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Optimal Coding Strategies for Certain
Permuting Channels
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Abstract—We give optimal coding strategies for nonprobabilistic per-
muting (especially, “trapdcor”) channels and also for a permuting relay
channel. Our results open the door to a coding theory for nonprobabilistic
(or deterministic) channels with memory,

I. PERMUTING CHANNEL MODELS

ITHIN the broad class of finite-state channels [1]

Blackwell’s trapdoor channel (see [2], [3], and [6])
has attracted special interest. It has been generalized in [3]
to permuting channels. Whereas in [1] the capacity is
described as a “product space limit” for quite general
finite-state channels, no “single-letter characterization” for
the capacity is known, even for the seemingly simple
trapdoor channel. Many possible permuting mechanisms
exist which describe the behavior of certain channels. The
permuting channel was introduced by Benjamin [3] as a
model for typewriting, when most errors of the secretary
consist in exchanging letters in the text.

In this paper we consider nonprobabilistic permuting
channels. Especially as a model for the typing of natural
languages, this model provides the following advantages.
Several secretaries may type different parts of the text of a
book. Even if their individual error probabilities were
known, we might not know who types which part of the
book. The situation can be worse in so far as the error
probabilities are often not known at all or are even unde-
fined. Our model includes these possibilities.

The nonprobabilistic permuting channel, to which we
also refer as the P channel, can be described as follows.
Consider a box that contains 8 balls at time 7 = 0. We
assume that the balls are marked with numbers from
{1,2,---, a}. Thus the content or “state” of the box can

be described as a multiset S; = (54(1)," - -, so(@)), where
§o(i) is the number of balls marked with 7 and X5, 54(i)
2

At times ¢ = 1,2, - - - a new ball is thrown into the box
by a person or a device I, and one of the 8 + 1 balls now
in the box is pulled out by a person or a device ¢ and
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given to the decoder D. We consider the following two
communication situations.

Situation J: I wants to transmit information to D. @
takes arbitrary actions or (equivalently) tries to make the
communication as difficult as possible; that is, he acts like
a jammer. I does not know what is pulled out of the box.

Situation R: O wants to transmit information to D. I is
cooperative; that is, he helps to optimize the transmission
of information.

Further situations and coding problems are discussed in
Section IV. We refer to the P channel in situation J also as
a permuting jammer channel and in situation R as a
permuting relay channel. In short, we speak of the PJ
channel and the PR channel.

Motivation for the study of PJ channels was given -
earlier. PR channels address the question of how much
information can be transmitted by modifications of a text,
which are of the nature of secretarial mistakes (see [3]).
The amount of information achievable depends on the
structure of the text. It is zero for the text 111-..- 11,
Answers to the question may be of interest in analyzing
historical documents, which were either accidentally or
purposely altered during repeated copying.

One can conceive of much more general situations where
the text is replaced by any configuration (for instance,
pictures), and instead of the permutation rules any suitable
set of rules describes the possible modifications. These
investigations, of which our concrete results in Theorems 1
and 2 are just a beginning, are in the spirit of the abstract
coding theory of [4].

II. ON PJ CHANNELS WITH INITIAL STATE S,
KNOWN TO THE COMMUNICATORS

We are given %= {1,2,---, a} and S,
(8o(1),+ -, so(@)) with X2, 5,(i) = B. In the notions to
follow, their dependence on a, B, and S, will be omitted
where this is unambiguous:

x, € ¥ is the input and y, € & is the output at time ¢;

S, = (s,(1),--,s,(a)) (2.1)
is the state of the box after the zth output; (2.2)
Solx" ~»y”|S, indicates that y” can be produced
as an output sequence by a suitable strategy‘
of the jammer when x” € Z" is sent. (2.3)
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We also write Sp|x" ~» y" if we are not interested in §,,.
Next we have

Y(Solx") = F(x") = {y" € " Slx" = y"}. (24)
An (n, M) code for the PJ channel is a set
UC X", % = M, with the property
Y(u)N¥(u)=o, forallu,u’ € ¥ withu+ u’.
(2.5)
Finally,
M (n) = maximal M for which an (n, M) code exists

(2.6)
1
Cl(a’B’SO) = lim —logM(n)
n—oo N

is the capacity of the PJ channel with parameters a, 8 and
initial state S;. ()
Our first result is the following.

Proposition 1: For all a > 2, > 1, and §;:

Cr(a, B, ) = (B+1) 'loga.
Proof: For a sequence v' = (v, ++,0) €X' we de-
fine
W, ={t:v,=i1<t<l}, ie€Z. (28)

For n = (B + 1) we choose the set % of words of length
n which are obtained by an m-fold concatenation of words
of leng. B + 1 where each word uses one letter only, that
is,

U= {11--1,2---2,---,0a -+ a}”, (29)

and verify that % is an (n, a™) code. Otherwise, we have
for some distinct a”, a’" € % and x" € ",

Spla” ~» x" and Spla’” ~> x". (2.10)
Now let ¢ be the smallest integer such that
Ao+l =T F Al 1ypen+1- (2.11)
Then also for [ =¢- (B8 + 1),
Syla’ ~> x'|S, and Spla’’ ~ x'|S/. (2.12)

We derive a contradiction as follows. From (2.12) for all
ie®

la'|; + so(i) = |x']; + 5,(i) (2.13)
la"|; + so(i) = x| + s/ (). (2.14)

Furthermore, by definition of / and r
la'|, =la"|, + (B +1). (2.15)

Equations (2.13)~(2.15) for i = r imply that (8 + 1) =
s,(r) — s/(r), which contradicts 0 < s/(r), s/(r) <p.
Therefore, % is an (n, a™) code and

N({(B+1)m) = a™,
The result follows by definition (2.7).

foral m=1,2,---.

Remark: Inspection of the preceding arguments shows
that we have actually established somewhat more, namely,
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the following result. If for an arbitrary # C £ " the prop-
erty

() 1 fuly, — w12 B+ 1,
holds, then % is a code. Without any reference to coding
theory one can study in the cases a > 2 and 8> 1 the

for all distinct u, u’ € %

‘combinatorial problem of the maximum cardinality of a

% C &" satisfying (*). Next we prove that the bound in
Proposition 1 is optimal for a = 2.

Theorem 1: For a =2, B > 1, and all S,
CJ(Z’ B, So) = (B + 1)_1-

First we establish an auxiliary result in greater generality
than needed to prove

G(2,8,5) < (B+1)7"
Lemma 1: For a > 2, B > 1, and arbitrary S,, if
.So|a1
Solay -+

thenan x = x; ---

(2.16)
a,~c=c¢ - ¢, and
a,~c =c¢ - ¢,
x, exists with the properties
Solc ~ x and Sylc’ ~ x.
Proof (induction in n): For n = 1, Sy|i ~ k and Sy|i ~

I imply that for any j with so(j) =1, Splk ~j and
Soll ~ j. For n — 1 — n, the assumption for » implies

Sola™ > ¢S,y Splam Tt - ¢Sy (2.17)
and by induction hypothesis

Ix" L Syle s xS,

and
Sple’™ ™t~ x" N2 L. (2.18)
The assumption for n gives
so(i) + |a®, = |c"|; + s,(i), iex (2.19)
so(i) +la";, =\’ + si(i), i€Z (220)
and from (2.18) in analogous notation
so(i) + 1" Y, =x"" Y, + 0, 4(i), i€ex (2.21)
so(i) + e Y =x"7Y; + a,_1(i)s €%, (2.22)

Now (2.19) and (2.20) yield
5,(8) + "N el = 57(8) + e M + leqls

Using (2.21) and (2.22), we can eliminate ¢"~* and ¢’"~ .
Thus

5a() + [(15" 7 = 50(D) + a1 (D] + el
= 5;(i) + [(Ix" 7 = 50()) + oi-1 ()] + ey,
which yields forall i € &
5,(i) + 0,1 (i) + el = 57(0) + 0/ (i) + lefl;- (2.23)
We now show that (2.23) implies
(2, U {e)n(Z,u{a))#2. (224)
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This will complete the proof because we can choose for x,,

any element in the intersection.
More abstractly, we can view the situation as follows.
We are given two matrices:
(A,' j) l<i<a

1</<3

(B,‘_,')lsisa
1<j<3

with nonnegative integers as entries and the properties
a) YA,=2B, forall<i<a
J J

b) ZA” = ZAiZ = ZBil = ZBiZ =B
c) Z_An = ZBi3 =1

We have used (2.23) for a) and the properties for the
quantities in (2.23) for b) and c). From a)-c) we now
derive

d) Frowi:d,+A;>1 B,+B;=1.
Assume that d) does not hold. Then two distinct indices

iy and i, exist with 4,, =1 and B, ; = 1. Define now
I={i: B;,> 0}V {i,}. Necessarily, 4,,=0 for i€ I

and i, & I
Now
)y By> Y. By+ Y B;=B+1.
iel; 1=1,2,3 iel iel
However,

> Ay= Y A, <B,

i€l 1=1,2,3 iel
contradicting a). With the identifications
Ay = Sn(i) A, = °n~1(i) A =|c,l;
B, =sr:(i) B, = n/-l(i) B3 = ey,

we see that d) implies (2.24). This completes the proof of
Lemma 1.

It is convenient to give an interpretation of Lemma 1
and the maximal code length M(») in terms of a graph G,
which has vertex set 2" and the following adjacency
structure: u, ¥’ € " are adjacent iff a v €Z" exists
with Sglu ~ v and Sylu’ ~» v. Lemma 1 says that the sets
%Y (u), u € ", are cliques, i.e., complete subgraphs of G,.
Clearly, M(n) is the independence number of G,. Further-
more, clique (#), £ minimal number of cliques needed to
cover G, satisfies

clique (n) > M(n). (2.25)
Notice that the desired inequality (2.16) is an immediate

consequence of (2.25) and the following resuit.
Lemma 2: For a =2, 8 > 1, and S, arbitrary,

clique ((B + 1)¢) < 2"

Proof: By the foregoing explanations it suffices to find
a%,cZ" n=(B+ 1), such that

|%,|=2"and U ¥(u)=2".

ue¥,

(2.26)
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With #'= (11---1,22---2} € #B+!, define for ¢ =
1,2, -

@, &y
Now for any S, = (s¢(1),80(2)), L, so(i) = B, and any
word xf+l e B+
IXBHY + P, =B+ 1
imply that either
|xB*1), < 50(1)  or [xPTY], < 50(2).

In the first case, clearly, Sy[22 - -- 2 ~» x#*1 and in the
second case Sy|11 «+- 1 ~ xP*1 This settles the first step
of the induction beginning with ¢= 1. Since %, =
¥'*=1x ¥ and in the foregoing argument S, was arbitrary,
the induction step proceeds in the same way. Q.E.D.

and s,(1) + 5,(2) = B

III. OpTIMAL CODING STRATEGIES FOR
PR CHANNELS

Recall definition (2.4). Now we have to find an x" € &*
such that |%(S,|x")| is maximal! Our guiding idea is to use
a greedy approach, which means here the following step-
wise optimization.

The x"” maximizing |%(S,|x")| is guessed at by extend-
ing an x”~! maximizing |%(S,|x""1)|. This suggests that
periodic sequences x" might be optimal (see Lemma 5, to
follow). Lemmas 3 and 4 show that this is indeed the case.

We consider the case a > 2, 8 = 1. States can here be
described by a single function s,(n = 0,1,2, - --), taking
values in Z. We study the situation where the initial state
S, is known to all participants I, @, and D. Therefore, we
can assume without loss of generality that s, = 1 always.
For minor technical reasons we denote the maximal code-
length for block-length n by N(»n + 1). Thus

N(n+1)= xwgnl@(x")l, neN.,

(3.1)
Furthermore, we make the conventions
N1)=NO)=1 N(=n)=0,

A few more definitions are needed:

forn e N. (3.2)

Y(x") & (y e W(x"):5, =i}, €. (33)
Clearly,

Y(x") = ilng@’,-(x") (3.4)

P(X)YE (ECX: |E|=r) (3.5)

N(n+1,r)2 max max Y |%(x")] (3:6)

x"ex" I€P(X) [or

for 1 < r < a, and by convention N(n + 1,0) £ 0.
Lemma 3: We have

N(n+1,r) <N(n)+Nn—-1)+--- +N(n+1-7r)

forallneNandall r=1,2,---,a — 1.

Proof: First we consider thecase a —1>r>n+1
and show that here

N(n+1,r)=N(n)+--- +N(n—n). (3.7)
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For this, just notice that at most » + 1 < r of the #(x")
are nonempty and, therefore, that

N(n+1,r)=N(n+1).
Furthermore, obviously N(n + 1) < 2", and by choosing
an x" with distinct letters different from the initial state

sy = 1, we see that actually N(n + 1) = 2". For the same
reasons,

N(k)=21! for2<k<n+1

and since N(1) = N(0) = 1, (3.7) holds because
n—1
2n= Y 2/+1.

=0

From (3.7) and the fact that N(—1)+ --- +N(n + 1
—r)=0,wegetfora-1=>r>n+1

N(n+1,r)=N(n)+ -+ +N(-1)
+--+N(n+1-r) (38)

so that the desired inequality holds in this case.
We settle the remaining case 1 < # < min(a — 1, n + 1)
by induction in n. For n =1,

r=1: N(2,1) =1=N(1)
r=2: N(2,2) =2 = N(1) + N(0).

For n — 1 — n, consider (x”, I) with |I| = r and estimate
¥ ;1% (x™)| from above. We always have

Y (x" 1) xx,,

U (x")*k,
ke

For x, & I, by (3.9),
Y1 (x") = L1 (x" ) < X1 (x")

iel iel ie¥
=|¥(x""1)| < N(n).
For X, € 1, again by (3.9),
L1 (x") =1 U Z(x"71) k|

ierl ke

+ X

iel—{x,}
< N(n) + N(n,r - 1).
Therefore, in both cases
Y 1%(x")| < N(n) + N(n,r 1)

iel
and thus

N(n+1,r)<N(n) + N(n,r—1).
For r > 1 by induction hypothesis,

X, #1

@(x") = (39)

X, =i

1% (x" 1) x"|

(3.10)

N(n+1,r) < N(n)

+(N(n—=1)+--- +N(n+1-1r))
and for » = 1 also from (3.10),

N(n +1,1) < N(n) + N(n,0) = N(n).
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Lemma 4: N(n + 1) < N(n, a — 1) + N(n).
Proof- We have the following:
1% (x")| = X 1%(x")]
JjEX
= 2 1%(x")] + 1%, (x")]
.l*x’l
= X 1Z(x")+ (") (by(39)
J# X,

< N(n,a—1) + N(n).

Theorem 2:' Let a > 2 and B = 1. Then for block-length
n — 1 the maximal codelength N(n) for the PR channel
satisfies, for n = 1,2,- - -, the recursion

(F) N(n)=N(n-1)+N(n—-2)+ -+ +N(n-«a)
with the convention N(1) = N(0) =1 and N(-~m) =0
for m € N.

Proof: Notice that for n > 2 by Lemma 4,
N(n) <N(n-1,a—1)+ N(n—1).
This and Lemma 3 yield
N(n)<N(n-1)+N(n-2)+ -+ +N(n - a).
(3.11)
This inequality holds also for n = 1.
We prove equality in (3.11) by explicitly giving a coding
strategy leading to codelengths which satisfy the same

recurrence relation as claimed for N in (F). The result is
the following lemma.

Lemma 5: For s5=1let 50z2° =552 3---al 23---
be a periodic sequence. Then with f(0) = f(I)=1,
f(—m) =0, and f(n+ 1) £ |%(z")| we have

f(n+1)=f(n) + - +f(n—a),
forallm=1,2, -
Proof: Again by (3.9),
fn+1)=12(z")= X 1%(z")|+1%(z"7")]

J#*2,

= L 19z + /(n).

J#z,
Since z, , # z,, we have
g (") =9 (2")xz,
and thus
12, (z)1=1%,_ (")

(by (39) =| U (") | = 9(=") =S (n = 1).
Therefore,
fln+) = Y g+ f(n) +/(n—1), (312)

In [7] Kobayashi extended Theorem 2 to all B > 1.
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and repetition of this argument gives
%, _(z")1=1%, (2"} z, yxz,| = f(n—=2).
We thus have

fr+x)= X

1% (2")]
j*zn’zn—lyzn—z

+f(n) +f(n—1) + f(n—2). (3.13)
This procedure stops after a steps, when the z,,
z **, Z,_,4+1 have exhausted Z. Q.E.D.

Asymptotic solutions of (F) are well-known (cf. [5]). For
a = 2 we get the famous Fibonacci sequence.

Corollary: Cg(2,1) = log(1 + V5)/2 = 0.69.

n—1s"

IV. DIRECTIONS FOR FURTHER INVESTIGATIONS

We formulate here channel models, which are in the
spirit of those considered and, in particular, include multi-
user aspects. Several open problems are stated.

1) Theorems 1 and 2 give the capacities C,(a, B, S;) and
Cr(a, B, S;) for certain values of a and B. What are the
general solutions? For & = 2 and 8 = 2 we can show that
for the PR channel N(n + 2) > N(n+ 1) + 2N(n) —
N(n — 1), independent of the value of S,. We conjecture
that equality holds in this recursion. The capacity can then
be found from known solutions of linear recurrence rela-
tions.

2) For the PJ channel a more robust assumption than
the one used is that none of the participants knows S, and
that S, can vary arbitrarily from message to message. Here
the capacity of C;(a, B), say, is smaller than C,(a, 8, S;).
Notice that C,(2,1, Sy) (respectively, C;(2,1)) is the zero-
error capacity of the classical trapdoor channel for a
known (respectively, unknown) initial state. We guess, for
instance, that C,(2,1) = 1/3.

3) The P10 Channel: Suppose that both I and @ try to
send messages over the nonprobabilistic permuting chan-
nel to D. What is the region of achievable pairs of rates?
Theorem 2 gives one point on the boundary of this region
for the case of a known initial state and (a, B) as specified.
Other problems arise if the initial state is unknown to all
or some participants.

4) Life Channel: Consider the relay problem with the
difference that instead of letting 7 choose a fixed sequence
x", now a sequence of independent identically distributed
RV’s X" = (X,,- -, X,) feeds the channel. They provide
the environment (or the life conditions) in which @ tries to
transmit messages to D. The initial state may be chosen
by the same random process. What is the capacity
CL(as B ’ X )?
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5) Multiple-Access Channel (MAC): Specify positive in-
tegers a, B, and y and assume that there are now par-
ticipants I;,- - -, I, who put one ball each into the box at a
time instant. Those balls are mixed with the 8 balls in the
box, and then @ chooses any y balls and gives them to the
decoder D. (Notice that for this nonprobabilistic permut-
ing MAC the causality in the sense of [3] is preserved.)

The notions of PJ channels, PR channels, and PI¢®
channels extend to those of PJ MAC, PR MAC, and PIO
MAC. What are the capacity regions? A multitude of
further problems arises if, for instance, @ can send balls to
several decoders (interference channel). In short, channel
models familiar from multiuser information theory (such
as the broadcast channel, wire-tape channel, etc.) can all
be reformulated for nonprobabilistic permuting channels.

6) Feedback: All channels mentioned so far can also be
studied if feedback links are present.

7) Sources: One can even formulate models for permut-
ing multisources, where the correlation of sources is de-
fined by restrictions on the joint outputs.

V. CONCLUDING REMARKS

The theory of nonprobabilistic permuting multiuser
channels has the advantage of being purely combinatorial
in nature. Error probabilities do not arise. Because of the
memory in the channels, the combinatorial techniques (see
the proofs of the theorems) differ from those usually
encountered in information theory. A further study may
give new insight into, or at least new ideas about, the
harder unsolved problems in multiuser information theory.
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