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On Code Pairs with Specified Hamming
Distances

R. AHLSWEDE

1. Introduction, results and conjectures

Our results concern code pairs with specified constant Hamming distances, code
pairs and also codes with specified parity of the distances, and applications to
the two-way complexity of the Hamming distance function as well as the parity
function thereof. Finally we state some conjectures and discuss relations of this
work to the theory of multi-user source coding. The proofs of the theorems are
given in subsequent sections. 4

a.) Constant distance code pairs

We continue the investigations of [1] and [4]. The main results of those papers are
stated here as Theorems [1] , [4] for comparison with the new results of the present
paper. We need a few definitions. '

Xoa ={1,2,...,a} is a finite set of alphabet. The pair (A4, B), A,B C Xn is
called an (n, §)-system (or constant distance code pair with parameters n, §), if for
the Hamming distance function d

d(a,b) =6 foralla € A, b€ B. (Hs)

Let Sq(n,8) denote the set of those systems. We consider the functions
M, (n,6) = max{|A| - |B|: (A4, B) € S,(n,6)} (1.1)
M,(n) = max M,(n,6). (1.2)

0<6<n
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The discovery of [1] was

Theorem [1]. .
' 2" , iIf n is even
My (n) = {2"“1 , iIf n 1s odd.

By now several proofs exist (c.f. [2], [3], [4], [8]), which are simpler than the
two original proofs (by a 1-step and a 2-step induction on n) based on frequency
arguments. However, this seemingly unnecessary complicated approach is presently
the only one we know to yield the sharper results in Theorem 1 below.

In trying to characterize M,(n) for a > 3 the authors of [4] found a quite
general inequality.

(A, B), A, B C X2, is said to satisfy the 4-words property, if
(4-WP)  d(a,b) — d(a,b’) + d(d’, ') — d(a,b’) # 1,2 for all a,a’ € 4; b, b € B.

Theorem [4]. If (A4, B), A,B € X7, n €N, satisfies (4-WP), then

ol

o fora =2,3,4

41 1Bl <2, where @ = { s (2] fras s

and the bound is best (within this class).

The inequality is also best for the subclass of one-sided equidistant pairs

(A, B), i.e.,

(H) d(a,b) = d(a, ") for all a € A and all b, € B.

For two sided equidistant pairs (4, B), i.e.,

(H) . d(a,b) = § for some § and alla € A, b € B,

the inequality is best for @ > 4 and & = 2, is n is even. A detailed discussion and
the necessary examples can be found in [4].

Our new result are for specified distances, that is, for the functions M, (n, d).
They are expressed in term of the following two functions:

_ ' d, n—2d1
(1.3) Fy(n,6) = max (2!2) ( d, )

~ 3¢
1. = 13)¢( " d
(1.4) | Fy(n,6) = max (3 3)( p )2
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— —dy n—d — 1)42 > =21 ]2
Fa(n,ﬁ)—dllllg;xzéa ( 4, )(ail) for & > 4 where @ lZJ [2] (1.5)

Theorem 1.* Forne€lN,0<6§<n

(a) M3(n,6) = Fa(n, )

(8) - M,(n,d) = Fy(n,8) for a=4,5.

Conjecture 1.

(C) Ms(n,(S) = F3(n,6),

(d) , M, (n,d) = Fy(n, 5.) for a > 6.

Notice that for & > 6 the structure of the formula for M, (n, d), which we
firmly believe to be correct, is the same as in the case a = 4,5. A really startling
phenomenon is, that our proof for these cases, which uses again an averaging
argument to establish the existence of a configuration on which an (in this case
1-step) induction can be performed, breaks down for o > 6.

It ought to be mentioned that (a) can be derived from Theorem 4 in [6] with
the help of (a) in Lemma 2.1. This was missed in [6] and also the proof of this
Theorem 4 is unnecessarily complicated. The idea to combine two competing
extremal configurations (as specified below) was suggested by us earlier.

Configurations yielding M, (n,d) > F,(n,§)

We define now the basic extremal configurations from which pairs (4, B) ‘with
|A| - |B| = Fa(n,6) can be build. Let m be a positive integer. '

Ei(a,m)={(11...1),...,(ca...a)} c X (1.6)
Ex(a) ={(c(1)o(2)...0(a)) : 0 € S} C Xa, (1.7)
where §, are the permutations on .
Es(a,m,d) = {z™ € X' : d(z™,(11...1)) = d} (1.8)
Bs(a) ={1,2,...,8}, Es(a)={B+1,...,a}, where § = [%J (1.9)

* Presented at the 2. Internat. Workshop on Information Theory, Grinna, Sweden,

April 14-19, 1985 and the Tagung “Kombinatorik”, Oberwolfach, West Germany, January
19-25, 1986.
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A=E{(2,2)" * E;(1,n — 2d;) and

B =E,(2)% * E3(2,n — 2dy, d).
Notice that d(a,b) = d; +d; fora € A, b € B and that |A| = 2%, |B| = 2% ("'zd‘).
Thus for fixed n,§ an optimal choice of d; gives |A| - |B| = F3(n, §).

a = 3: Define
A=E;(3,3)+ Ei(1,n — 3£) and

B =E(3) * E3(3,n — 3¢,d).
Now we have d(a,b) =2+ dfora € A, b€ B and |A| = 3%, |B| = (3!)5("_(138)2‘1.
For fixed n,§ an optimal choice of d, £ with 2¢+ d = § gives |A|- |B| = F5(n,§).
a > 4: Define

(

A=E () + E;(1,n — d;) and
B =E4(a)d1 * E3(a, n— dl: dz).

Here we have again d(a,b) = d; +d; fora € A, b € B and |A| = ||, |B| =
= 1514 () (@ - )%,

An optimal choice of d; subject to the constraint d; + d; = § gives finally
lAl ’ |B| = Fa(nié)'

There are of course many configurations isomorphic to the basic configurations
and qptimal configurations are not even unique up to isomorphism.

Example 1. a =4, n=4, § = 3.

Here max a (4;‘11)3‘12 = 108 and for d2 = 0 (3)33 = 108. However, also for
dy+ds=3 2 )

d2 =1 4(3)32 = 108,
Notice also that for o > 4 the configurations E;(a, m) and E;(a,m,d) are

superseded by E4(a), resp. E4(). This must have consequences for the methods
of proof for the converses M, (n,d) < Fy(n,§).

p—

b.) On parity of the Hamming distance

It 1s convenient to introduce the function

0, 1if niseven
(1.10) ¥(n) = { 1, ifnisodd, nelN.
We consider the parity function IT: U2, X'? x X2 — {0, 1} defined by
(1.11) (=", y") = ¢(d(z",y")).

The pair (A4, B) A, B € X, is said to have i-parity, if

(IT) II(a,b) =7 forall a€ A, beB.
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For:=1,2 let Pi(n) denote the set of those i-parity pairs and define
Q(n) = max{|4] - |B|: (4, B) € Pi(n); i = 1,2} (1.12)
Qu(n) = max(@2(n), QL (n)). (1.13)
Estimates for these quantities are derived from the solution of a problem for

pairs with a more general parity property.

Analogously to the property (ff ) we introduce the property of one-sided equi-
parity for a pair (A, B) A,B € X,:

I(a,b) = II(a,d') for every a € A and all b,}' € B, (1)
and we denote the set of those pairs by ﬁa(n) and define :
Q(n) = max{|A|- |B|: (4,B) € B,(n)}. (1.14)

The following concept and result of some independent interest are needed for
the proof of the next Theorem.

For B € X3 and X c {1,2,...,n} we say that B has parity on X, if

the projection ProjxB on [] Xf contains only sequences with an odd or only
v , teX
sequences with an even number of ones.

Lemma. (Blockwise parity property)

Z 2X|B] < (2" + 1)2"~! for every B € X3

Xc{1,2...,n}
B has parity on X

The right-hand bound is assumed, for instance, if B equals the set of all
sequences with an even number of ones.

Next we state

Theorem 2. Forn €N

(a) @a(n) =a" for a>4
(6) - Qz(n) =2-4"""
(c) Qs(n) = (2" + 1)2"" L.

Another result of a similar kind is for i-parity pairs.

‘Theorem 3. FornelN

(a) Qaln) =a", if Y(n)=i (a>4;i=0,1)
(a') a"ml < Qu(n) <@, if Y(n)#i (a>4;1=0,1)
(a”) | | Qu(n) ="

(6) Q2(n) = Q3(n) = Qz(n) = 4"~
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" For a = 3 we have , ' i g B i
i ad7d Lo, /: [f 24 6-?; )
Conjecture 2. g /

(¢) QM= ) 1), f pr)=i=0 x
(¢! Qi) = (2" 1+ 1)2", if P(n)=i=1

() @) =2"12" i P(n) #i and n#S. |
Remarks {

The lower bound in (a') is not tight
a=4 n=2, 1=1

Here Q}(2) = M4(2,1) and by Theorem 1

2‘-d1'
M,(2,1) = 41 391 — ¢;
)= max 4t (P %)

however, 4 < 6 < 16.

An exceptional case in (¢")isforn =3, 1 =0

A = {111,222,333}, B = {all permutations of 123}.

Here |A|-|B| = 18 and it can be shown by inspection that this is the optimal value.
However, 22 - 22 = 16 < 18 = 22(22 + 1) = 20.

c.) On parity for one family

A

A well-known unsolved problem is to characterize equidistant codes of maximal {
length. A C X2 is equidistant code, if

(1.15) | d(a,a’) =6 forall a,a’' € A with a#d'.

One approach to the solution might be to study sets A ¢ X with

(1.16) d(a,a’) =y mod m forall a,a’ € A with a+# a'.

We consider h;,re the case m = 2 and say that A has i-parity (: = 0,1), if
(1.17) M(a,a') =1 for a,a’ € A with a #a'.

In case ¢ = 0 the condition a # a' can, of course, be dropped. For this reason the
cases 1 = 0 and 7 = 1 show quite different behaviour.
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We are now interested in the quantities
¢. (n) = max{|A|: AC X" hasi—parity}, ¢ =0,1. (1.18)

Theorem 4. For n € N

(a) | go(n) =2""1
() . @ (n) = al®? for a>4
() Q(n) = 2" +1— p(n).

Remarks on ¢l (n)
It seems to be harder to characterize g (n).

For a = 2 obviously ¢, (n) = 2 for all n € N, because A cannot contain two
sequences such that both contain an even (or odd) number of ones. A first question
is therefore whether g (n) — co (n — o) for a > 3.

B. Voigt answered this in the affirmative by providing the following construc-
tion.

Suppose that a = {a;,...,a,} C X!, v > 3 odd, has 1-parity, then A*, the
set of sequences obtained by concatenation from the row sequences in the following
scheme, has again 1-parity and |A*| = |A| + 2.

ay ay “e ay

ai az ... Gy—}

a; az ... Qaq_1 . .
In the right upper subscheme the cyclic
permutations of a; ...a, are listed.

ai Ay ... a;

an aj e ai

ag (225 e as

With v odd also 4 + 2 is odd and one can reiterate. -

For «y odd (resp., even) one can start with a;...a, =1...v and 7 = a (resp.,
¥ = a —1). The lengths of the sequences increase of course very rapidly. We have
only started to get exact results for ¢! (n). One general bound is readily obtained:

ga(n) < a-qz(n—2), n>3. (1.19)
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For this just notice that for 15 # ¢'5' with II(z5,15") = 0 necessarily A;; N Ai;: =@
and therefore

) A=|A11UAQQU...UAaal’{"AlgL‘JAzsU...L:JAQ1|+"'
+|A1aUA21U...UAa(a_l)ISa-q},(n——?).

The first values of g3, obtained by inspection, are
(1.20) i:(1) =3, (2)=3, ¢5(8)=4
and those values are assumed for

{1,2,3}, {11,12,13}, {111,112,233,333}.

By (1.19) ¢1(4) < 9 and actually equality holds for

{1} x {123,231,312} U {2} x {132,321,213} U {3} x {111,222,333}.

These examples may help to find the general pattern.

d.) Applications to two-way communication complexity

After Abelson had raised the issue of information transfer in distributed computa-
tions [11], Yao did his pioneering work on two-way communication complexity [5].
His success is mainly due to his limitation to functions f : ' xY — Zwith X, Y, 2
finite, which made a combinatorial treatment possible. A natural improvement of
Yao’s model [10] led to a very smooth form of Yao’s lower bound for the two-way
complexity C(f; 1 +» 2), which we now state without proof. SxT (S c X, T c Y)

is called f-monochromatic, if f is constant on S x T. A k-decomposition of f is a
partition S = {S; X T3,...,Sk X T} of X X Y into f-monochromatic rectangles. ¢
For the decomposition number

D(f) 2 min{k: there exists a k—decomposition of f}
Yao’s inequality (in the improved form of {10]) states

(1.21) C(f; 1< 2) > log, D(f).

We have not yet defined C(f; 1 « 2). It is actually a quantity which can
be understood without any reference to computing in the context of an abstract
multi-user source coding theory (see [12]).
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The specifica here are:
1.) No‘probabilistic assumption on the source (X,V, f)
2.) Correct decoding for all source outputs.

The communication model is as follows:

X outputs z and Y outputs y. A person Py observes z and another person Py
observes y. They can transmit messages to each other alternatively over a binary
channel with zero error probability. Their goal is to find out the value f(z,y) with
minimal worst case transmission time. This quantity is denoted by C(f; 1 « 2).

Similar as in classical source coding there is a multitude of other communica-
tion models one might consider. ‘ '

El Gamal and Pang [6] have investigated C(f; 1 < 2) for a particular function:
X =Y =1{01}* Z ={0,1,...,n}; f = d,, the Hamming distance function.
Their result is

Theorem. [6]. IC(dn; 1 2)—n—[logy(n+ 1)” <1 foralln €N,

There is a trivial general bound on C(f; 1 + 2). Suppose that Py transmits
. the output z of X' to Py, who in the knowledge of z and y calculates f(z,y) and
transmits this value to Py; then obviously [log, |X|] + [log, | Z]] bits suffice, i.e.,

C{f; 1+ 2) < [logg | X[ + [log, | 2]]. (1.22)
Thus, in particular, for ¥ = "
C(dn; 1 2) < [log, a] + [logy(n + 1)]. : | (1.23)

This together with a lower bound, which is readily obtained from Theorem 1(b)
and inequality (1.21), gives

Theorem 5. Fora = 4,5 and n €N

|Cldns 10 2) — [togy @] — loga(n+ 1)]| < 1.

This derivation follows the lines of [6], but is more direct and shorter. Re-
placement of (b) and (a) in Theorem 1 would give Theorem [6] by the analogous
- argument.

We consider next C(I1,; 1 « 2), where II,, is the restriction of Il on X x X2.

For this we use first a general, but naive, lower bound on D(f). Denoting

the size of the largest monochromatic rectangle of f by M (f), we clearly have
D(f) 2 |X|-1Y|- M(f)~" and thus by (1.21)

C(f; 1 2) 2 [log, | X]- Y} M(f)™"] (1.24)
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For f =11, M(Il,) = Qa(n) and thus by Theorem 3

2 fora =2

(1.25) Ol 122) 2 {2n for a =4

For a = 2 the bound is easily seen to be tight and for a # 2,4 it is too bad to be
stated.

The upper bound (1.22) gives
(1.26) [n-logyal+1>C(Ily; 1« 2)

and thus for o = 4 the lower and upper bound differ by 1 bit only. A shghtly
refined estimate of D(II,) gives

Theorem 6. Fora=4 andneN
C(Mp; 145 2) = 2n+ 1.

This lends credit to

Conjecture 8. Foralla >3 andnelN

C(Mp; 1> 2) = [n - logya] + 1.

In the same spirit we believe in

Conjecture 4. Foralla > 2 andn €N

C(dn; 12 2) = [n-logy(a)] + [logy(n + 1)]

e.) Discussion

We have mentioned already that the theory of communication complexity can be
viewed as a part of (abstract) multi-user source coding theory. There is also a con-
nection to already existing results ([9]), which have been obtained independently.
In order to understand these connections we begin with the notion of one-way com-
munication complexity C(f; 1 < 2), which is defined as the minimal number of
bits to be transmitted form Py to Py so that Py can compute f. For the parity
function II,, in case a > 3

(1.27) C(lln; 1 2) =[n-log, al,

because for any z", 2™ € X} there is a y» € XY™ with zII(z", y") # H(z'“,‘y") and
therefore every output of I has to be encoded individually.

e,
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The problems studied in [9] include the following. Suppose that (X, Y:)52,
is a discrete memoryless correlated source, where X™ = X;...X,, (resp.,, Y =
=Y;...Y,) takes values in X" (resp., Y "), and suppose that f : U (X" xY") —
— [N is to be computed with probability tending to 1 as n — oo correctly by Py,
who observes Y™. How much information has Py, who observes X™, to transmit
so that the necessary rate of transmission is H(X|Y), the conditional entropy.
Assuming that X' = ¥ and that the random variables X;, Y; are independent and
take all there values with equal probability the result (the so-called 1-Bit Theorem)
implies that

lim 1 C(Il,; 1 2) =logya for a> 3. ‘ (1.28)
n—oo n . ‘

A yet unsolved problem is concerned with the situation, where both Py and
Py can inform a third person, say Pj, about their source outputs. What are
the necessary rates of transmission to enable P; to compute f with probability
approaching 1 as n — c0? Conversely, this problem can be considered in a purely
combinatorial setting. An encoding in this case is a product of partitions of XY™
and Y", with monochromatic members. This in turn is a special case of what has
been called in [12] a strict coloring of orthogonal hypergraphs.

The interest in distributive computing gives a new impetus to sources coding
theory and promises a fruitful exchange of ideas and methods. There are numerous
open problems, many of them fall into the mathematical domain of combinatorial
extremal theory.

For example, what is D(f) for the function

nomy_ [1 i d(zy") 26
flz",y") = {0 if d(z",y") < 67

_ Finally, we ask “For which class of functions is Yao’s lower bound asymptoti-
cally tight?”

2. Proof of Theorem 1

Our first auxiliary result concerns a recursion formula for F,(n,§).

Lemma 2.1.

(@) Fa(n,8) = Fa(n—2,6—1) -max(d, "= for n>3, 1<6<n—1.
6(n — 6)
(b) Fa(n,é)=Fa(n—-1,5—1)-max('a_,M) for a>4;,n>2 1<§<n.

)
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Proof. We show first that the left side expreésions do not exceed the right side
expressions. This easier part of the result is actually not needed in the proof of
Theorem 1.

Choose d;,d; with d; + dy = 6§ such that

(2.1) Fz(n,; §) = 224 (” ;fd‘).

In case d; = 0 we have

Fo(n, §) = (;‘) _ (;:f)’&(—::—g < Filn=2,6- 1)%&‘%;))

and in case d; > 1 we have.

n—2-2(d, — 1)

Fy(n,6) = 2% . 22(d1-1) (
dy

) <4-F(n-2,6-1).
Similarly, if for « > 4

(2.2) Fa(m6) = ah (" ;2“") (o — 1)%,

then we have in case d; = 0

Fa(n, 6) = (Z) (a—1)° = i’;—}l(;‘:;) (@—1)°1 < ﬂgé;}lpa(n_l,5_1)

and in case d; > 1

Next we prove the reverse inequality for (b).
Let dy, d2, di +dz =6 — 1, be such that

(2.3) | Fin—1,6 —1) = a® (" B ;2" d‘) (@ —1)%,

~then @ - F,(n — 1,6 — 1) = 5d1+1("—(:2‘+1))(a — 1)42 < F,(n,6), because
(d1 + 1) + d2 = 6. Furthermore, since

n(a—1) .
)

Fafn—1,6—1)=an (" 174 2o — 1)%t,
dz §

P,
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it suffices to show that

n—1—d; 2<<n—d1). (2.4)
dy § “ \dy+1
Since ("’;;d‘)% = (Z;fi) < gﬂ_—'ﬁ—i - 2, it suffices to show that
n ) ) (2.5)

< = .
n—dl_dg-{"l 6—dy

But this is true, because forz >y >0, 22> 0 ﬁ%— < i

Finally we prove the reverse inequality in (a).

Suppose that

—- —1) = 2.6
Fz(n 2,5 1) 2 (5—1—(1)’ ( )
then 4 - Fp(n — 2,6 — 1) = 22(d+1)(':s'_2($ﬁ+11))) < F3(n,6) and we are left with the
case ( )
- n{n —
—_— 2.7
< 5(n =) (27)

By (2.6) Fo(n—2,6—1) ('Z;_zg))é::(if;)l) = 22‘1(':5__2:) < F3(n, §) and it remains

to be seen that under the condition (2.7)

(n—2d)(n-2d-1)
(6 —d)(n—d—2¥)

n(n—1)
§(n—6)

> (2.8)

This inequality is equivalent to
§(n— 6)[n® — 4nd + 4d% — n + 2d] > (n® — n)[(n — 6)6 — (n — §)d — 6d + d?,
which can be simpliﬁed to
§(n — 6)[—4nd + 4d® + 2d] > n(n — 1)[-nd + d?|.
Since n > d, this is equivalent to

n(n— 1) ‘> —4nd + 4d? + 2d _ 2

§(n—26) — —nd + d? =4 n—d’

and the truth of this inequality is ensured by (2.7). =

Next we state our results involving frequencies, which are obtained by an
averaging procedure. For this we adopt a notation, which will be used many times
in the paper.
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For aset C C X, elements 1,7 € X, and a set ] C X define

(29) C'f.={(c1,...,ct_1,ct+1,...,c,,): (cl,...,ct_'l,i,cHl,...,cn)
| | eClcXx™! (1<t<n, n>2)

(2.10) Ct(I)——.-{(cl,cz,.;.,cn)EC: acellcCcX™ (1Lt<n, n>2)

(2.11) C,-’; ={(C1y--yCam1sCadlyevesCtalyCtalseceyCn)®
(cl,...,c,_l,i,c,.H,...,ct_l,j,ct+1,...,cn)EC’}C
cX™? (1<st<n, s#t n>3).

(2.12) Ps(X4) 1is the family of subsets of X, of cardinality 8 = I_%J
Lemma 2.2. For (A, B) € S2(n,6) there exist s,t € {1,2,...,n} such that

n(n—1)

Proof. Set C**(¢v5) = {(c1,.--rcn) €C: ¢y =1,¢c¢ = j}. Then |C*(z7)| = [Cf}

and using the indicator function for sets, we can write

. . . 6 n—‘5
(14351 -+ 1SS B341+ 18341 + (14351 + 1455834+ 1838 > S0 14). .

D (AR + 455D (1B3s] + |Bsi)) + (14%5] + [A34) (1BSS] + | BSS)) =
s#£t _ » )
= > (Lay (st) (&™) + 1400 (o) (BB, (s1) (97) + 1B, (56) (W7))+

(z",y")G(A,B)
s#£t

+ (1A12(st) (z") + 1A21(st) (x"))(lBu(st)(y") + ing(st) (¥™))-

Since for z" € A, y* € B d(z",y") = 6§, the contribution of (4, B) is
|A| - |B] - 6 - (n — &) and since there are () pairs (s,t), there is one pair with a
contribution (g)_llAI “|B|-6-(n—26). ™

The other auxiliary result of this kind, used for the proof of Theorem 1(b), is
Lemma 2.3. For (A, B) € S,(n, §) there exists at € '{1, 2,...,n} with

% > IA‘(I)I-IB‘(IC)1+|A'(1°)|-|Bt(1)|2|A|.|B|.___:~;._,(a)_
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Here I¢ = X,\I.
Proof.

= 2. 2 an(Elsm ()
t=1 I€Ps(X,) z"€EAy"EB '
= Z Z ].Af ]-B‘(Ic)(yn)
T €A Y"EB t=1 I€Py(Xa)
a-—2 2
= Al-|B|-§- .
5([3 1) 41-1B] (ﬁ— 1)

By symmetry also

> A0 1B )1 = 141181 - (5 2).
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Proof of (a) in Theorem 1

The cases § = 0 and § = n, which are not covered by Lemma 1(a), are verified
directly. ’ ,
M;(n,0) = F3(n,0) =1, M;(n,n) = Fy(n,n)=1. (2.13)

For the other cases we proceed by induction on n.
Among the cases n = 1,2, § # 0, n, not settled in (2.13) there is only the case

My(2,1) = Fy(1,1) = 4. (2.14)

An optimal configuration here is (4, B) = ({00, 11}, {10,01}).

n— 2 — n: We use the sets A%, B?; with the property stated in Lemma 2.2.
Since no misunderstanding is possible we omit the indices s,t. Let us consider the
scheme
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A;p Az A2 Agg
By,
By, 1 I The convention here is that
I = (|A11] + |Az22]) (| Bia| + | B22]), ete.
B2
II7 v
B,

Lemma 2.2 says that

1 n(n—

(2.15) | |A|-|B|\526(n_ 1)(n+111).

Without loss of generality we can assume that

(2.16) II < III.

Case: Ajy N Ay #£9 ‘ » ,
Since d(ay1, bee) # d(azz, bee), necessarily By = By; = 0 and thus I = IT = 0.

If now By, N B;; # @, then by the same argument A;2 = A;; = @ and thus
also IV = 0. Therefore
|A|l-|B| = III < 4-M3(n—2,6§ —1) =4 F5(n—2,6 — 1) (by induction hypothesis)
< F3(n,6) (by Lemma 2.1(a)).

If on the other hand B;3 N By = @, then A,,, Bj2 U Bz;) € Sz(n— 2,6 — 1)
for € = 1,2 and therefore III < 2 - Ma(n — 2,6 ~ 1). Since IT = 0, we conclude
that IT+ I11 <2-Mz(n—2,6 —1) =2 Fz(n — 2,6 — 1) and that by (2.15)

|A|- |B| < %‘{%Fz(n —2,6 - 1).

Finally, by Lemma 2.1(a) |A| - |B| < Fz(n,$).

Case: AjjN Ay =0 ,
If now Bj2N Ba; # 9, then, as previously, Ajo = Ag; =@, thus [T =0, II+II] =
=IIT <2 -Mz(n—2,6—1) and |A|-|B| < F3(n,6). Finally, if B;,N By, = §, then

(All U A22, B12 U le) = Sz(n - 2,5 - 2)

and thus IIT < Ma(n—2,6 — 1. By (2.16) IT+ III < 2- My(n — 2,6 — 1) and the

proof can be completed as before. W

¢
¢

B
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Proof of (b) in Theorem 1: a = 4

Since Ps(Xa)| = (g), it follows from Lemma 2.3 that for some I € Ps(X,)

26

A ()] |BH(I°)] + |A*(1°)| - |B*(D)] 2 ma1)

"|A]-|B|. (2.17)

R (Rl

In case a = 4 we can assume that after relabelling I = {1,2}, I° = {3,4}. We
omit again the index ¢ and consider the scheme

A Ay | Az Ay
B,
I I
B,
B
111 v
B,

For o = 4 the inequality (2.17) can be written in the form

4] - |B| = 2—: (I41] + | 42])(1Bs| + | Bal) + (|4s| + |As})(|B1| + | Bz])] (2-18)

3n ‘
< — .
< 25(II+ IIT)

If now in the proof of Theorem 1(a) we perform the following substitutions:

11 — 1, 22 — 2, 12 — 3, 21 — 4, All — Al, Bll — Bl, etc.;

Fa(n,8) — Fyg(n,6), F2(n—2,6 —1) — Fa(n— 1,6 —1);

(2.15) — (2.18); and finally Lemma 2.1(a) — Lemma 2.1(b), then all arguments
literally apply. Here it is also essential that @ = 4 for all @ = 4. The case n = 1 is
done by inspection. W

How far does the approach go?

Before we prove Theorem 1 for o = 5, we shall investigate how far the averaging
procedure in Lemma 2.3 can go. This is no detour, because most of the argument is
needed for proving the positive result for « = 5 (in the case K = 1 below) anyhow.
It turns out that the procedure can be successful only if

l";lj‘[agl]ga—i. | (2.19)




26 , R. AHLSWEDE

Notice that this condition is satisfied for @ = 4 and for a = 5 with equality!
For a > 6 the approach has to fail even if we work with the average G = E + F,
where

(2.20) E= ) |A(D)]|-|B(I)]
I€Ps(Xa)
(2.21) E= ) |49 |B'(])]
IEPs(Xa)
and
1 ) a [«
(2.22) 5G’Z|A||B|m;(ﬁ)

Henceforth we drop again the index ¢t and we calculate G by using a familiar scheme
(see [4])-

Define the non-negative numbers K, S and T by

(2.23) | K=|{1<i<a: |Al-|Bi|>0}|

(224) S=[{1<i<a: |A|>0}-K, T=|{1<i<a: |B]|>0}-K.
After relabelling we have

(2.25) |Ai|-|B:| >0 for 1<i<K; |A]>0 for 1<7< K+ S and
|B;|>0 for 1<1<K and K+S<:<K+S+T.

" One readily verifies

Lemma 2.4. (Special case of Lemma 2 in [4]) Let n 2 2. If (A, B) € S4(n,6) and
fK+S, K+T2>2 thenfor1<i<K, 1<j<a, 1#7J

(a) AiNA;=0 and (b) B;NnB;=¢. =
We use the notation
(2.26) , X ={1,2,...,K}, Y={K+1,...,K+.S},
Z={K+S+1,...,K+S+T}
It is also clear that the replacement of A; for i € Y by C = U;ey A; and of B;

for 1 € Z by D = U,z B; leads again to a pair in S,(n,§). We can enlarge Y so
that K4+ S+ T = a.
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Evaluation of £

For I € Pg(X,) we define
U=InX, V=InY, W=INn2Z. (2.27)
We use also the abbreviations

a(J) =) _|Al, b(J)=D_|B;| for JeX. (2.28)

ieJ jeJ
With these conventions we can write

E= Y [a@)+ V][0l bED) + 1 2W] D]l (2:29)
vcX,vcYy,wcz
U1V [+1W|=p

Application of the distributive law leads to four sums, which we denote by

El, Eg, E3, and E4.

Ei= Y e\ = % (S ! T> a(U) - b(X\U)
ucx,vcYy,wcz UcX,e
U1V I+ W=p C ulress
a— K
= -a(U) - b(X\U
PO P RORE

1L|UI<min(8,K-1)

E, = > a(U) - |Z\W]| - |D|
’ vcxX,vcy,wcz ‘
[UI+|V|+IW|=5

- % () ()@=

vcx
U+ |VI+|W]=8

- 2 (W) 7o m

vcX
U1+IV [¥|w]=p

_ a— K -1 T s .
- > (ha) T )12
1<|U|<B
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E= Y x\)-Ivi-ic

UCX,VCY,WCZ
Ul+VI+|W|=8

> () () s

ucx
[UI+V|+|W|=5

> (ion)s () e

[U+IV|+|W|=8

- ¥ (ﬂa——lgl_—ll) B(X\U)- S - [C]

vcXx
[U|<min(B,K~1)

E,= > Vi-10]-12\W|-|D|
UCX,VCY,WcCZ ‘
[U+VI|+W|=8

= 2 (3) () 2wl o

vcx
|U|+VI+|W|=8

=X (wi—s) () 5 710010

Ucx
[UI+V[+|W|=8

a— K -2
= .S-T-\C|-|Dl.
2 (ﬂ-lUl—l) 11D

UcX
|UI<B-1

Now notice that in the extremal configuration E((1, n—d;) defined in Section 1
the case K = 1 arises. Does an induction based on Lemma 2.3 and Lemma 2.1(b)
work in this case?

We have here by the constraints imposed on U

a—2

E; =0, Ez:(ﬂ-l

) T |44 |D),

e P AN

and

(2.30) E:(Z:D(IAII-T-|D|+|Bll~S-|C|+S~|C’|-T-|D|).

o
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Notice the complete symmetry of the formula in A and B! Thus E = E and
%G = FE in this case.

By Lemma 2.1(b) and Lemma 2.3 (resp., 2.22) sufficient for the induction to
work would be

EsFa(n—1,5—1)-§-<;). (2.31)

By (2.30) this means that for
A=|A|-T-D+|By-S-|C|+S-|C|-T-|D|

we must have
A< Fo(n—1,6 —1)(a —1). (2:32)
We can write A in the form
A=S-|C|-(Bi]|+|D|) + (|A1| +|C]) - T - |D|
+(5—-1)-T-|C|-|D|-S-|C|-|D|
=5-|C|-(I1Bi| +ID]) + (|As] +|Cl) - T - |D| + (ST - $ - T) - |C| - | D.
Since C, (B, UD)), (A, UC, D), (C,D) € Sa(n—1,6 —1) an induction hypothesis

gives

A< [S+T+(ST=S -T)|Fa(n—1,6—1) < [Q;IJ - [a;I]-Fa(nfl,6—1).

We see that (2.32) holds if (2.19) holds.

Proof of (b) in Theorem 1: a =5

The induction beginning for n = 1 is done by inspection. For the induction step it
is sufficient by (2.31) to establish

E<Fs(n—1,6—1) 12. (2.33)
For this we go through the cases defined by the value of K. .

K = 5: Since S =T =0, we have E; = E; = E, = 0. Therefore,

E=E= ) (25_‘”5] I> .' a(U) - b(X\U).

Since (Usev Ai, Uiex\uBi) € Ss(n— 1,6 — 1) and by Lemma 2.4

| Uier Ail = a(U); | Uiex\v Bi| = b(X\U),
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we get
ES(Z) -Ms(n—1,6—1) < 10- Fs(n — 1,6 — 1)
(by induction hypothesis).

K =4: Fither S =1, T =0, 0or § =0, T = 1. By symmetry it suffices to
consider the first case. Then E; = E4 = 0, and

E=E +E= ) (2 —1|U|> -a(U) - 5(X\U)

Uc{1,2,3,4}
1<|U|<2 ,
- 0
+ ) (Z_IUl_l)b(X\U) 5-|c]
Uc{1,2,3,4}
vz
) |
< <2> Fs(n—1,6-1)+ > (a(U)+|C]) -b(X\U).
_ Uc{1,2,3,4}
Ul=1

By lemma 2.4 and the induction hypothesis the second summand is smaller than
4-Fs(n—1,6 — 1) and therefore £ < 10 F5(n — 1,6 — 1).

K =3:
2
Ei= ) (2 )-a(U)-B(X\U.)
- U]
Uc{1,2,3}
1<|Uf<2

= 2{|A1|(|Bz| + | Bs]) + [ 42](1B1| + | Bs|) + |As|(|B1] + | B2[)]
+ [(|41] + |420)| Bs| + (|A1] + | As)| Bz | + (| Az| + |4s])|Bil]
By = 3[|Ay| + |A2| + |4s]] - T - | D|
E3 =3[|B — 1|+ |Bz| + |Bs]] - S - |C]
E,=3.5-T-|C|-|D|.

S=2 T=0:

E = E{ + E3 = 3(|B;| + | Bz|)(] 45| + |C]) |
+3(|By| + | B3|} (|42] + |C[) + 3(| B2| + | Bs|)(|44] + |C)).

Since (B; U By, A3 U C) € Ss(n—1,6 — 1) etc., we get E <9 Fg(n— 16 — 1).
S’-‘—’l, T = 1: E=E1+E2+E3‘+E4

Ez = 3{|A1| + |4zl + |43]|D]  Es = 3[|B1| + |Bz| + | Bs|]|C| .E4 = 3|C|-|D|

and E, as previously.



CODE PAIRS WITH SPECIFIED HAMMING DISTANCES

We can assume that E; < F3, because otherwise we can exchange the roles
of A and B, Thus, by the previous case, £} + E; + E3 <9 - Fg(n — 1,6 — 1
since B4 <3 -Fg(n—1,6§ — 1), weget E <12 - Fy(n—1,6 — 1).

S = 0, T = 2: Since E; and E, are symmetric in A and B, replacement of

E3 by E; in the case S =2, T =0 gives again the bound E < 9-F5(n— 1,6 — 1).

K=2:
B= 3 (,20) o) 000) = Sl1A - 1Bl + 4l |5
v
Uc , 2}
] |=1
B= 3 (, ) a©)-T 1D =4+ |4} 7 D)
Uc{1,2}
1<|U|<2
E; = ( ) B(X\U)-S -|C|=3[|B—1]+|B:|]]- S -|C|
1~ [0
Uc 1, }
U]<1
Es= (1 |U|>S T.|C|-|D|=35-T-|C|-|D|.
Uc{1,2)
lUj<1
$=3 T=0

E=E1+E3:3IBII(|A2|+ |CI) .
+3|Ba|(| 41| + |C]) + 6(1By| + |B2])IC] < 12 Fs(n — 1,6 — 1).

S=2 T=1

Es E
E=E+E+Es+Ey= By +Ep+ 20 + B + 2

= 3(1B1| + D)) (42| + |C]) + 3(|Bz| + | D) (|44 | + ICI)
+3(|By| + |B2|)|C| <9 Fs(n—1,6 - 1).

The other cases are symmetrically the same.

K = 1: This case was done earlier, when we arrived at the condition (2.19).

K = 0: Here and only here the factor @ = 6 comes into play!

|A|-|B|=S -T-|C|-|D|<6-|C|-|D|<6-Fs(n—1,6—1). m



32 : R. AHLSWEDE

3. Proof of Theorem 2

Here and later we use the notation

(3.1) (a]t) = number of occurrences of  in the sequence a.

(3.2) én = {a€ X} : (a|l) is even} and
On ={a€ X3 : (all) is odd}.

Clearly,
(3.3) 60| = 0] = 2° 1.

Notice that the pairs (€, €,), (On, On) have O-parity and that the pairs (&g, Op),
(On, £n) have 1-parity.

Therefore, (€, U Oy, £,) satisfies (P) and by (3.3) we have
(3.4) Qa(n) > 2 4" 1.
Next notice that (£, U 0, U {33...3}, £,,) satisfies (P) and therefore

(3.5) Qs(n) > (2™ + 1) 2" L.

Also, the pair ({1,...,8}",{B+1,...,a}") satisfies (ﬁ) and therefore in particular
(36) Qa(n) >a™ for a > 4.

The issue is now to establish the reverse inequalities in (2.23)-(2.25). The proof |
by induction on n is based on two Lemmas. : '

Lemma 38.1. (Inheritance of (P))
If forn>2 (A,B) A,BcC X2, satisfies (P), then

(a) (Uier A;, B;) satisfies (P) for every 7, I C Xa.

(5) (A; Ujes B;) satisfies (P) for every J C Xo, J # Xo and {1} € Xa\J.

Proof.

(a) Since for any az € A n(at,c) is independent of ¢ € B, this is also the case
- for every bj € B. Thus n(a7,bj) and consequently m(a,b) are independent of
b€ B,. :
(b) Since m(at,bs) is constant for all b € B; and all j € J, and since «(3,5) = 1
for all y € J, + € J, we also have n(a,b) constant for all b € U,¢ s B;.
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Lemma 8.2. (Disjointness property)
Ifforn>2 (A,B), A,BC X! satisfies (P), thenfor1<i< K, 1<j<c

(a) B;NB; =9 for 1 #7
(b) AiNA;j=0 for v #3, if Be#® for some £+#1,j.
Proof.

(a) If b € B; N Bj, then by (P) for any a € A; n(ai,bi) = =(as,bs), which -
contradicts d(az, b1) = d(az,b5) — 1.

(b) If a € A;NA;, then by (P) for any b € B; and ¥’ € B, =(ai,bs) = = (az,b't) and
m(aj, bi) = w(aj, b'l), which contradicts = (¢,7) # = (3, £) and ={7,7) = = (7, ).

Theorem 2 will be derived from

Lemma 3.3. For every a > 2
(2) Qo(1) € o* = max(a,a).

For any (A,B), A,B C X» (n > 2), satisfying (P) with parameters K, S, T in
the basic scheme (2.23)-(2.25)

(43) |A|-|B|<a*-Qu(n—1), if T>1 or K>3
(443) |A|- |B| < [4 +max(0,a —~4)] - Qa{n—1), if T=0 and K <2.
Proof.

(i) If (A, B) satisﬁes'(ﬁ), then |B| > 2 implies in case n = 1 ANB = @. Therefore,
|A| - |B| € max(a, @). |

(ii) We subdivide the basic scheme as follows
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A-1 ... Ax Axsy Akt .. Axas
B,
II
Bk
Bk +s5+1
I
Bk +s5+2
III
Bk +s+T

|A||B| =TI+ II+III.

Since T > 1 or K > 3 Lemma 3.2(b) applies and yields

(3.7) AinA; =0 for 1<i<K, 1<j<a, i#]
Now
K+1 K K+S+T
I= ZIA (Z |B;| + IBJ'I)
1=1 =1 J =K+58+41
K+1 K K+S+T
=] U AI(Z Bil+ > 1Bjl) (by (3.7))
i=1 j=K+S5+1

< (K + T)Qa(n - 1)
(by Lemma 3.1(a) and the definition ofQq(n — 1)),

K+S

IT= 3" |Ai-[(UX,B:) UBxisi1| (by Lemma 3.2(a))
i=K+2 '
<(S—1)Q4(n~1) (by Lemma 3.1(b))
K+S K+8+T

HI= )" |4l Y |B|<(S—1)(T-1)a(n-1).

i=K+2 I=K+5+2
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Since (K +T)+ (S —1)+ (S —1)(T — 1) = K + ST, and since

(K+8)T<a forT>1
<
K+_ST_{KSa for T =0,
we conclude that
/4] |B] < max(a,@)@a(n - 1) (3.8)

(iii) In case T =0, K <1 obviously

4]+ 1B] =B ) |4 < a- Galn—1) (3-9)

and the desired inequality follows.
In case T =0, K =2 we have by Lemma 3.2(b)

A;MA; =9 for 1=1,2 and 5> 2 (3.10)
-and by Lemma 3.2(a)
B NB, =4. (3.11)
Also, by Lemma 3.1(a)
|4 UA;]-|Bl < Qaln—1) for i=1,2; £=1,2; 752  (3.12)
and therefore
A(HAx] + [ 4a) + (IA2] + [A4])] - (IB1] + |Ba]) < 4 Ga(n — 1). (3.13)

Furthermore, by (3.11) and Lemma 3.1(b)
|Ai] - |ByUB;| < Qu(n—1) for i>2
and therefore

D14l (1B1] +1Bs]) < max(0, o - 4) - Ga(n — 1). (3.14)

124

Finally, (3.13) and (3.14) imply (iii). m

) Proof of Theorem 2 (a)

. For a > 4 we have o* = @ and therefore Lemma 3.3 implies inductively Q, (n) <
Q/ < a@", which remained to be shown. ®
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Proof of Theorem 2 (b)

For o = 2 we have o* = & = 2 and thus Q2(1) < 2 by (i) and then inductively
Qa(n) <2471 by (ii), (iii) of Lemma 3.3.
Proof of Theorem 2 (c)

Step 1: For @« = 3 we have o* = o = 3. Using the function
(3.15) F(n)=(2"+1)-2""! for n>1

we see that by Lemma 3.3(i) Qs(1) F(1) and the case n = 1 is settled.

<3=
Furthermore, in case T'=> 1 or K > 3 by (ii) and in case T'=0 and K < 1 |
by (3.9) we have '

(3.16) |A]-|B| <3-Qs(n—1).
Since foi' all n > 1 it can be shown that
(3.17) 3-F(n—-1) < F(n),

it would follow inductively that Q3(n) < F(n) unless we have the condition

(K-T) For allt =1,2,...,n in the basic scheme the case T = 0,; K = 2
occurs.

Notice that in this case by (3.10) and (3.11) the conditions

(A) AiNAi=0 for 1=1,2 and 7=3 for t=1,2,...,n

(B) - BINBL=9 for t=1,2,...,n

-
also hold .automatically. Furthermore, we can replace A by A* by defining for a
fixed t A;* = A{UA} for< = 1,2 and A% = AY. These operations can only increase
cardinalities and after finitely many iterations we achieve the condition

(C) Al = AL for t=1,2...n,

if we use the letter A again. Of course, we can assume that this new A and the
old B satisfy again (K-T), because otherwise we are in cases for which the result
is inductively already established.

Notice that (K-T) implies B C {1, 2}".
We speak of critical case, if for A, B) € ﬁ3(n)

(D) B c {1,2}" and A satisfies (C).
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Step 2: An equivalent formulation for the critical case
For Y c {1,2,...,n} we define

YA={a=(a1,...,an) €EA: a; =3 iff i€Y}.

Notice that in the critical case by (C) YA contains all sequences in XJ* with a 3
exactly in the positions Y. Obviously,

YANY'A=6 for Y#Y' and |Y4| =2~ if YA #¢.

Now since B C {1,2}" and (4, B) € P3(n) we must have the condition

(E) For all Y with YA # @ B has parity on X = {1,2,...,n}\Y (as
defined in Section 1)

and, conversely, (E) implies (4, B) € Ps(n).

Finally, for a given B C {1,2}" the optimal A is obtained when we choose
YA # 0, if B has parity on X. Then

A= > 2,

XC{I,Z,...,n}
B has parity on X

and the critical case is settled by the-Eemmia. —— —_

Step 8: Proof of the Lemma /

First we write the sum

|A| = > 21Xl .| B|

v Xc{1,2,...,n}
B has parity on X

in a more symmetric form. Both X = {1,2}" and P({1,...,n}), the family of

subsets of {1,2,...,n}, are canonically isomorphic to {0,1}". In the first case
replace “2” by “0” and in the second case map X on z = (zy,. .+ &p), where for
t=1,2,...,n

z: =1 exactly if te X. (3.18)

The property “B has parity on X” then reads

th X =1 mod 2 for some 2 € {0,1} and all (3.19)
i=1 :
b= (b1,...,bs) € B C {0,1}".

This suggests to endow {0, 1}™ with the vector space structure over GF(2). Let us
call this vector space [F;. The Hamming weight of a vector z = (z15...,2,) €FS is
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denoted by w(z). The componentwise sum and product of two vectors are denoted
by z + y and zy.

(3.20) The inner product z %y of z and y is Zn: z:y;, where the addition is taken
in GF(2). =
Defining now for z =0, 1
(3.21) | Ci={zelF;: b*z=1 forall be B},
it follows from (3.19) that |

(3.22) |A] = > Xl B|= > 2By

Xc{1,2,...,n} x€coUC,
B has parity on X

The key observation now is that C = Cy = C) is a linear subspace. This is a
“consequence of (3.21) and the simple, but useful identity

(3.23) w(z + y) = w(z) + w(y) — 2 - w(zy).

Furthermore, Cj is a linear subspace, C; is an affine subspace of C, and
CO N C’l - ﬂ

Also, by (3.21) we have that
(3.24) B c C§,

where Cg- denotes the orthogonal dual subspace of Cy. Since (Ci)* = Cp, we can
replace B by the larger Cy and get instead of (3.21)

(3.25) C,-='{a;E[F’2‘: cxz=1 forall ce€Cy} for 1 =0,1.
In order to prove the inequality it suffices therefore to prove
(3.26) > 2#@cE |+ > 2¢@|ot| < (27 +1)2n L,

cx€Cy ceCy
If Co has dimension d, then Cy has dimension n — d. Thus also |Co| = |Cy] =
=24, |Cg|=2""9, and (3.26) is equivalent to
(3.27) 2 > 2wl <on g,

IC’ c€C

But this is true, because we can partition C into 2 element subsets so that the
O-vector and a vector with maximal weight are paired and arbitrarily otherwise.
Notice that each pair contributes less than 2™ +1 to the sum doccc 2w(¢) Therefore
the average contribution does not exceed 2™ + 1. ‘
Equality in (3.27) occurs only if |[C| = 2 and C contains the vector with all
components equal to 1. Inspection of the cases in the proof of Lemma 3.3 shows thus

also that the optimal configuration described in (3.3) is unique up to relabelling.
]
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4. Proof of Theorem 3

(a) For ¢(n) =1 the pair ({1,...,8}", {f+1,...,a}") isin P (n) and therefore
'Q%(n) > @". The reverse inequality follows from Theorem 2(a) and the
inequality Q% (n) < Qu(n).

(a”) This is a consequence of (a) and (a').

(b) This result follows immediately from the fact that for a,a’ € &,, b,b' € 0,

II(a,a') = MI(b,a') =0 and II(a, b) = 1.

(a') The pair ({1,...,8}* 1x{1}, {B+1,...,a}""1x{1}) is in Py (n) for $(n) # 1
and therefore @}, (n) > @"!. Also, by Theorem 3(b) Q% (n) < @". However,
we have to prove strict inequality. This is used in the proof of Theorem 6.

- Stepl: Since (II;) implies (H) we can follow the proof of Theorem 3. We shall
assume for (A, B) € Pi(n) (a > 4; 4(n) #1) that

|4]-|B|=a" = Gu(n) (@)

and shall arrive at a contradiction.

Case T > 1 or K > 3 Here |A| - [B] = @Qq(n — 1) only if K + ST = @ for
T>1lor K=oafor T=0in case a = a = 4.

In the first case necessarily K = 0. We summarize our findings in

Either K =0 or K =a and o = 4. (4.2)

Case T =0, K <1 Inspection of (3.9) shows that |A|-[B| = |By|- 3, |Ai|

can get a better upper bound in our case.

Notice that (By, ;) € P} (n — 1) with $(n — 1) # ¢’ and therefore
41 1BI< Qu(n 1)+ (a=1)- Q4 —1), ¥'#9(n-1),  (43)

~ Even in case a = 4 this situation cannot arise if we assume inductively that
Q (n—-1) < Qa( — 1), the induction beginning being obviously satisfied.

Case T =0, K =2 Since a <@ for a > 4, here only the case a =4 is to be
considered as can be seen from (3.13) and (3.14).

Here again we can improve the bound in (3.13) because (A2 U A4,Bl)
€ P& (n — 1). Thus only the situation described in (4.2) is to be considered.

Step 2: Now in case K = 0 we have (4;, B;) € P; (n—1) again and inductively

Qu(r) @ Q4(n~1) <&Qa(n—1) = Gu(n).
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Thus the proof is complete for a > 5.
Step 3: We are left with K = 4, o = 4. Here

4 4
4] 1Bl=T=|J 4| - 2 1Bi =4-Gu(n - 1)
=1 j=1

only if
(4.4) |B;| is independent of j.
By the symmetry which we have now also
" (4.5) |A4;| is inaependent of 1.
Furthermore, again by symmetry |
(4.6) ,_ B;NB; =8 for j# 3"
But then we can define A*, B* such that A] = A3 = A;UA,;, B3 = By = B;UBj.
(A*, B*) is also in P (n) and by (4.4), (4.5)
(4.7) |4°]-|B*| = |4 B

But now we are in the case K = 0 discussed already in Step 2 and the proof
is complete.

5. Proof of Theorem 4

For all o > 2 the cases n = 1,2 are done by inspection.
(a) A c {1,2}" has O-parity exactly if
(5.1) (a|1) = ‘(a'll) mod 2 for a,a’ € A.
Clearly, ,
En={a€e{1,2}": (a|l) iseven}
and
On = {a€{1,2}": (a|l) is odd}
have O—-parity and

(5.2) 1€n] = |On] =271,

Thus we have not only shown that ¢3(n) = 2”71, but also that |&,| and |0,|
are the only optimal configurations.

(b) The examples A = {11,22,...,aa}* for n = 2k and A = {11,22,..,,
aa}*1 x {1} for n = 2k — 1 show that ¢%(n) > al®/2l,

We show now first for o = 4 and then for all & > 4 the reverse inequality. The
form of these examples suggests a 2-step induction. Choose any two components
and define A.5 as previously in Section 2. A first simple observation is stated as
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Lemma 5.1. For A C X?, n >3, with O-parity
Ay NAy =0, if (z7,'7') = 1.

Proof. For a € A;; N Ay and TI(27,4'5") = 1 we have also II(ai7,ai's’) = 1. This
contradicts the O—parity of A. ‘

We distinguish two cases.
Case I: There are 13,1'7' with II(z5,7'5') =), (',j) # (i, 5') and A;;N A # 0.

After relabelling we can assume that 15 = 11, '3/ = 22.

Lemma 5.2. For A ¢ X2, n > 3, with O-parity, A;; N A22 # @ implies
Ay, Agl, Az&, Aso = @ for £, b€ {3 4,. }

Proof. This follows from the fact that

(11, 26) = TI(11,62) # 11(22,26) = I1(22,62) and
IT(11,2¢) = I1(11, €2) # I1(22, 2¢) = 11(22, €2) |

fore,6 € {3,4,...,a}. H

a=4
By Lemma 5.2 we are left with the sets Ally Azg, A12, A21, A33,A44, A34, A43
Next we can assume that An = Ajp = C, say, because for ¢, 6 € {11,22, 12,21, 33,
44,34, 43}

I1(11, e6) = 11(22, €6).

Similarly,  we can assume that A;, = A21 = D, Azz = Ayy = E, and
A3y = Ay3=F.

The properties of these sets are listed in

Lemma 5.3.

(0) CnD=4, ENnF=¢
(1) CNE=8 or D=F=9
(2) CNF=9 or E=D=49
(3) DNE=@§ or C=F=9
(4) DNF=9 or C=E=4§

Proof. (0) follows from Lemma 5.1.

By symmetry it suffices to prove (1). Notice that in case CNE # @ and F # ¢
fora € CNE and f € F M(ay1, fa4) # (ass, f34), which contradicts the O—parity
of A. Thus CNE # @ implies F = @ and similarly D =¢ =

. By relabelling we can assume now that

ICl +|E| 2 |C| + |F|, |D| +|E|, |D| + |F|. (5-3)
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Subcase 1: CNE = G

Here we can build
(5.4) A*=Ui_ (CUE)..

This set has O-parity and applying the induction hypothesis to C U E we get
|A*| < ¢2(n — 2). The same bound holds also for |A|, because by (5.3)

4| =4-(IC| + |El) > 2- (IC| + |D| + |E| + |F|) = |4].

Subcase 2: CNE #0 :
By Lemma 5.3(1) F = D = § and we have |[A|=2-|C|+2-|E| <4-¢5(n—2) by
the induction hypothesis for C and for E. .

Case II: A;; N Ay = @ for all 27 #1'5'.

Notice that by Lemma 5.1 this is the only case left, if we are not in Case I.
We can write

A=]A11U A22 U A33 U Agq| + |A12 U Az3 U Azq U Ay
+ |A13 U A24 U Ajq U A42| + |A14 U A21 U Asp U A43l.
Each summand is the cardinality of a O-parity set in X/ ~2? and by induction
hypothesis again |4| < 4-¢J(n — 2). ' ‘
a>4
Case II: A;; N Apjr = @ for all 15 # 4’5",
The same idea as before works.
|A] = |A11 U A3 U ... U Aga|
4+ |A12U A3 UL U Ay

+]|A12U A U... UAa(é—l)' < a-gg(n—2)

Case I: Without loss of generality, A;; N Agp # 0.
Here by Lemma 5.2 only the sets

A1, Azz; A1, Ajo; Aes (6,6 € {3,4,...,a})

are possible non-empty. _
Subcase 1: A;; N Airjr =@ for all ¢,7,7', 7' € {3,4,...,a} with 17 # 4’5",
By Lemma 5.2 we are left with '

C = {4y, Az, Ai2,A21} and D={As: ¢é€ {3,4,...,a}}.
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We can also assume that Ay = Agz, A2 = >A21. Suppose now that for some
XeCandY €D XNY # 0. Without loss of generality, X = Ay; and Y = Azs.
Then_by the parity property necessarily A15 = Az; = @ and therefore

ST X[ <22 (n - 2). (5.5)

XecC

Z |Y' - ‘A33 U A44 U UAaal
YeD

Furthermore,

+|A340A45U...0Aa3|

+|A3aUA43U...UAa(a_1)|
< (a=12) gq(n—2)
and thus [A] <2-¢%(n—2)+ (e —2)-¢(n—2)..
In case XNY =@ forall X € C, Y € D consider the scheme

| A1z U (Ass U Ay U . U Asa)|
+ |A12 U (A34 U Ays U cen U Aa3)|
+ |A35UA46U...U Aa4|
+ |Asq UAi U.. U Aga—1)] <(@—2)-q)(n—2).

Since |Azz| + |A21] < 2-¢%(n — 2), we get again

|A| < a-g2(n—2).

Subcase 2: There are 1,7,7',5' € {3,4,...,a} such that 15 # ¢'5', (i5,4's') =
=0, and A;; N Aprjr # @.

Without loss of generality 17 = 33, 1’5’ = 44. Again, by Lemma 5.2 we are
left with

A= A(11, Ay, A2, A2y, Ass, Aga, Asg, Ags}  and
B={A:s: e,6€{56,...,a}}.

Now we treat A exactly as earlier in case a = 4, keeping in mind that now
g3 (n — 2) is to be replaced by ¢%(n — 2) in the estimates. Thus

ST IX|<4- g —2). (5.6)

XeA
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Finally, we treat 8 inductively by the same procedure as we treated {A.s :
&,6 € {1,...,a}} until now and get >, 5 |Y| < (@ —4) - g0 (n — 2). Therefore

here also :
| |A]= > 1X|+ D Y| <a-gl(n—2).
XeA YeB

a=3

This is the most intricate case. For n odd A = £, has O-parity and |A| = 2"~ L.
For n even the set A = &,U{33...3} has also O—parity and |A| = 2"~ 1+1. We have
to show that these numbers cannot be exceeded. Here again the 2-step induction
1s easy in

Case II: A;; N Ayjo = @ for all 25 # 1’5",
IAI = IA11 U Azp U A33| + |A12 U Ags U A31l
+ |A13 U A21 U A32| S 3- qg(n - 2)

Obviously 3-2"73 < 277! and also 3 - (2”'3 + 1) <271 41 forn> 3.

Case I: Without loss of generality A;; N A2; # 0 and by Lemma 5.2 only the
sets C = Ay} = Azs, D = Aj2 = A3y, E = Aj3 are possibly non-empty. As in
the case a = 4 we obtain

(5.7) | |A| < 4-¢3(n—2).

This settles the case n odd. For n even a more detailed discussions is needed.
Lemma 5.3 implies

(5.8) CNnD=9, CNE=% or D=9, DNE=¢ or C=4.

If C=0orD=48,then |[A| < 3-¢J(n— 1) and we are done. Otherwise C, D, and

E are disjoint. Since C U E and D U E have O-parity, we have

i AR Ao e i i s 41

(5.9) ICUE| |DUE|< ¢(n—2).

We distinguish two cases.
|E| > 1
Since |C|+|E|, |D|+|E| <2 3+1,wehave |C|, |D| < 2" 3+1—|E|. Therefore

|A|=2-|C|+2-|D|+|E|<2"?+2-2-|E|+2""2+2—-2|E|+|E|
=2""14+4-3.|E|<2" 41
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|E|=0

Here we look at other components as well. Partition the set of components
{1,2,...,n} into the sets {2,1}, {3,4}, {5,6},...,{n—1,n}.

Either for some pair of components a case |E| > 1 arises and are done by the
previous arguments or it never does. But then after proper relabelling the letter
3 occurs in none of the schemes corresponding to those pairs of components. This
means that no word in A has a 3 as letter.

Hence
Ac {1,2}" and |4| < ¢d(n) =2""1.

Remark. Notice that for = 3, n = 4 there are two essentially different O-parity
sets: {11,22,33}? and &4 U {3333}.

6. Proof of Theorems 5,6

In order to indicate the dependence on a we write C, (dn; 1« 2), D,(d,) for

C(dn; 1+ 2), D(d,).

We give now a lower bound on D,(d,), which together with (1.21) and (1.23)
implies Theorem 5.

For this we define for0<é < n

Na(n,6) = |{(n"y") € X2 X X2 dn(a”,y") =6} (6.1)
and observe that | .‘
| No(n,6) = o™ (Z) (- 1)°. - (6.2)
Now clearly )
Dg(dn) > 6:20 A]‘;—‘;((—';—% | (6.3)

By Theorem 1 and Lemma 2.1(b) we have

Ma(n, 8) = Fu(n,6) = ('5‘) (a—1)°, if &< 3(—“5'—1) (6.4)
This, (6.3), and (6,2) imply |
Da(dn) > A%(("n—% = (6* +1)a™ for 6 = [ﬁ("‘—a”—llj (6.5)

6=0
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Therefore log Do(dn) > log(é* + 1)a™, and consequently log Dy(dn) >
> n-loga + logn + log ﬂ.zi—l

Thus by (1.21)

: -1
(6.6) Culdn; 1 2) > [n -log a + log n + log 2 ]

Now for e =4 n-log4=2n= [n-log4] and |[logn+log 3] —[log(n+ 1)]] <
< 1, because log2 > —1 and [log(n + 1)] > [logn] only if n = 2¥, and then
[log(n +1)] =k +1, [logn+log3] = k. Thus by (1.23) and (6.6) the Theorem
follows in case o = 4.

For a = 5 a slightly more technical argument gives again the 1 bit bound. A
2 bit bound obviously holds.

The proof of Theorem 6 consists of a modest refinement of the lower bound
on D4(I1,), which gave (1.25). It just so happens that for & = 4 this bound is
optimal. Define now for : = 0,1 ‘

(6.7) R(n) = [{(a", ") € XD x X2 e ",y =4}

Clearly R} (n) > 1 for i = 0,1. Since R} (n) + RL(N) = o, we get for a = 4 by
(a), (a') in Theorem 3

D4(Hn) 2

Therefore Cy(I1,,,1 « 2) > [log Dy4(I1,,)] > 2n + 1.
Finally, (1.26) shows tightness of this bound. ®
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