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CONTRIBUTIONS TO A THEORY OF ORDERING
FOR SEQUENCE SPACES'
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(Bielefeld)

(Received March 4, 1988)

We continue the investigations of [ 1] and obtain first results concerning optimal orderings
of sequences in two simple, but basic, cases: '

a non-probabilistic model with active memory and
a probabilistic model with unlimited passive memory.

1. Introduction

In [1] we have presented ideas about a theory of ordering and established some
primary but basic results for a non-probabilistic model of ordering sequences under
constraints on the operations and the knowledge about the sequences.

The basic model considered in [1] can be formulated as follows. Suppose we
‘have a box that contains at time t =0 f8 balls. We assume that the balls are labelled
with numbers from Z ={1, ..., x}. For simplicity, we say a ball “/” instead of a ball
labelled by “i”. Thus, the content or “state” of the box can be described by a multi-set
So=1(So(1), - . ., So(a)), where so(i) is the number of i’s in the box and i so(i)=p. We

i=1
denote a sequence of balls just by its labelling. An arbitrary n-length sequence of
balls, say
X"=(xy .., Xx,)EX",

enters the box iteratively. At time t, x, enters just after a person, called the organizer,
has pulled out a ball “y,” from the box. Consequently, the state s, _; should be changed
to s,. We call x" the input sequence and y"=(y,, ..., y,) the output sequence. The
organizer’s strategy obeys the following rules.
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(1) The organizer can output only objects which he has in the box. At any time
t(0<t<n) he can and has to output exactly one ball.

(2) The organizer’s strategy may depend on some of his knowledge such as -
knowledge concerning time, natural order of the balls in the box, the input
sequence and the output sequence before the current time.

The subclass of problems, which have been investigated most intensively in [ 1],
is characterized by a triple (7, 8, @). It specifies that f objects from Z fit into the box
and that at any time ¢ the organizer ¢ knows the state of the box s;» that he can see
the incoming letters x,, x,, {, .. ., X;+4~1 and that he still remembers (or can see) the
output letters y,_,, y, .4, ..., ¥,_, when he outputs y,.

The goal of ¢ is to minimize the number of output sequences for a specified
blocklength n. _

We continue here the studies of [1] in two directions.

L. Active memory

In addition to the knowledge described by the triple (n, B, @), which we term
“passive memory”, the organizer may have storage space, in which he can (and has
to) feed a number from 0,1, ..., y— 1}. He uses this storage to remember a certain
amount of any information relevant to him. We speak of an active memory. It can
be realized by a switching board with y states. The organizer can turn the state of
the board to any one of the states labelled by the numbers 0, 1, ..., y—1 based on
his current knowledge and try to “remember” something.

Formally the new model is described by a quadruple (%, B, ¢, y). It involves
passive and additional active memory. In this notation the case of passive memory -
only, described by the triple (r, g, ¢), can equivalently be described by the quadruple
(7, B, @, 1). Here we study another extremal case, namely that of “pure” active memory
that is, the case (0, , 0, y). '

We denote the set of the organizer’s strategies by F(f, y). Note that here a
strategy is a pair of functions (/; 9), where for state of the box s and state of the
- switching board z f (s, z) gives the output and g(s, z) gives the next state of the board.
For initial state of the box s, initial state of the board zo and strategy (f, g) an input
sequence x" determines as output sequence y"=y"(z,, so, X", f, g). The set of all
n-length output sequences under (f, g) is therefore '

¥(f, 9={¥"(zo, 59, X", . 9:0=5z0<y—1, 50 %, x"efc’""} , (1.1)

if & denotes the set of all possible states of the box.
In accordance with the terminology of [1], where v (n, B, @) was defined, we
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introduce now

N2, 8,0, y)= min {{"(f, 9)I:(f; 9) € F3(B, v)}, (1.2)
v,(0, B, 0, )= lim %log N0, B, 0, 7). (1.3)

It is convenient to use the abbréviations

NoB, V)=N2(0, B, 0, 7), 7B, v)=v,0, B, 0, 7). (1.4)

These quantities are studied in Section 2. -

The key new observation is that in case y =2 our strategy of [1] in case (1, f3, 0)
can be simulated by using instead of the one letter knowledge of the past the active
memory and that this is optimal.

Section 3, the rest of the paper, is devoted to an analysis of the probabilistic
model mentioned under C in Section 2 of [ 1]. The objects or letters are here produced
by a stochastic process, which in the simplest case is a sequence (X,)2, of i.i.d RV’s
with values in £={0, 1, ..., a—1} and generic distribution P,. In Information
The'ory this is also called a discrete, memoryless source. For a strategy f,, which
depends on the triple (n, B, @), let Y"=Y, .. .Y, be the output sequence corresponding
to X"=X,...X,. Let Fy(n, B, ¢, Px) be the set of strategies restricted to blocklength n.

1 o
We use the “per letter” entropy — H(Y") as performance criterion and define
n

/7w, B, @, Px)= lim min 1H(Y"). | (1.5)
n—>ow fneF2n, f.0,Px) N
This is the smallest mean entropy of the output process, which can be achieved by
(O with strategies based on his knowledge. It corresponds to the optimal rate v (n, §, @)
in our non-probabilistic model. Our new quantity is much harder to analyse.

We consider here the simplest (non-trivial) source, that is the binary symmetric
source defined by Py (0)=Px(1)=1/2, in the first non-trivial case f=2. Further it is
assumed that ¢ knows the co-past and has no knowledge about the future.

We give a nice formula for #5,(c0, 2, 0, Py).

2. Ordering with active memory

This section 1s entirely devoted to the proof of the following result.
Theorem 1

() va(B, 2)=v,(1, B, 0)
(b) Vz(l, ﬁ’ O): log qlﬂ >
where ¥, is the positive root of ¥ —2#"1—1=0.
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Whereas (b) repeats an earlier result, Theorem 6 of [1], (a) establishes a new
and interesting connection. Since the organizer (¢ can use the active memory to
remember the last letter send, clearly

‘TZ(ﬂs 2)§V2(1» ﬂ’ O) . . ‘ (21)

The issue is that in the present situation there is no better way to use the active
memory. Actually we show that the strategy which we found in [1] for the case
(1, B, 0), is also optimal here. Of course now we have to exclude more possibilities
and the proofis therefore somewhat more complicated than the one in [1]. However,
it is based on similar ideas. We denote by 3, the pair (s;, z;), where s, is the state of
the box and z, the state of the board at time . z, takes values in {0, 1} and s, can be
assumed to count the number of 1’s in the box. :
We claim that the following strategy (f*, g*) is optimal:

S*(5,00=0 for s<pf and f*s, 1)=1 for s>0;
[*0,2)=0, f*p,z)=1, and g*=f*. (2.2)

Notice that it simply repeats the previous action, if this is possible. We can draw a
state transition chart for this strategy. The 2 outgoing arrows correspond to the 2
possible inputs. Loops are included.

4 e e ) o)
(0,0) — (1,0) —» (2, O)—>°°'—>(B-1 0) — (B,0) .

[ 7
I / v » v
(0,1) «— (1,1) «— (2, 1)<—---<—(B-1 1) «— (6,1)
N A ! o
Denote by .#'(s, z) the set of all possible output sequences of length t achievable with
$,=(s, z) and some initial state. Since ./' (s, OA)C,’//’”(S— 1,0) and .#4'" (s, 1)
<. A*"Y(s+1, 1), one readily verifies the following relations for M (s, z)= 1.4, z)|

(i) M(s,0)=M""Ys—1,0) for 2<s<§
(ii) M, D=M'""Ys+1,1) for 0<s<f-2
- (it)) M0, 0)_M' O, )+ M0, 0);
M'(B, )=M""1B, O)+ M~ Y(B, 1)
(iv) M1, 0)=M'0,0); MY(B—1, 1)=M'(B, 1)
(V) M(B—1, 1)=M(1, 0).

Therefore we can conclude that
MI([))_L I)ZMI_I([))'_la 1)+Mt_ﬂ(ﬂ_171) (23)
and that M(f—1, 1)= max {M(s, 2):0=s<h;2=0, 1.
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In [1] a similar relationship was used to derive (b).
The equation A# — 2 ~! — 1 =0 shows that for smaller f§ there is less compression

of the sequence spaces. ‘
We are going to prove that (f*, g*) is an optimal strategy. We begin with a

simple observation.
Lemma 1. For every optimal strategy (f, g)

fG5,00# f(s, 1) for lss=f—1.
Proof. Assume to the opposite that for some s in the specified range f(s, 0)
= f(s, 1). Then either {s'|0<s' <s} or {s'|s<s'<f} is a closed set of states, that is,
starting from a state inside this set, we can never reach a state outside this set. This

can be viewed as having a smaller box of size either s or f—s and in any case of a
size smaller than B. Proceeding inductively in f§, we see that (f, g) cannot be 0pt1mal

Lemma 2. For an optimal strategy (f, g) the condition

and any xe{0, 1} (2.9)

(f, 9)(s, 0)=(0, x) forany s=>1
implies that there exists a directed path in the state transition chart from (s, 1) to
(s, 0) of a length not exceeding 2s.

Proof

Case x=1: Since f(s, 0)=0 we have (s,0)

| o
v
(s,1)

Further, since by Lemma 1 f(s, 1)=1 we have in case g(s, 1)=0 the desired

path (s,0) and in case g(s, 1)=1 the chart

tlo
(s,1_) ‘
* o . : s o . (S’O)
O

(s-1,1) <——-(s 1)

Let now m be the smallest number such that for all r with m+15r<s

(1, 1). By Lemma 1 we have
0 0] 0
(m+1,0) —» oo —> (s-1,0) — (s,0)
| | o
v

1)

(f. 9, Y=

(m,1) =— (Mm+1,1) «—eee (5s-2, 1)+ (s-1,1)+— (s
1 1 1 1
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If g(m, 1)=0, then we get either
0
(mao) (m"',O) —b

T 0 /' " incase fm, 1)=0
0

(m,1)
or
0
(m=-1,0) (m,0) —,
| T 1 - incase f(m, 1)=1.
(m, 1)

In both cases there is a path from (s, 1) to (s, 0) of a length not exceeding 2s.
If g(m, 1)=1, then by definition of m necessarily f(m, 1)=0. This results in a chart

1
(m,1)<—1(m+1,1)
> » A
o © 1

which cannot occur for an optimal strategy.
Case x=0: Either g(s, 1)=0 and we have a path of length 1 or g(s 1)=1 and
the left part of the chart

0
e 0
I (s,0) —»(5+1,0)

1
(s-1,1)<—(5,1)

can be >analyzed as in the previous case.
Our next result holds again for all optimal strategies.
Lemma 3. For B>4, any optimal strategy (f, g) satisfies in case s=1
| either (£, g)(1, 0)=(0, 0) 25)
or (£, 91, 1)=(0, 1) '

and in case s=f-—1

either (f, g)(B—1, 0)=(1, 0)
or (£ 9)f-1 D=(1,1).

Proof. By symmetry only one of the two cases has to be established. In case

(2.6)
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s=1 our statement can be visualized by the following state transition chart:

0
4
(1,0) —» (2,0)
0
(1,1)—»(2,1)
- 0
0

The number at an arrow, in this case the number 0, indicates the output object.
Suppose now that for an optimal strategy our claim for s=1 is false.
Case (f, g)(1, 0)=(0, 1): By Lemma 1 thus f(1, 1)=1 and we are left with the
subcases

(@) (f; 9)(1, )=(1, 1)

(b) (/S 9)(1, )=(1, 0).

Ad (a): Since always f(0, 1)=0, necessarily (£, g)(0, 1)=(0, x). However, if x=1,
then a part of the chart is of the form

0
(0,1) — (1,1)
N «— \_/‘
o ' 1
- This leads to the relations
M1, DH=M""}(1, )+ M'~10, 1)
=M""1(1, D+ M'" (1, )+ M'" %0, 1)
>MHL, D+MITL ).

Since the biggest root ¥, of A#—1/"1—1=0 is strictly decreasing in # and since
p=z4=2, M'(1, 1) grows to fast. This means that we must have (f, g)(0, 1)=(0, 0) and
a chart

(0,0) v(1,0)

A 0 N
[0 > o X
(0,1) «— (1,1) (2,1)
oAy
1

From the cycle in this chart we derive the inequality

M1, DML DM, 1),
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which results in a rate of growth not smaller than log ¥5. Case (a) cannot occur.
In case (b) we have the following 3 possibilities

(b1) (£, 9)(0, 0)=(0, 0)
(b2) (f, 9)(0, 0)=(0, 1) and (f, )0, 1)=(0, 1)
(63) (£, 9)(0, 0)=(0, 1) and (f, g)(0, 1)=(0, 0).

One readily checks with the state transition charts that in cases (bl) and (b2)

“inequalities of the form

M., )M, )+MU3 )

hold, whereas in case (b3) we have

(0,0) (1,0)
IA v 1 A
0' IO \ I ]
(0,1) 0 ™ (1,1)
Therefore M0, 0)=M""10, hH+M'"Y(1, 1),
M0, )=M"'"%0, 0)
and M1, =M 20, 0).

'In all these cases the rate of growth exceeds log ¥, and (b) cannot occur for an

optimal strategy.

We are left with }

Case f(1,0)=1: By Lemma 1 f(1, 1)=0 and by our supposition necessarily
g(1, 1)=0. Now just notice that the previous case (f, g)(1, 0)=(0, 1) and the present
case (f, g)(1, 1)=(0, 0) differ only in the labelling of states in the active memory.

Lemma 4. For =2, 3 there are optimal strategies for which (2.5) and (2.6) hold.
(f*, g*) is optimal for f=2.

Proof. Inspection of the previous proof shows that in case f=3 a strategy
violating (2.5) or (2.6) cannot be better than (f*, g*), for which (2.5) and (2.6) hold.
The case f=2 requires a more refined analysis. Here by Lemma 1 the optimal f is
up to the labelling of the states in the active memory unique, namely, f = f*.

- We go again through the cases of the proof of Lemma 3. If (2.5) does not hold,
then necessarily

(£, 9)(1, 0)=(f* g)(1,0)=(0, 1) | (2.7)

and we are left with the alternatives

(@) (f, 91, D=(1, 1)
(b) (f. 9)(1, 1)=(1, 0).
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Ad (a): We have seen that in the case (f, 9)(0, )=(0, 1)
M1, H= M, N+M 731, 1)

and therefore (f*, g*) is not superseded. We are left with the case (f, ¢)(0, 1)=(0, 0)
and the chart

(0,0) - (1,0)
v
To y | o
v
(0,1) « (1,1)
' 1R
Subcase g(0, 0)=1: 1
(0,0) . 0 |
o X
v A
(0,1) (1,1)

The output space of n-sequences contains all sequences with O-strings of an
even length. The number E(n) of these sequences satisfies the recursion

E(n)=E(n—1)+E(n-2). (2.8)
This is the familiar relation for (f*, g*), which is therefore again not defeated.
Subcase ¢(0, 0)=0: 0

I 0
_ (0,0) > (1,0)
Here all output sequences with 0-strings of length =2 and arbitrary 1-strings
occur. Their number is bigger than E(n).
Ad (b): We distinguish the cases

(A) (f, 9)(0,0)=(0,0) and (f, 92, D=0, 1)
(B) (f, 9)(0,0)=(0,0) and (f, 9)(2, )=(1,0)
©) (f, 90, 0)=(0, 1) and (£ )0, )=0,1
(D) (f. 9)0,0)=(0, 1) and (f, 9)(0, 1)=(0,0).
Case (A): We have the chart
0 .
(G, 9) 2 0.0 |
J v ‘A 0
\ Ol |1 \\A
(1,1) = (2,1)
1 »_/

1 :
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where the set .o/(n) of n-sequences with arbitrary 1-strings and O-strings of length =2
can be produced. Clearly |.«/(n)| > E(n) and this case is excluded.
Case (B): We have the chart

_ \ 0
(0,0) > (1,0) (2,0)
- ol 1 N 4
\ vl N‘ I
_ (1,1) (2,1)
and subcases (B,): 1
: 1 %
(1,0) = (2,0)
and (B,): (2.0)
e
| 1

A

\
(1,1) (2,1)

In the first subcase one can produce %, (n), the set of sequences with arbitrary O-strings
and arbitrary 1-strings interrupted by Ol-strings of length > 1, called “gates”.

In the second subcase one can produce %,(n), the set of n-sequences with
arbitrary O-strings, 1-strings of even length, 1-strings of even (22) length followed by
a 0, and with O1-strings as gates between these 3 types of strings.

Case (C): We have the chart

(0,0) (1,0)
w0 A ‘
° ] Nﬁ’ll‘ .
(0,1) » (1,1) (2,1)
(NI
_ 0 A
Subcase (C,): (f, 92, H)=(1,1).

The butput space contains %,(n), the set of n-sequences With 10-strings between
1-strings and O-strings of arbitrary length.
Subcase (C,): (92, H)=(,0).

Here we have two more cases.

(Co: . (£, 9)(2,0)=(1, 0).

%,1(n)=set of n-sequences with arbitrary O-strings, 1-strings of length >2 and
10-strings as gates.

(Caa): (£, 92, 0=(1,1).
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% ,,(n)=set of n-sequences with arbitrary O-strings, 1-strings of even length, 1-strings
of odd length followed by one 0, and 10-strings as gates.
Case (D): We have the chart

(0,0 (1,0
‘A )V O v A ) O
ol 0 o] 11
R Y A
(0,170 1> (1,1) (2,1)
Subcase (D,): .(f, g9)(2, 1)=(1, 1»).
Subcase (D,): (f. (2, H)=(1,0).

Finally we give now the bounds on cardinalities of sets. We observe that
| B (n)| =€ ()] >[%,,(n)].

Further, considering in % ,,(n) only 01-strings of length 1 as gates and replacing them
by a 11-string of length 1 we get all n-sequences with arbitrary 0-strings and 1-strings
of even length.' Therefore |%,,(n)| = E(n). Clearly, the same map gives also |#,(n)| =
= E(n). '

Similarly, replacing 10 by 11 we get |%,,(n)! = E(n).

Finally, for subcase (D,) (and similarly for (D,)) there are transitions between
strings 10, 1x, 1y, 01 and Oz, where x is a O-string of odd length, y is a O-string of
even length and z is an arbitrary 1-string. It can be shown that |D,(n)|, | D,(n)| = E(n).

Our next and main result describes a class of strategies, which includes an
optimal strategy. We shall see that (f*, g*) is best within this class and therefore an
optimal strategy.

Lemma 5. For =4 there is an optimal strategy, say (f, ¢), satisfying either

(/,9)(s,0)=(0,0) and (f g)(s, 1)
forall 2<s<pf—2 or
(/.9)(s,0)

forall 2<s<p-2.
This result says that the state transition chart of some optimal strategy has the

Il

(L1 (2.9)

Il

(1,0) and (f.¢)(s,1)=(0,1) (2.10)

form:
For 2<s< -2, either
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Proof. First notice that validity of (2.9) or (2.10) for 2<s < f—2 implies validity
of (2.9) for all 2<s<f or validity of (2.10) for all 2<s< B, because we have situations
like

1
F\q 0 e
(s,0) I—= (s+1,0)

1

and a rate log 2. ,
Now, by symmetry it suffices to consider the case f(s,0)=0. This and
Lemma 1 leave us with the cases

(a) (/,9)(5,0)=(0,0), (f9)(s, )=(1,1).
(b) (/,9)(s:0)=(0,0), (f,9)(s, 1)=(1,0).
(©) (£,9)(5,0)=(0,1), (f9)(s, h=(1,1).
(d) | (£,9)(s0=(0,1), (£g)(s1)=(1,0).

Clearly (f*, g*) has property (2.9).

We Want to prove that an optimal strategy satisfies (a). We need to check only
that in other cases the strategies cannot be better than (f*, g*).

We consider (b) first. There are the followmg 2 subcases:

(b1) (f. 9) (s—1,0)=(0, 0)
b (f.9) (5= 1,0=(0, 1).

For (bl) the following set of states is a closed set:
A={(s—1,0), (u,z) with s<ugp).

From the induction hypothesis, this leads to the conclusion that for one of the M., )
assigned to a state from this set

M., )=M L, )M,

The strategy cannot be optimal.

In case (b2) by Lemma 2 there exists a path from (s—1,0) to (s 1, 1) of length
not greater than 2(s—1). Therefore there exists a cycle from (s—1, 1) to itself of
length not greater than 2s <. It is easy to prove that

M(s— 1, )=M"Y(s—1, )+ M " 2(s—1, 1),

which shows that this strategy cannot be optimal.
- For case (c) there are two possibilities:

(el) (/,9)(s—=1,0)=(0,0)
(c2) (£,9)(s—1,1)=(0,1).
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(c2) is obviously poor. We study only subcase (c1). If f=2s we consider the

part of the states (s', z) with s'=s. Then case (c2) is just case (b). We have already
| proved that such a strategy cannot be optimal. If =25+ 1, then using Lemma 2 we
can prove that an inequality

M., )M ) MR

will hold. This is just what we need.
Case (d). There are two possibilities:

case (d1) (f, 9)(s—1,.0)=(0, 0)
case (d2) (f,g)(s—1, 1)=(0, 1).

For subcase (d1), the strategy is definitely poor, because of the existence of a
cycle of leﬁgth 3 from (s—1, 0) to itself. Subcase (d2) is similar to subcase (c1). An
~inequality . _
M., )M MR L)

can be derived, and the strategy cannot be better than (f*, g*).
Finally, to prove the claimed optimality of (f*, g*) the only thing left is to
determine the form of the optimal strategy in Lemmas 3,4 and 5fors=0, 1, §— 1 and .
- Itis easy to check that in case (f, g) (1, 1)=(1, 0) or (£, g) (B—1, 0)=(0, 1), we
have inequalities

M(1,02M' 11,00+ M P Y(B—1,1)
and
M(B-1,H=M""1(B—1, )+ M ~#1,0).

This shows that such a strategy is poorer than (f*, g*). Therefore we must have
(f,9) (1, )=(1,1) and (£, g) (f—1,0)=(0,0). It is also readily seen that the form of
such an optimal strategy at s=0 and s=f is the same at that of (f*, g*). The proof
of the theorem is complete.

3. A first result in a probabilistic model

Here we determine n,(m, 8, ¢, Py), which is defined in (1.5), in one of the simplest
non-trivial cases, that is,

1
#=2, m=o, f=2, ¢p=0 and Py0)=Py()= . (3.1)

Since the main results, Theorem 2 and Theorem 3, are stated in terms of concepts
which arise during the analysis, we state them in their natural contexts.
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We need more notation. _

The set of all strategies for blocklength n is simply denoted by F”.

_ We will use two kinds of states of the box. The first one is the number of 1’s
in the box after the last ball X, has entered the box. We denote this state of the box

by §,. It takes its values in {0, 1,2}. Another kind of state of the box is the number

of 1I’s in the box after Y,_, left and before X, entered the box. This quantity will be

denoted by §,. It takes values in {0, 1}. Both, S, and §,, are random variables. Clearly

§5,=5,+X,. : (3.1')

After a strategy f=(f,, f;, .. .) has been fixed and Y' "'=Y, ... Y,_, is the output
sequence before time ¢, then

Y=/f(S, Y1) (3.2)

is the output at time ¢.
After X, has entered the box it moves to the state S,, ,, where

S =S~ Y+ X111, S0 =S,—7Y. (3.3)
~ Conditional on Y'~!= ! S, has a distribution

PS,=¢| V' t=y'"YHY=P,: £=0,1. (3.4)
Since X, is independent of (5,, Y*~!) by (3.1)

P
P(S,=01Y" =y =2
PIS, =1V =y )=

P
P(S,=2|Y'" "=y )= 71 (3.5)

If S,=0 (resp. 2), then ¢ has to send a 0 (resp. 1). Therefore at time ¢ strategies
can only differ on the domain {(1, y*"!): "' € #'}. How do we find a good strategy?
We are guided by the idea to minimize the conditional entropy H(Y,|Y' !=y'" 1)
and we define therefore:
| f=(f1, f3, - ..) is locally optimal at ¢, if in the notation of (3.4)

{0 i Py>p
Ly hH= =" :

For t=1 we use the letters p and g=p instead of p, and py, that is,

PS,=0)=p, P(S,=1)=g. (3.7)
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We allow all initial distributions (p, q), but by symmetry there is no loss of generality,
if we always assume

P=4. | (3.8)

We call a strategy f =(f}, />, . . .) normal, if it is locally optimal for every r=1,2, .. ..
Our first result can now be stated. .
Theorem 2. Under assumptions (3.1) for all p the normal strategy is optimal.
The proof is based on 5 lemmas. They concern estimates on entropies of random

variables involving also mixed 1 step strategies g(r), 0=r <1, for which 1 is send with

- probability r and 0 is send with probability 1 —r. For the initial value p and any r,

0<r=<1, let us consider now those strategies which use g(r) at the first step and

subsequently, for 1= 2, follow the normal strategy.
The entropy of the thus produced output process Y" depends on n, r and p.

This justifies the notation

HXp;r)=H(Y"). | (3.9)

Notice that by (3.8) g(1) is locally optimal in the first step.

We present and prove now the 5 lemmas, which make statements about H ¥(p; r).
The last lemma says that we shall follow the locally optimal strategy also in the first
step, if we use it subsequently. Thus Theorem 2 follows inductively.

In the sequel we frequently use the notation

g=1—p for 0su=sl. (3.10)

Lemma 1. H*(p;r) is convex (N) in p. ‘
Proof. By our definitions the conditional probabilities Pr(Y” =y"|S, =¢) do not
depend on p. The unconditional probabilities

Pr(Y"=y" P)=Pr(Y"=)"|S,=0)p+Pr(Y"=)"|S,=1)p (3.11)
are therefore linear in p and thus
Pr(Y"=y" ip+ Zp)) = APr(Y"=y" p) + ZPr(Y" = y"; p’). (3.12)
Convexity of H*(p; r) then follows from the convexity of the entropy function.
Lemma 2. AH*(p; r)+IH*(p’; r)=H¥Ap+Ap';r)+ ih(p)+ Ah(p')— h(Ap+ Zp’),
where h is the binary entropy function.

Proof. By (3.11) HX(p;r) can be written in the form H(pP+ pQ) for two
distribution P and Q. The inequality can therefore be restated as

h(ip + Ap')— Ah(p)—Zh(p') 2 H(A(pP + pQ) + XAp'P+ p'Q)) —
—AH(pP +pQ) — ZH(p'P+p'Q).
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The expression to the left can be interpreted as a mutual information I{J A K), where

- PrJ=1)=/. Pr(J=2)=, and

PriK=1[J=1)=p. PrK=2|J=1)=p.
PriK=1{J=2)=p. PrnK=2|J=2)=p"

p b
pp Q
P+p : : : : :

< p p,Q ) which for the input variable J induces the output variable L. Now

pP+pQ .
I(J A L) is the expression to the right of the inequality. which is thus shown to be a
special case of the data-processing inequality.
Lemma 3. HX(p: 1) is monotone increasing in [0.12].

> the “channel™ > results in the “channel™

SN
~

Postposing to the “channel” <

(RSN~

Proof. We proceed by induction in n. Since H*(p: 1)=lz< ) and since

d l—=r
— h(r)=log ———. we get

S dr ]

dH¥(p: 1)
dp

o] —
e

and the case n=1 is established.
By Lemma [ we know that H*(p: 1) is convex. It suffices therefore to show that

l
“H:{([’:“ip:(mio- (3.13)
dp ~

We use now and also later a basic recursion. For the underlying strategy

HXp:=H(Y)+H(Y,. . . Y,
_ P . . .
=1 §)+H(},z~--~7:|71=0)Pr(71:0)
+H(Y,. . Y =0 PrY, =1)
P p Lo P
and therefore
. . [
H,*:(;a:l):/z(Q) QH:1<0;1;+(1—§)H:1(?1;1). (3.14)
=/ - .- e A
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Hence
d 1 | 1 1
, — H* H* O;1)— —H* [ =1
g M )= log 3+ 5 HE (0 )= 5 H 1<3 )
3 d l—p
+-—Hk <—; 1> (3.15)
4 dp l 2—p [p=0.5

Using (3.14) again and the induction hypothesis we obtain

. 2 HE (0 1 2. 2 2

= — = >V ~HY ,{ -1 - = YD,
9 Ilv..( )+9 n _<5 ) 91()55

Substituting this in (3.15) we get

d . Lo ! !
TH (P ), 052 log?+~H,’}‘ (0 ])_,, H* | . 1

1 1 2 !
— —H¥ (0.1 H* , : — 1 5,
g H { )+6 by <5 l> ‘6105_

l
Applying the basic recursion (3.14) to H¥ ,(0: 1) and H* | <1: 1 ) we continue the

del‘lthlOH with

d . | e e
;[‘;.(Hn(p*l)|l’—().5:'§"log3+ - ’{n 2 7; I - 2 h 6

Lo >
T b l_' k) 7:
—  HE 0 * _(5 1)

1 o 2 1
— —H* 0+ - H* (. 1)~ log5s
g { )%6 " _<5 > 605

) ! I l
> -2—log 3I— --—hﬁé) — 6Iog5
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by induction hypothesis.

1 1 1 1 1 5 :
Since > log 3— 5 h <8> — % log5= 1 logz =0, the proof is complete.

1
Lemma 4. For p< 5 we have

HX(p; 1) S HXp; 0).

1 1 v
Proof. Since H ¥ <?; 0) =H¥ <—2—, 1>, it suffices to show that

—j—p(H:r(p; 0)— H*(p; 1)<0 for 0<p=<0.5. (3.16)

The proof of this inequality repeatedly makes use of (3.14) and needs formidable
calculations.”
Since H X(p; 0)=H*(1 —p; 1) we get from (3.14)
1+p

s 7P\ 1Py T+p NN
H,,(p,O)—h< 3 >+ 7 * 0 )+ 2 H¥*_ <I+p’1>' (3..17)

Also from (3.14)

p 1 p 2+p 1
H | ——;1)=h + L0 D)+ HY ,| —; 1 }.
‘<1+p > <2+p> A1 +p) 201 2(1 +p) 2<2+p )

(3.18)
From these two equations we deduce |
d 1 1— 1
—H,(p;0)= —log—— — — :
p +pd p
______. —_H .
( +p > 2 dp <1+p"1>
and
d p 2+p d 1
— H* . —Hf ,| — 1 .
dp " ‘<1+p’1> 2(1+p) dp ( > (3.20)
| .
————+H,’:‘ 0;1 ;1)L
i) Lo e wre (5|

Since by Lemma 3 the first term on the right side of (3.20) is negative we conclude that

d p 1 1 2+p 1
—Hf | —; 1} — lo +HY ,O;)—H* ,| —: 1.
dp 1<1+p > 2 (l+p)2[ &0 A0 1) 2<2+p’ >] (3.21)
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This and (3.19) imply

d
— HXp;0)= —

1 1—
[log

Similarly, we can prove

d 1
—HXp; )= =

1
— Hx
2(2-p) (

2+

2—
[H:‘-l(o; 1)+ log ; —H}

P _px (0;1)+H,’:‘,,<
+p

2(0; 1)—H2‘~z<

Using these two inequalities, we deduce

d% [H #(p; 0)— H*(p; )] < — HX_

1
—HY_
+ 5 Ha

1
41+ p)
L]
42—p)

)= —1
1(07 ) 2

(3

1. Q2+p(l+p)
p(1—p)
L
2— MR

[ 1
H* (O;1)—H*,| — ); 1
| n 2( ’ ) n 2<2+p>a >

—p p

p

[ 1
Hy_ (0, 1)—H7_, <—; 1>
B 3—p

Using (3.14) for all the terms with parameter n— 1, we obtain

d
pr [H X(p; 0)— H X(p; 1)]; —H;"-z<

3—-p
+
42—-p)

2+p
+
4(1+p)
L
4(1+p)

L]
42—-p) [

HY

n-2(0;1)—

1
H:—2<“—_;
3—p
1
H* | —:
" 2<2+ '

2(0; 1)—

l—p
H2—p)

Hy (0 1)

1
_-1
ok >+

T 1>+
p

ek
el
(s

(555

1—p
h
<2(2—p)
<_p__ ——l—lo
2(1+p) 2
; |
. > p]

+log

2+
1 3—
3—

p
+
) 4(1+p

log— =
+Og1—— |

) H*_5(0: 1)

(2—p)(1+p)
p(1—p)
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Noting that by Lemma 3 H*_,(p; 1) is monotone increasing in p and in particular

1 1 :
HY , <5 l) ZH¥ ,(p;1) forall p< 5 we obtain

L 0 — 1 ) = — L 1og@mPIER) L =p N L
gp LHF B0 = Hi(pi )] = — - Tog ol —7) *‘zh<az—m>’*2h<ml+m>

+ : log2+p+ ! lo 3=p
1+p) 5 p Taz—p B1-p

1 16p(1—p) 1 4

~log—" ¥ < _ log—
4B T G e

1A
o

'11 4 <1
—log — <
4 B6rp_p =

A

ZIO.

A
o

4]
N B

Lemma 4 is proved.

1 .
Lemma 5. For 0<p< 5 and 0<r<1 we have

Hip; )= HX(pir).

Proof. To save notation we introduce r=1—r. We distinguish between the
following 3 cases:

(1) t<p; (2) p<t=sl—p; (3) t>1—p.

Notice that case (3) can be proved in the same way as case (1) by changing r to r and
ptol—p. ,
- We use the general form of the basic recursion in case (1).

*(p: )= PE g _[.*-] 1_EI.H* 1—p~1 h_’i
Hn(p’r) 2 Hn*l p+[s + 2 n—1 2_p_[7 + 2 .

(3.23)

Lower bounding the first summand with Lemma 1, we get

t
HﬂmnggHﬁA&n+§H;Aun+
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Since by Lemma 4 H¥_,(1;1)=H}_,(0:0)= H}_

HXp;r)2

p+1 N l—p
N PEES

Application of Lemma 2 to the 2 central summands gives

(ISR

r
H_ (00 1)+ 5 HE (00 1)+

(p+t
1>—Hz< 5

217

(0; 1) we conclude that

>. (3.25)

1__
HXp: )z s H¥_ (0. 1)+ <1——)H2‘ 1<7—;—§: 1>+§h(0)+

_p_ .
2

p+t 1—p p [+p -
(=5l ) - (=) (5 e

The first two summands can be rewritten via (3.14) and by some manipulations

+1 1 —
HX*p.r)Z H¥(p: 1)—h<—g> + <1— p—2—>h<2_pi[

=HZXp 1)———11( >+—11([)
2 p 2
] t t r
Since t<p< —, we have t< — and h(t) l<——> >r—.
2 T p+t p+t p+t

>_

(3.27)

Therefore h{t)=(p+t)h <—i~;> and finally H*(p.r)= H }(p: 1) in this case.
p

We now prove the result in case (2).
Here the basic recurrence takes the form

P:IH:_1<_1_)~_: 1—1
2 p+i

HXp.r)=

p+i . .
) (1= Yz (555

) p+t
1) —+—h< 5 >

(3.28)

This differs from (3.23) only insofar as at the right side p and + are exchanged. Instead

of (3.27) we get therefore now

HXp.r)ZHxXt:1)—

1
I — h(p).
<p+r> +2 1(p)

(3.29)
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. p p p
Since p<t<1—p, we have p< ——— and h(p): h| -2 | > :—— . Theref
p<t:= P p=s Puw (p) <p+t>_p P ore we get
- in this case

H3(p;r)2 HX(t; 1). (3.30)
1
Fort< 5 since p<t by Lemma 3

HXtrzHXp; 1)
énd thus the desired result

Hi(p;r) 2 HX(p; 1), (3.31)
1
and for t > > by Lemma 4 -
HA(6 1) 2 HX(5, 0)=HX(r; 1),

by Lemma 3 HX(r; 1)= H¥(p; 1), and again the inequality (3.31).

, We derive now a formula for the limiting entropy rate #,(c0, 2, 0, Py). Suppose
that (w.l.o.g) S,=0 and that we follow the optimal strategy. For its analysis we
introduce the events E,={Y*=01010 ...} and D,=E\E, .. The D,’s are disjoint
and q(k)£ Prob.(D,) satisfies

2 qk)=1. (3.32)
Theorem 3. For Py(0)= P,(1)=1/2 |
| H
N3(00,2,0, Py)= ——L @
Z kq(k)

Proof. By the grouping axiom for entropy

H(Y8,=0)= —

t

—(I=q(1)— - —q(i—1))log (1 —q(1)— - —q(i—1))

q(t) log (1)

IIM Il

+:; 4OH(Y15,=0).

(=4
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Therefore we get

$ H1S=0=— 3. 3 q(log (0

i=1t¢=1

i—-1

qOH(Y ™S, =0)= — Z (n—1)q(t) log q(¢)

t=1

1<1 3, 40) >1°g<1— b qo))

H(Y"|S,=0)+ ; (1— ,; q(t))H(YiIS(,:O)

M:

1t
—

i

M:

_i (DH(Y'|S,=0)

||M|

and consequently

> E n—04(t)log q(0). (3.33)
Notice that Z( Z ) li“ "Zlﬂq(t)
and
X a0+ Y S oam=3 a0
=3 ¥ a@= 3. (39

s=1i=n+1-s
Since H(Y"|S,=0)= H(Y'|S,=0) for i <n from (3.33) and (3.34) we can derive

a0

Y, sq(H(Y"1Sy=0)2 — T, (n—1)a(0)log q(1) (335)

s=1

) n—1 k
Since for fixed k — Y (n—1t)q(t)log q(t)=(n—k) Z —q(t) log q(t) we continue with

t=1

-k Z —q(t)log q()
~H(Y"|§,=0)>

n Z sq(s)
Let now first n tend to infinity and then k. We obtain
H(q)

sq(s)

1 ~
lim ~ H(Y"|S,=0)2

n—

(3.36)

uMg
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Instead of (3.33) we derive first the upper bound

H(Y"|S,=0)+ i (1— "Z‘ 61(1)) H(Y'|S,=0)<

=1

Z ) log q(r) - Z <1~ Z q(z)log< JZZ qU)) <nH(q).

(3.37)
Therefore
n—1 s ¢) R
H(Y"[S,=0)+ Zk 1 Y lq(t)H(Y‘ISo=0)'§nH(q)
o i=n—-k+1 t=n—i+
and a fortiori
. k
H(Y" ™ *"1[S§,=0) Y iq(i)<nH(q). -~ (3.38)
i=1

Since H(Y"|S§,=0)< H(Y" **1|S,=0)+k we derive from (3.38)

I H
fim - H(Y"[S, =0)< @)

n—’o(n -

S igli)

for all k and therefore also

1 H(g)
fim — H(Y"|Sy=0) < — 14

n—ao N

This and (3.36) complete the proof.

Remark. The sequence q(1), q(2), obeys a simple rule, so that we can calculate

H@) 5059

Y. il

The formula in Theorem 3 has a nice structure. It suggests a general principle for
arbitrary sources.
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