature. Let X be binary and uniform, that is,
H(X) =1, and let all of the distortion measures equal the
Hamming distance. Consider the closure .@a(R) of the
Cross section @s(R) of @(R), which is defined by choos-
ing D, = 8.

We say that R has no excess rate at D, = 0 if R, + R,
= H(X) = 1. Let & (for line segment) denote the set of
those R’s Witsenhausen has established in {1] the hyper-
bola bound

9,(R)c®? forReZ (2.1)

where
1 1 1
{(Dl,Dz) D, + ~ ) D2+'2—)25;D1,D220).
Instead of considering the case D, = 0, one can study
the situation where D, is arbltranly small but positive.
Since for & > &’ DB(R) o) Da,(R) it is natural to define

= GDODS(R). (2.2)

Since this is the way in which quantities are usually
defined in Shannon’s rate-distortion theory, 2, may be
termed a distortion-rate map at Dy, = 0 in the “Shannon
sense.”

Witsenhausen conjectured that for

@+($) = _U §+(R

5(L)=2 (2.3)

Generally, one is interested in characterizing Q, the set of
achievable quintuples, or its closure Q. In particular, one is
interested in rate-distortion regions and distortion-rate re-
gions, which are the analogs to the following classical
rate-distortion function and distortion-rate function.

(D) denotes the set of rates % = (R;, R,) achievable
for distortion D = (D,, D;, D,), and @(ﬁ) stands for the
set of distortions J = (D,, Dy, D,) achievable for rate R
= (R, R,). Often it is more convenient to work with their
closures R(D) and 5(§).

Several authors have made an effort to prove (2.3). In
the special symmetric case D; = D, = D, one can calculate
that

D’=min{D: (D,D) e £} =27 (y2 — 1) ~ 0.207.
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Wolf et al. [2] have shown that D, = min {D: (D, D)
€ 9,(&)} = 671, and Witsenhausen and Wyner [5] have
improved this result to D, > 5~'. Finally, Berger and
Zhang [7] proved the equality D ; = D’.

Whereas the inequality D, ;. < D’ readily follows from a
general achievable region due to El Gamal and Cover [6],
their proof for the opposite inequality is rather com-
plicated. We completely settle Witsenhausen’s conjecture
with Theorem 1.

Theorem 1: For X binary and uniform and the Ham-
ming distortion measures,

2.(%)=2.

Remarks: ‘

1) A noticeable phenomenon about the result by
Berger and Zhang is that at least in one point the hyper-
bola bound, which was derived for the case D, = 0, coin-
cides with the true value in the Shannon case (D, — 0).
This motivated us in proving Witsenhausen’s conjecture by
continuity considerations, which led to the team-guessing
Lemma 3, an improvement of the original team-guessing
lemma. .

2) We also studied continuity properties of Z(D) and
2(R) for general sources. The results are stated in the
Appendix. A reader interested in these mathematical del-
icacies can find the proofs in [17].

It is important to notice that 2 is not everywhere
continuous; in particular, Z4(R) is not continuous at § = 0.
Even worse, éo(l—i) is not even convex. This led us to
another zero-distortion problem, which we will define and
whose solution we will present next.

1I1. A ZErO-DISTORTION PROBLEM

Instead of allowing arbitrary small distortion Dy, but no
excess rate, one can consider the case of no distortion, but
arbitrarily small excess rate. For X binary and uniform
and the Hamming distortion measure we can thus consider
the set

lim Z,(Z+©).
Jim - Fo( )

With the help of our covering lemma [11, part I] we
show that a certain trade-off exists between the distortion
and the rate to the extent that

2.(&L)c D,(L+ )

fori=1,2. (3.1)

for every € = (€, €,) withe; > 0
We actually prove Theorem 2.

Theorem 2: For X binary and uniform and the Ham-
ming distortion measures,

lim 2,(%+¢
¢~ (0.0) ol €)

2.
Next we state improved versions of the team-guessing

lemma. They are used here for the proofs of Theorems 1
and 2 but may also be of interest otherwise (see [3] and

[4D-
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IV. ON TeEAM GUESSING

The philosophy of team guessing is outlined in [3] and
[4]. The result of [1] is the following lemma.

Team Guessing Lemma 1: Let U, V, and W be 0-1-val-
ued RV’s defined on the same probability space. If
a) U andV are independent and Pr (W = 0) = 1/2,
then
b) (Pr(U+W),Pr(V+W)) e

By an elementary continuity argument the following
improvement is readily established. Define for any 7 > 0

P(1) = {(Dl, D,): (D1 + %)(D2 + l)

2
1
2 ‘2‘7; D\, D, > 0}- (4.1)

Team Guessing Lemma 2: A functionc: R, X R, > R,
exists with lim, , _oc(r;, ) =1 such that for any
0-1-valued RV’s U, V and W with the properties

(a) IUAV)<8, and H(W)=1-3,
we also have
b) (Pr(U# W),Pr(V+W))e P(c(8,,8,)).

Our main generalization is the next lemma.

Team Guessing Lemma 3: A function w: R, X R, —
R +‘ejxist's with lim, , _ ,w(r, r,) =1 such that for any
positive integer n and any sequences U” = (U,,---, U)),

vrt= -+, V,), and W" = (W,,---, W,) of 0-1-valued
RV’s, the properties
1 1
a) —I(U"AV")<e, —H(W")>1-1q
n n
imply
b)

1 n
=X Pr(U+ W),

no,-

1 n
=Y Pr(V,# W)| € B(a(e,n)).
=1

The following proof makes use of what has been called
in [15] a wringing technique. These techniques originated
with [13] and were first made a powerful instrument for
proving strong converses by Dueck [14]. (For a systematic
analysis and improved forms see also [15].)

Wringing Lemma [14]: let Y" = (Y,,---,Y,) and Z"
= (Z,,"+, Z,) be RV’s with values in #" resp. Z". If
I(Y" A Z") < o, then for any &8 > 0, t,,---, ¢, €
{1,2,--+,n}, k < 0/8 exist such that

I(Y,AZ)Y,2, -~ Y,2,)<8, t=12,,n.

This lemma says that conditional on a relatively small
number of suitable component variables all corresponding
component variables are much closer to independence
than are Y” and Z”. The lemma was used by Dueck in [14]
for strong converse proofs with o, 8 held constant, but it
turns out to be good enough in the present “rate-distortion
situation,” where o = en (e arbitrarily small).
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V. PRroOOF OF TEAM-GUESSING LEMMA 3

Application of the wringing lemma with 0 = en and
8 =¢€l, 1 < | < n, guarantees the existence of #,,---, ¢, €
{1,2,-- -, n} such that

I{UAV|S) <€, t=1,2,---,n (5.1)
where
S=UyV, - UV, k<l (5.2)
Clearly, for the range % of §
| L] = 2%k, (5.3)

The proof proceeds by showing that for a very large
proportion of the triples of RV’s (U(s), V,(s), W(s)) with
joint distributions Py, s-, (s €5 1 <t < n), Team-
Guessing Lemma 2 can be applied with sufficiently small
8. From here the final result is derived by using the
convexity of Z(r7).

We now extract “good” components ¢ and then “good”
subsets of & for those 7. As set of “good” components we
define for y > 0

N=N(n,v)

= {t: HW)S) 21— (1 +y)(n+2I""),1 <t <n}.

(5.4)

Since
Y H(W|S) = H(W"|S)

t=1
>(1-mn-2k=(1—-n—-2I")n
and since H(W,|S) < 1, we have
1-n—-2"")n

< X HWIS) + Y HW)S)
eV te{l,--,n ]\AN

A1+ (1= (1 =y)(n+2071))(n = |H)

and, therefore,

A

|12 y(1 +7v) . (5.5)
Define now for every t € 4" the “good” subset
&= NS, where
S ={seP IUAV|S=s)<e?)}
S ={ses HW)S =s)
>1-(1+y)(n+20")}. (5.6)

By (5.1) and the definition of %/
el > (U AV)S)=el*Pr(S &5)

and, therefore, Pr(S €¥/)=>1-1"%
Similarly, by (5.4) and the definition of %"

1-Pr(S e&’,’}) + (1 -1+ y)z(n + 21*1))
Pr(Ses”)
>H(W|S)>1-(1+y)(n+20Y)
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and, therefore, Pr(S € %,”) > 1 — (1 + y) "~ The two in-
equalities imply
Pr(Se#)=1-1I""-(1+vy)"', tess. (57)

Application of Team Guessing Lemma 2 with the
parameters 8, = e/> and &, = (1 + y)%(n + 2/ 1) yields

1 1
Pr(U(s) # W(s)) + 5 |(Pr (Vo) # wits)) + 5
1
> 56(51,82),
The inequality Pr(U, + W) > X . Pr(l, # WS =
s)Pr(S = s) and (5.7) imply

tesN, sE Y. (5.8)

nt X Pr(U# W)

=1

>n7t Y Pr(U # W,)

e
>n(1-11'=(1+y) )M X 4T
reN
Pr(U + W|S=s)Pr(S=y5)
LT mGes)

Since 1 > [A|n ' = I"' = (1 + y)™"), we also get

BN | =

nt Y Pr(U W)+

=1

> |1 -1 - (1 + v)“)[ PV A
reN

Pr(U, + WS =s)Pr(S=s)
Pr(Se%)

Y
SES,

1
+ 5 s (59)

and the same inequality holds with U, replaced by V,. The
convexity of #(c(8,8,)), (5.8), and (5.9) imply the relation

&*2mm¢mm1ZHM¢w

t=1 =1

e [lrm(1-11 -1+ 2(c(5,,8,)).
(5.10)

Now we make an explicit choice of all of the parameters
that are dependent upon € and 7, and then we verify that
all of the demands can be met. Define

l= 6_2/5 y = min(2—1/2c—1/10 _ 1’ ,,’—2/5 _ 1)-
(5.11)
Then, clearly, 8, = ¢/? = ¢'/% and
8= (2 + )1 +7)
= (26¥5 + y)min (27 % /5, n~%%)

< /5 4 i/,

Finally, {y/(1 +y)(1 —€¢° =1+ y)"H]* = (v/Q +
Y)2(y/Q + y) — €/°)?, and since lim,,_o(y/(1 + 7))
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= 1, the choice

w(e, n) =(

y 2y 2
— S C(El/s,cl/S + "11/5)
1+y 1+y

(5.12) -

is suitable.

Remark: We use Lemma 3 only for # = 0. As a natural
problem we suggest finding the exact regions of errors, to
be guaranteed for all choices of RV’s for every € and 1.
Are these regions independent of n? The resuits may also
be generalized to arbitrary RV’s.

V1. PrROOF OF THEOREM 1

Let (D,, D,,0, R,, R,) € Q and R, + R, = 1; then for
any « > 0 and large enough n
fii " > % g F-%"(i=1,2)
8 FIXF > "

exist such that

rate (f,) < R, + a, (6.1)
and for
= 8i(fi(Xn))
and
X’(;' = go(fl(X”),fz(X"))
12 .
— Y Pr(X,# X,) <D, +a, i=1,2 (6.2)
n -
and
1 N
- Y Pr(X,, #X,)<a (6.3)
t=1
We show first that (6.1) and (6.3) imply
1 . N
—I(X? A X7) <2a + h(a). (6.4)
n

For this, notice that by (6.3) and Fano’s inequality

n
H(X"X;) < ¥ H(X)X,,) < nh(a),
t=1

and, therefore,
H(fi(X"), £(X))
> H(X7) = H(X")
Since also by (6.1)
H(f,(X™)) + H(f,(X")) < n(1 + 2a),
we conclude that
I(f1((X") A f(X™)) < n(2a + h(a))

and thus (6.4) by data processing.
We now apply Team Guessing Lemma 3 to the situation

Un=fl" =izn Wn=Xn
€=2a+ h(a) n =0,
and conclude that 2, (%) c #. The opposite implication

— H(X"X{) 2 n(1 — h(a)).
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follows by specialization of the El Gamal/Cover region
[6]. Note that an argument has to be added in the calcula-
tions for this performed in [7]. It is given in the Appendix.

VII. PROOF OfF THEOREM 2

Since in the proof of the converse part of Theorem 1 we
allowed small excess rate, and since now (6.3) obviously
holds, the same proof gives the converse of Theorem 2.
Thus only (3.1) remains to be proven. This will be done by
changing, with a small increase of rate, descriptions with a
small average distortion D, to descriptions with D, = 0.

Actually, we proceed in two steps via Lemmas 1 and 2
to follow, which say how in classical rate-distortion theory
coding functions can be modified in order to pass from an
average distortion to a maximal distortion and finally to a
zero distortion. The proof of Lemma 1 uses a special case
of the following covering lemma.

Covering Lemma [11, part I]: 1f for a hypergraph (¥, &)
min, . ,-deg(v) = d, then a covering ¥C & of ¥ exists
with

€| <|€)d iog|¥| + 1.

An important special case is Covering Lemma 2 of [11,
part II} which we called the link between channel and
source coding. It also led to the notion of codes produced
by permutations, etc.

Here we need another special case. We can always
choose the alphabet 2 as {0,1,--:,a — 1} and endow
Z with a group structure by adding numbers mod a. We
again denote this group by £ and let Z" stand for the
direct sum with » summands isomorphic to Z. Now, for
every AC Z" we can define the hypergraph %, =
(¥, &,), where ¥'=2" and &, = {4 + x" x" € Z"}.

Clearly, for every x"eqg"

={E€é:x"€E}|=14 (71)

and, therefore, the covering lemma implies the following.
Covering Lemma 3: ForeveryA C " uy,---,u, € Z"
exist with Uf_; A4 + u, = 2", if k > |A|‘1|3‘|"10g|3’|"
Henceforth, we assume £= 2. Wecall d: X% >R,
accurate if for all x, x’ € Z,

deg (x

d(x,x')=0e x=x/, (72)

and we call d translation invariant if for all x, x’, x” € &,
d(x + x",x"+ x") =d(x,x'). (7.3)

Examples of this include the Hamming distance, in par-
ticular in our case Z'= {0,1}, and the Lee distance.

A. From Average to Maximal Distortion

Lemma 1: Let X be uniform, that is, Pr(X = x)
=|Z|! for x €%, and let d be translation invariant.
Further, let y be a positive number. Suppose now that for
[ Z">F and g: F>Z"

121" X d(x"

, 8(f(x
x"eg”

Z"->F*DOF and g*:

™)) <Dn,  (14)

functions f*: F* > F" exist
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such that
1) frx=f

on A, = {x":d(x",g(f(x"))) < (1 +y)Dn}
2) g*r=g onf(4,)

3) d(x", g*(f*(x")))

1 1
4) rate(f*) <rate(f) + —|logn+ — +log‘2)|9f|].
n y

<(1+y)Dn,forall x"e X"

Proof: By Chebyshev’s inequality |Z|7"|Z" — A4,|1
+ y)D < D and, therefore,
14,1 = y(1 +v) 12" (7.5)
Now apply Covering Lemma 3 to A4,. Thus for
k=[(+1( +v)log|Z)n], (7:6)
Uy, -, U, € X" exist with
k
Ua, +u=2" (1.7)

i=1

Obviously, this can be achieved with u, = (0,---,0);
otherwise, just subtract u, from all u,. From the covering
we pass to a partition {A4;: 1 <i <k}, where 4, =4,
and for i > 1,

A= (A, +u)\ U4, (7.8)

i'<i

Now define f*: " > F* =FUFX {2,---,k} by
x"), "e A,

premy = |10 Lo
(F(x"=u)i),  x"ed, 2

(7.9)
and g*: F* > 4" by

2*(1) = {g(l), leF

g(m) +u, I=(m,i)eFx{i}, i=2.

(7.10)

Clearly, (1) and (2) are met. To verify (3), just observe
that by the translation invariance of d for x" € A4,

d(x", g*(f*(x")) = d(x", g(f(x" — u;)) + u;)
=d(x"—u;, g(f(x" —u;)),
and since x" — u, € 4,
d(x", g*(f*(x")) < (1 +y)Dn.
Finally, rate(f*) < rate(f) + (1/n)log k < rate(f) +
(1/n)logn + (1/y) + log® |Z|], and thus (4) follows.
B. From Small Maximal to Zero Distortion

Define d = min {d(x, %): (x, %) € ZX £ with d(x, %)
> 0}.
Lemma 2: Let d be accurate and 0 < D < d2~ ! For f:

X" ->F, g F— & with d(x,g(f(x")))<Dn for all
x"e X", fO X FO, G FXF°>Z" exist such
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that for F = (f, f0),
1) d(x",G(F(x"))) =0 forall x" € Z"
2) rate(f°) < h(Dd™') + Dd"'log(a — 1),
Proof: Clearly, for any X" € #" and any
x"e S(&") = {x™ g(f(x")) = 2"},

a=|%|.

Dn>d(x",3")= Y d(x,%)=|{t:x#%}d
X, # X%,
Therefore,
S(xm) c {xm {1 x, + %} < Dd™'n} (7.11)
and

|s(2") | <|[{x":|{t: x,# %,}| < Dd"'n}|
g( )(a—l )Dd ™ 'n

< exp [(h(Dd™) + Dd ! log(a — 1))n].

Since the sets S(X"), X" € & are disjoint, a function
fO & > FO exists whose restrictions to these sets are
injective, satisfying

rate (f°) < h(Dd™*) + Dd~"log(a — 1). (7.12)
Now, obviously, F = (f, f°): "> Fx F° is injective

and a G: FXF? > I" exists such that GF is the
identity map on Z'".

C. Proof of the Direct Part of Theorem 2

Because by Theorem 1 a pair (D;, D,) in 2 is achiev-
able with an arbitrarily small average distortion D, by
suitable descriptions f;, f, and reproductions g, g,, 8o,
because the Hamming distance is accurate and translation
invariant, and because our X is uniform, we can apply
Lemmas 1 and 2 to (£, g) = ((f1, f2), 8o)- Since D, can be
made arbitrarily small, the additional rates to be trans-
mitted to any one (or both) decoders can be kept arbi-
trarily small.
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APPENDIX I
CONTINUITY PROPERTIES
For a distortion measure d we set
d = max {d(x,%):(x, %) exx 4y,
d=min{d(x,%):(x,%) eTxE). (1)
Obviously, it suffices to consider only those D = (D,, D,, D)
which are in

?
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and only those R= (Rl, R,) which are in
= [0,log 11" 3

Generally, one is interested in characterizing Q, the set of
achievable quintuples, or its closure Q. For this, one first studies
certain cross sections of Q and Q. In particular, one is interested
in rate-distortion regions and distortion-rate regions, which are
the analoga to the classical rate-distortion function and distor-
tion-rate function. .

.@(T)) shall denote the set of rates R = (R, R;) € 2 achiev-
able for distortion D = (D,, D;, D,) € A, and 2(R) stands for
the set of distortions D= (Dy, Dy, D,) € A achievable for
rate R = (R, R,) € 2. Often it is more convenient to work with
their closures #(D) and .@(R) in the Euclidean topologies in 2
resp. A. Since these regions are also bounded, they are compact.

We investigate continuity properties of the maps

#: A - comp(Z),
and
2: 3 - comp(A). (5)

Here the appropriate topologies for our purposes are the
Euclidean topologies in the domains and the Hausdorff topolo-
gies in the ranges. Recall that the Hausdorff distance p between
compact sets in metric spaces is given by

p(A4, B) = max(

the set of compact subsets of Z (4)

max mm dist(a, b), max min dist(a, b))
€4 be €B acA
(6)

where dist denotes the Euclidean distance. We also consider the
projections of A

A,

A

1,2} (7)

endowed again with their Euclidean topologies and the restric-
tions %, of # to A,.

[‘_1;': ‘Z] l—l[d.-] for I c {0,
i€{0,1,2)\J iel

A. Continuity Properties of #

Some simple results for general sources and distortion mea-
sures are readily established.

Proposition 1: &, is continuous in int (A,), the interior of A,
for all I c {0,1,2}. In particular, % is continuous in int(A).
Thus we are left with the study of continuity properties on the
boundary of A resp. A,.

Henceforth, bd (A4) stands for the boundary of a set 4. Al-
ready in classical rate-distortion theory the rate-distortion func-
tion R(D) is generally discontinuous at D = 0. If we choose, for
instance, the Hamming distance for d, then for a source with
generic variable X and P,(x) > 0 for all x € & we have

lim R(D) = H(X)  R(0) =log|%|, (8)
D—0
and, therefore, Proposition 2 follows. B
Proposition 2: For the Hamming distortion measure, R is

continuous at D = 0 iff X is uniform.
This obvious fact extends to multiple descriptions.

Continuity Theorem. Let d, (i = 0,1,2) be accurate and trans-
lation invariant, and let X be uniform. Then # is continuous
everywhere in A, in particular, also on bd (A).

B. Continuity Properties of 2

_ Proposition 3: a) @ is continuous in int (£) and b) 2(0, -) and
2(-,0) are continuous in (0, log |Z]).
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However, @ is not continuous on bd(2) even under the
assumptions of Theorem 1, because és(i) already behaves rather
pathologically at 8 = 0 for R € bd(Z).

Example: Let X be binary and uniform. Since for R € & 2"%
and 2"R2 are integral (and thus realizable by a code) for all large
n only if R, = 0 or 1, we have

(&) = U @0(§)={(0,%),(%,0)}. 9)

Re((0,1), 1.0)}
Thus this set is not even convex because time sharing fails. On
the other hand, by Theorem 2
lim 2,(£+¢€) =
€-(0,0)
Therefore, the map 2, (and a fortiori also ) is discontinuous in
almost all points of &, and 2,(.¥) is not a reasonable notion of
a “zero-distortion region”.

C. On Zero-Distortion Problems

It seems that the region characterized in Theorem 2 is a
canonical notion for a zero-distortion region. What other notions
of zero-distortion regions without excess rate exist? Out of curios-
ity, we present two which are obtained by modifying the defini-
tion of achievability.

Notion 1—&,(#): Notice that for (R, R,) = (1/2,1/2) 2R
is integral and thus realizable by a code only for »n even and not
for all large n. This suggests a weaker concept of achievability, as
follows.

The quintuple (0, D,, D,, R,, R,) is occasionally achievable, if
a sequence of codes (f}", f3%, - -+ )i, exists with rate () < R,
(i=1,2) for j=1,2,---, and distortions not exceeding
(0, D,, D,). This leads to the definitions 6’0(72) =
{(D,, Dy):(0, Dy, DZ, R;, R,) occasionally achievable} and
& (L) =Ugecsbo(R).

‘Here again, it can happen that & (R) = @ for certain R € .S”
For example, R = (77,1 — 77 1) has this property because 2"’
is irrational for all n.

Notion 2—%,(£): We call (0, D,, D,) Fachievable, if for all
large n codes exist with distortions not exceeding (0, Dy, D),
and rate R(n) = (R,(n), R,(n)) € Z. This leads to the notion
that % (L) = {((Dy, D,): (0, D, D,) is Zachievable}. (Of
course, one could also define occasional Zachievability and get a
still different notion a priori).

Z,(Z) formalizes Witsenhausen’s concept of a zero-distortion
region. It is mentioned in [1] without proof that (%) is
smaller than . We expect that EN(L) = F, (). Can &)(L) or
F, (&) be characterized?

APPENDIX II
A MISSING STEP IN [7]

_ We complete here the calculations of [7] for the relation
9. (&)> P. For zero-one-valued RV’s U, V, and X with
I(UAV)=0 and H(X)=1, it has to be shown that for
D, = Pr(U # X), D, = Pr(V # X), the inequality

(D) +h(Dy)>1 0<D  Dy<172 (10)

holds. This is a consequence of the following simple proposition.
Proposition: For any discrete valued RV’s U, ¥, and W

H(W) - (UA V) < HW|U) + HWV).
Proof:
H(UV) < H(UVYW) = H(V|WU) + H(W|U) + H(U)
< H(Viw) + H(w\U) + H(U)
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and, therefore,

or

H(W) + H(UV) < H(W,V) + H(W,U)

H(W) — I(UA V) < HW|V) + HW|U).

Consequently, for W = X and independent U and V,

H(X) < H(X|U) + H(X|V). (11)

If, in addition, H(X) = 1 and U and V are zero-one-valued, then
also h(D,) > H(X|U) and h(D,) > H(X|V) (Fano), and (10)
follows.

iy
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3]
(4]
(5]
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