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We intend to open a new research field towards, say, a theory of “creating order”
under various constraints. As a prototype of problems guiding our investigations
we study models involving sequence spaces. By “creating order” or equivalently
“organization” we mean reducing in size the range of outputs by an “organizer” via
a permuting channel (a simple machine), when it is fed by a given domain of inputs,
The “creation of order” is assumed to come only from the permutation operation
in these channels. Four types of “order creation” are considered depending on the
structure of the knowledge of the organizer (limitations on mind) about the future
input and past output sequences and the kinds of admissible permutations inside
the channel (limitations on matter). In any case the organizer’s goal is to produce
output spaces of minimal cardinality (optimal organization). We present some
strategies of ordering and some first and seemingly basic optimality results. After
this more technical part of the paper we present some ideas about a general theory
of ordering. © 1990 Academic Press, Inc.

INTRODUCTION

- A short reflection shows that people spend a large amount of time -

creating order in various circumstances. We mention a few. _

Our homes are daily to be taken care of, we must clean our clothes and
even ourselves. Our houses and cars are to be repaired. Garbage must be
collected. Rules for human relations are to be set up and violations of laws

in a society are to be controlled by the police. Politicians try to improve

the organization of a state and relations among countries. Bookkeeping
and organization of files constitute a great part of administrative activities.
Even the scientists’ goal of understanding some aspects of the world can be
viewed as an attempt to organize phenomena by some principles.

Our general aim is to start or to contribute to a theory of ordering. In

particular we try to understand how much “order” can be created in a
“system” under constraints on our “knowledge about the system” and on
the “actions we can perform in the system.” In this generality it would be
permature even to try to give these terms a precise meaning.

AT
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At the end of the paper we present illustrative examples and discuss
the motivation, thoughts, and phxlosophy guiding our work. Several
directions of research are sketched.

In the main body of the paper we restrict ourselves to models involving
sequence spaces. Several practical processes, for instance, can be modelled
by a sequence of independent identically distributed random variables
(X,)7_, with values in a finite set 2. Its elements are physical objects (such
as economical goods and documents) which we want to maintain.

However, we may be interested in rearranging X, ..., X, into a sequence
Y,,.., Y, meeting specified goals. For instance, we may wish to achieve
Y,=2.--=Y,, where “>” is a linear order on &, or we may want to
reduce entropy. Typically there are limitations on the capability to create -
order such as limitations on matter in such a way that, stepwise, we can
perform only pairwise comparisons, and limitations on mind to the extent
that while performing an operation we have only part1a1 knowledge of
X=X, ., X,

We formulate and investigate models which are motivated by our work
on permuting channels (Ahlswede and Kaspi, 1987). Thus we are already
confronted with numerous rather interesting mathematical problems. In
some cases we have found solutions with surprising answers, They are the
first seemingly basic results in this area.

A. Our Non-probabilistic Model

Suppose we have a box that contains f objects at time t. We assume that
the objects are labelled with numbers from 2" = {1, 2, ..., «}. For simplicity
we say “an object i” instead of “an object labelled by i.” Thus the content

r “state” of the box can be described by a multi-set s, = (s,(1), ..., 5,(«t)),
where 5,(f) is the number of i’s in the box at time ¢ and }%_ | s,(i) = B.

Assume now that an arbitrary n-length sequence, say x"=
(x1, X3, ..y X,,) € X", enters the box iteratively. At time 1, x, enters just after .
a person 0O, called the organizer, has thrown out object y’. Consequently,
the state s, changes to s, . 5, is the initial state and s,,, , is the terminal
state. We call x" an input and y"=(y,, .., y,) an output sequence. The
organizer’s behaviour must obey the following rules.

Constraints on matter. The organizer can output only objects which he
has in the box. At each time 7 (1 <7< n) he must output exactly one object.

Constraints on mind. The organizer’s behaviour (strategy) depends on

(a) his knowledge about the time . The cases where @ has a timer and
has no timer are denoted by T+ and T, respectively.

(b) his knowledge about the content of the box. We indicate the situa-
tion where @ knows at time ¢ only the state 5,€.%, the set of all states, by
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O~. If in addition he knows the natural order of the objects in the box;
that is, the order according to their entrance times, we denote this by O+,

(c) his knowledge about x"-and his past actions. We assume this to be
the following nature: At time ¢ (regardless of whether we are in case T+ or
T™) with state of the box s, the organizer can see the incoming letters
Xes Xev15 5 X4, and he remembers (or can see) the output letters

" Yi—ns Yiomat> - Y,—1 When he outputs y,- With this understanding we

describe the memory by a triple (n, f, o). Here ¢ measures the time the
organizer can forsee, f§ is the number of objécts in the box, which we also
call working area, and 7 measures the past time for which the organizer
has a memory. Loosely speaking =, B, and ¢ represent the past, present,
and future “memory” of the system. | '

Note that input and output sequences are always ordered. Concerning
timer and order in the box we have the four possibilities (7, 07),
(T*,07),(T~,0%), and (T, O*).

If such a pair, for instance (7, 0~), and also (7, B, ) are specified,
then for every n we have a set of strategies Fu(m, B, ; T~, O~ ) which are

. based on the knowledge available to 0. Every strategy f,: "x & -» ¥ in

Z(n, B, o; T~, 0~) assigns to a pair (x", 51) an output sequence y"=
Ju(x"y51). We denote by #(f,) the image of 2" x & under f»- This is the
set-of output sequences which can occur in the worst case. Let 1% (f)

- stand for the cardinality of #(f,).

We are now prepared to introduce the basic performance criteria:

Size and rate. Define the size

Nl b, 9)=min{|9(1)]: f,e Fm b ¢ T7,07)) (L)

and the rate

vim B g)=lim log Ni(m, B, 0). (12)

n—-oo N

Here the letters N and v have been chosen to indicate that we have no

timer and no order in the box. Analogously, we define in the case
(T, O™") the quantities O%(x, f, ), @,(7, B, ) and in the case (T'*, 0~)
the quantities T7(r, B, ¢), (=, B, ®). Finally, in the case (T+,0") we
write G7(n, B, @) and y.(m, B, ). Except in Sections 5 and 8 we assume
throughout this paper that the alphabets for the input and output spaces are
binary, that is, & = = {0,1} and a=2. Therefore, in most of these
quantities we omit the index a, if a = 2. '
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B. Active Memory

In the model just introduced the memory may be termed passive,
because @ simply collects certain data about the future and past. Instead or -
in addition there is now storage space of size m attached to the box, where
m bits of information can be stored. O is free to store there any information
he has at any time and also to destroy a part of this information in order
to have space for new information relevant to him.

We are thus led to study quantities N(n, B, @, m), etc.

C. A Probabilistic Model

Suppose now that the input sequence is an iid. sequence of RVs
(X,)7=,- Also, the initial content of the box may be produced by such a
sequence. The constraints on matter and mind from 4 are again meaning-
ful. If @ follows strategy f, then this gives rise to an output process (Y,)"_,.
The performance of f is now measured by the entropy H(Y™") resp. the
mean entropy H,—hm,,_“,0 (l/n) H(Y™).

The goal now is to minimize this quantity. There may also be active
‘memory. Several rather difficult problems arise; a beginning of their
analysis and of active mcmory has been made in work by Ahlswede and
Zhang (1989). :

This probabilistic model and our non-probabilistic model are extremal
cases of the more general model characterized by specifying sets of prob-
ability distributions &, on 2" for every n. The understanding here is that
the distribution P, e %, governing the input selection is unknown to 0.

The paper is organized as follows: All of our results are for the non-
probabilistic model with passive memory. They are presented and proved
in Sections 2 to 6. The proofs are often based on new combinatorial results
of some independent interest. Difference equations play a key role. In
Section 7 our most basic results are surveyed in a chart and in Section 8
we state several conjectures. Many problems are left unsolved and may
challenge other mathematicians to work on them. Finally, in Section 9 we
contribute several models and ideas for the theory of ordering. This opens
a new area of research.

2. FormuLAs FOR N"(m, B, @) IN Basic EXTREMAL CASES

We begin our study of the functions N7%(m, f, ¢), defined in (1.1), for

- binary alphabet & = {0, 1}. Here the set of all states % can be identified

with the set §'= {5: 0 <5<}, where 5 counts the number of 1’s in the box.
Even in this case it is very difficult to find a formula for all values of =

- and ¢. However, for basic extremal cases of these values we have found
solutions.
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We begin with the case in which the organizer @ has no knowledge
about past and future.

THEOREM 1. N™(0,5,0)=2" for all f>1,n21.

_Proof. Since at any time ¢, 1 <¢<n, O knows solely the state s,, but not
t, his strategy f, is already determined by a function f: S — %, with the
property : ' < ' ‘

f0)=0, f(B)=1 (2.1)

We proceed by induction on (B, n). For the induction beginning we have
N™(0,1,0)=2"and N'(0, 8, 0)=2.
Now we distinguish between two cases.

Case 1. There is an &', 1 <5’ < f—2, with
f(s)=1 and f(s'+1)=0.

Partition S into the two sets {0,1,..s'} and {s'+1,.., B} By our
assumptions on f these state sets are left invariant while we follow f,,.
Therefore, if M™(f, B) counts the number of output sequences under f,

M"(f, f) > max(N"(0,5,0),  N"(0,f—s'—1,0)=2" = (22)
by the induction hypothesis. - : |

.~ Case 2. There is an s*, 0<s*<f—1, such that for the sets _S§=
(0,1, .., 5%}, ;= {s*+1,.., B} |

: 0 for seS,
f(s)_{l for sesS,.

Note that in the first step under f,,', S, is transformed into the invariant set
Sou {s*+1} and S, is transformed into- the invariant set S;u {s*}.
Therefore - :

ML D) =M S5t D MU post) 32 (23)

by the induction hypothesis. Since obviously, M"(f, B)<|Z"|=2", the
result follows. p ‘ _ '
Actually we have proved that for every strategy f,, M"(f, f)=2" The

cases o > 2 are much more difficult to analyse. Partial results can be found
in Section 7.

Next we consider the case of complete knowledge about past and future.
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THEOREM 2. (i) N"(o0, B, 00)=2""" for n> 1.
(ii) v(oo, B, 0)=1/B.

Proof. Because (ii) is an immediate consequence of (i), we must prove
(i). The key idea consists in introducing a set 2(n, f#), which we now define.

Let §,=(0,..,0) and §,=(1, .., 1) be sequences of length f. Further-
more, for »=nmod f we define the sequences Jo= (0, ..., 0), &, =(1, .., 1)
of lengths r. Set v=|n/B|. ‘

@(n, ﬁ) = {X(é) € %’1: X((S) = ((5(]), vaey 5(0), 5(0_’_‘1)) With ]
Ows1)E {60, 8,} and b€ {g, 0, } fori=1,.,v}. (24)

Note that

‘L@(n, By =21 (2.5)

We prove the following two facts:

Every x"e 2" can be encoded into an x(d) e 2(n, f). (2.6)

No two x(8), x(8')eZ(n, f) with 6, #6(, for an i<
n/B7]—1 can be encoded into the same y”, if the initial states
are equal. _ . (2.7)

Ad (2.6). At times fi+1 (i=0,1,2,..) we look at Spiv1+
|Xgiy 15 Xpis 19— 11, that is, the number of s in the box and among the
p—1 incoming letters. If this number is not smaller than f, then we send
a 1 and continue sending 1’s f times. Note that this is possible because at
the tth, 1 <p, step we have

Sgivc T |xﬁi+rs “rey xﬂ<i+1)—1h 2pf—(t—1)

and therefore 54, . 2f—(1—1)—(f—1)=1, and because observation of
I-past already tells us that we are in the process of sending 8 1’s.
Otherwise we have at least § 0’s among the initial two f—1 letters and
we send f successive 0’s. Starting with i=0 we repeat this until
i=|n/Bl—1. If now r=0, then we are done, and otherwise we have
the situation i=|[#n/B|. Here we proceed essentially as before; the only
difference is that now we send r 1’s, if there are at least r4+1 1's among

the letters x|, 5,5, 1> X, and in the box. Otherwise, since f=r+1, we
send r O’s.

Ad (2.7). Let i be minimal with d(i) #5;”-,11. the outputs are the same
from time 1 to time fi, then at time fi+ 1 there must be B I’s in the box
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for one of x(6) and x(é') and f O’s for the other one. Thus necessarily
Ypir1 7 Vpir1 and y"# y", as claimed. Now (2.7) and (2.5) imply

N"(e0, B, )= |D(n, ) =25,

and by (2.6), N"(o0, B, )< |9D(n, B)]. The proof is complete.
Remark. In our (optimal) strategy yielding (2.6) we have used only

(a) knowledge of time,
(b)  knowledge of the future for p=pf—-1,
(c) knowledge of the past for m=1.

Here '(a) follows from thevknowle-dge of the oo-past or the oo-future.
Furthermore, N”, T", etc., are obviously monotonically decreasing in =, f,

and ¢. Thus we have established the following generalization of

Theorem 2.
T"(%, B, 9)=N"(n, B, ¢)= 20781 for ¢>=f—1 and mn=1. (2.8)

Calculations show that this equation does not hold for n=0. It is therefore
very remarkable that in the case in which @ has knowledge only about the
oo-future the optimal rate is still 1/f. We now describe a strategy which
achieves this bound. . ' |

For a sequence a” = (a,, .., a,,) we write ay for (a,, .., a,,). At time r=1

the encoder knows that z{ = (xl, s,), where s, describes the state of the box

- and x7 describes the future. Generally at time ¢, z7 = (x7, 5,) describes the

knowledge of the encoder. We also use for i<t the notation z}, =s,, which’

indicates the knowledge about the state of the box.
Further, let {z| &) count at time ¢ how often ¢ occurs in the box and
in x}, if iz

For a positive integer / we denote by £ mod* B the number p for which

there exists a ¢ with

t=qb+p, 1<p<Bh 9)

For the definition of our encoding procedure y we distinguish among four
cases. . .

If (z7]|e)=0, then we speak of the e-simple case. Here we define
Y(zl)=1—¢and Y(z7)=1—¢ for t<s<n is our only choice.

For the description of { in all other cases we use

a,=<z/ 0> mod* B,  b,={z}| 1) mod*§p. (2.10).

These cases are called regular, if a,+b,>f+1; crifical, ifa,+b,=p+1,
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and ambiguoﬁs, if a,+ b,< f+1. In regular and critical cases y is defined
by
i (o2 0) >,

A1
if <271+b,+t—ﬂ—2| 1>>bz (2 )

. o

b=,
and in ambiguous cases ¢ always takes the value 1. ¢ is well-defined in the
regular case, because

<Z§z,+b,+1—ﬂ—2 ‘ O>+ <Z;z,+b,+r—ﬂ—2 ] 1>
=a,+b,+t—p—24+f—t+1=a,+b,—1

and exactly one of the alternatives in (2.11) is true. In the critical case the
equation a,+b,= f + 1 implies that exactly one of the alternatives

B—b,za, s5,2b, O (212)

- holds.

In the ambiguous case at least one of these alternatives holds, but also
both may hold. Our convention with  is always to choose the second. We
show now that y can be implemented; that is, an object (0 or 1) prescribed
by it is always in the box. ' =

If the simple case arises, we are done. In any other case let us assume,
for example, that the second alternative is true. Then from

{zatbiti=b=215 in critical or ambiguous cases
5, = e
l (zgtott=F=2 1% (xatbri=f-2) 1> in regular cases

we conclude that

s;=2b, 21 in critical or ambiguous cases
s;2b—(a+b,+1—f—-2—t+1)=f+1—aq,
>f+1—pf=1  inregular cases.

Similarly, if the first alternative holds, it is also possible to send a 0,

We now analyze .

The simple cases are settled. We can assume henceforth that 1<a,,
b,< B. Suppose first that at time ¢, y takes the value 0, that is,

<Z¢tz,+b,+r—/}—2 l 0>>at'

Then either a,=1 or a,> 2.

In the first case a,+ b, =1+ b,< f+ 1 and since Y =0 we are necessarily
in the critical case with b,=f. At time r+ 1 we obtain a, ., =p,b
b,=p and therefore a,,, b,, =2 (as in the second case).

+1=
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In the second case, however, a,,,=a,— 1, b,.,=0,, and

<Zz,z,:i+b,+x+t+l~ﬂ 2 l O>

— <Za,+b,+t p~2 ‘ 0>

_{ﬂ_szn i atb<pel

= ﬁ—S,+1+<x7'++1b'“ £=210) otherwise

) ‘s —14¢x,|0) | if a,+b,<f+2

—{ﬂ—s,—1+<x,]0>+<xa’+b'+’ "TEI0>  otherwise
(zotbt=I=210y — 14 {x,|0> i a,+b,<B+2

= { (gurtti=A-2] 0y — 1 if a+b=+2
<Z?,+b,+-t—ﬂ~2lo>__’1 o if a,+b,>p+2

In any case-we have

<Z(;'++1b'+t_p#2 [0)=a,~1=a,,,

and we continue to send 0 as long as we are in the regular or the critical
case.

As soon as we enter the ambiguous case we contmue to send 1 s. Again
the foregoing arguments apply. Now we can send b, times a 1. Moreover,
afterwards we are either in the simple case or b,,, = B. Therefore, from
now on, if we can send 1, then we will always send it in blocks of length
. The same scheme applies to the sending of 0 except when we enter the -
~ambiguous case. However, after we have sent 1’s once in blocks of length
B ending at s, say, then a,+b,=a,+ > f+1; that is, if it is possible to
send 0, then the amblguous case cannot occur while we are sending a, 0’s,
because the b’s retain the value . But now a,, , = f, if we do not enter the
simple case, and from now on 0’s too, are sent in blocks of length f.

Therefore the number of possible output sequences does not exceed

(number of possible O-strings of length <f)x (number of
possible 1-strings of length <B)x2M"#1x (number of
possible lengths of the last string) + (number of possible
I-strings of length <pB)-2'"P1.(number of possible lengths

of the last string) < (8° + %) 2MF < (1 +1/8).2TP1 <
3 g3,

We summarize our findings. :

THEOREM 2*. (i) N"(o0, B, @)= N"(o0, B, 0)=2"F for ¢ = B —1.
(ii) T"(m, B, ¢)=N"(n, B, 0)=2I""P1 for o> p—1 and n> 1.
(lll) V(O, ﬂ’ OO) = V((D, ﬂ9 OO) = l/ﬁ
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3. INFINITE PAsST

It is remarkable that v does not depend on the past, if we know the
oo-future. On the other hand we shall see below that knowledge of the
future does help, if we know the co-past. These cases are more difficult to
analyse. Roughly speaking we have N"(o, f§,0) ~/N"(0, B, o0) and in this
sense knowledge of the future is more valuable than knowledge of the past.
Again we can use the knowledge of time. Moreover, we shall prove that in
this case also N"(o0, f, 0) = 0"(c0, B, 0).

A. oo-Past and O-Future -
The following concept of a weighted tree turns out to be essential. |

DrerFiNITION.  Let B be a binary tree with the properties:

(i) The weight of an edge is a number in {1, .., B}.

(ii) These numbers add to at most f+ 1 for the two edges leaving
an internal node. '

(iit) Every path from the root to a terminal node has length #, if
edges are counted with their weight. :

(iv) The two edges Ieéwihg an internal node are labelled with O
and 1. ’ |

Let %#(x, B) denote the set of all those trees and let C(B) be the number
of terminal nodes in B.

An important quantity is

C(n, )= min C(B). (3.1)
BeB(n,f) -
" With every tree Be %(n, ) we can associate a strategy g(B) as follows:

If 5, is the state of the box at the time =1 and /, is the length of the
edge leaving the root of B and labelled by ¢€ {0, 1}, send /; I’s if 5,>1,,
and otherwise send /, 0’s. Since /,+/, < + 1, this is possible. We reach a
new node of the tree. and a new state afterwards. Now just iterate the .
procedure until t=r and at the same time a terminal node is reached.

The number of possible output sequenices does not exceed C(B). This is
our first result.

- ProrosITION 1. N"(o0, f, 0) < C(n, B).
Via several lemmas, we next prove
PROPOSITION 2. O"(c0, B, 0)= N"(c0, §,0)> C(n, B). Then we shall

evaluate C(n, ) in Proposition 3, below. The consequences of these proposi-
tions are stated in Theorem 3.
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The Lower Bound. By the definitions N"(o0, f§, 0)> 0"(c0, B, 0) and
while analysing any strategy f in the case O -, we show also that actually
equality holds. ’

For output y’ define

Y, y)={y"ed(f):y" =, ¥y} (3.2)
F(f, y')={s: s occurs as the state at time i + 1 for output y'}. (3.3)

An optimal strategy minimizes |#/(f, y')| for every y’, because the infinite
past, and thus y‘, is known. However, for this minimization only the
knowledge of &(f, y') is relevant; that is, the actual value of y' does not
matter. For any optimal strategy under consideration we can therefore
write the quantities in (3.3), (3.2) as ¥ (y’) and ¥"™(F(y*)), m =n—i. Their
analysis reduces to the following:

Given ¥ < {0, 1, .., B} as the set of possible states to start
~ with, how can we lower bound |%(%)|?

Here it is understood that m=n—i steps are to be taken. Let % (resp.
41) be the subset of & for which the strategy sends O (resp. 1). If the
strategy may depend on the order (O*), both 0 and 1 can be sent for the
same state s. Therefore &, and & need not be disjoint. Of course

KU = - (3.4)
However, % (%) will only be decreased by sending 0 (or 1) for all

seSHnS. Thus N'(oo, f,0)=0"(c0, f,0) holds and we can always
assume that

Fnd=g. G)

The following formulas follow from the fact that after a letter is sent out |

of the box, both 0 and 1 can enter the box.

FW= s-Lsh,  %O)={) {ss+1}.  (36)

' s€ % s€ 5

A first simple observation is

LEMMA 1. (a) If ¥ <&, thenl@(.?’)lé % (&L).
(b) If "vFL" o, then | (L") + |¥ (L") = |¥(L)|.

e SO
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Proof. (a) Just use the strategy for &' which is induced by an optimal
strategy for &, that is, define '

S =S S,  and  Fo=F NS
(b) By (a)it Sﬁfﬁces to consider the case
LS =, oL =9
Here strategies 7, /" for &', %" induce a'strategy. ffor & as follows:
K= uF], Fo=Fou&y.
Thus in obvious notation
YIS, IS, ") 2 U (S, f),
which implies (b).
Our key auxiliary result is

LeMa 2. (a)- If 0¢ . (resp. B¢ %), then sending 1 (resp. 0) for all
states in & is optimal.

(b) If ¥ =% +c, where the bar denotes complementation, ¢ is an
integer and the addition is that for integers, then for an optimal strategy

1Y (L)N =¥ (ZL)l.

Proof.  We proceed by induction in m=n—i. For i=n no further letter
is sent and the statements are vacuously true.

n—i—1-n—i (a) f0¢S, then & —1c{0,1, ..} is defined and

thus #(0) — 1 is also defined. By the induction hypothesis for (b) therefore
W (S(0)) =¥ (H(0)—1)]. (3.7)

Furthermore, for our strategy
FL(1)= U {s—1,s}, 0¢7 (3.8)
se¥

and thus by (3.6) for the optimal strategy

9(_1)=<U {s—i,s})u(u {5_1,s})_

se s€ S

= A1) U (%0)—1).
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Application of Lemma 1 gives
(SO <IF(A)] + 1% (H(0) — 1))

and thus by (6.7)
| 1YL < 1Y (A1) + 19(%(0)).

Since the case'ﬁéy is symmetrically the same, (a) is proved under the

induction hypothesis for (b).
(b) For ¢=0 nothing is to be proved and for the case c¢+#0, (a)
applies to both set % and set &, and the minimal values Y (L), |%(P)]

arc assumed for strategies described in (a).

Following these strategies, after one step we have two sets of states,

y(}’iu) and f?(fwx)-
Since

L(yi+1)= U {S“J’i+1a5+1-)’i+1}
se &

and
57()7:+1)= U {S~.)7i+1;s+1’_)7i+l}s '

, seF—c
there exists a de {¢,c+1, c— 1} with |
| SV )= (Fi1) +d.
By the induction hyp_o'thésis for (b) therefore
U Gie D =1¥(P (5., ).

Since

YL )=y * Y(L(yis1)

and ‘
@(9):)71.4_1 *@(?(yurl)),

the result follows.
Using Lemmas 1 and 2 we can now derive another basic auxiliary result

LEMMA 3. For any & {0, L.,B} %+,
() =190, 1, ., |#] - 1})]
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Proof. Let {(m,1):1<m<n1<t<P+1} be ordered lexicographi-
cally, that is, (m, 1) <(m’, ') iff m<m’ or m=m' and t <7'. 7 stands for
| #|. We proceed by induction in this well-ordered set.

(m, t)=(1,1). If 5 is the one state, apply Lemma 2(b) with ¢ = —s.

Induction. Assume the truth of the inequality for (m', ') < (m, t). Let

an optimal strategy achieving |%(%)| send 0 for states in % and 1 for

states in %. If t=f+1 nothing is to be proved and otherwise we can .

~assume by Lemma 2(a) that % = (J or % = (J. Furthermore, it suffices to
consider the case & = ¢, because by Lemma 2(b) the case % = (J is sym-
metrically the same. Again by Lemma 2(a) we know that it is optimal
always to send 0 for the set of states {0, 1, .., || — 1}. Therefore

1Y) =10+ T F U +1), (3.9)
W({0, 1, .., |F] = 1}) =0« ¥~ 1({0, 1, .., || })]. (3.10)

Since | U & + 1| 2 |&| + 1, by the induction hypothesis and Lemma 1(a),
we know ‘that

(A G AR 1) = lym-1({0, 1, ..., (f)})|

and the result follows with (3.9) and (3.10).

Proof of Proposition 2. Lemmas 2 and 3 have the fo]lowing important
consequence. We start with & = {0, 1, .., B}. If & and & are the state sets
for an optimal strategy, then

({0, 1, .., B})| =% (%) + |¥(%)
219({0, 1, .y [%] =11+ 1% ({|%], .. B}

If 1=, then for s <t we should always send 0 and for s > 7 we should
send 1. Moreover, by Lemma 2 it is still optimal, if in the case s <7 we
send a 0 f—7+41 times and in the case s>7 we send 1 t times. Since
necessarily 0 € .% and fe % we have 1 <1< B. Thus this optimal strategy
corresponds to a tree in the class B(n, B).

Evaluation of C(n, ﬁ) It seems intuitively clear that trees with minimal

C should be as balanced as integral numbers permit; that is, most edge
lengths should be close to /2.

To obtain an exact and simple formula for C(n, ) seems to be somewhat .

tricky for even B. It involves a minimization over a system of linear
difference equations. We confine ourselves here to the determmatlon of the
rate of growth.
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ProposITION 3. lim,_, (1/n)log C(n, B) =log A*, where A* is the
largest positive root of AP+ =ATC+D214 LB V21 1y particular log A* =

2/(B+ 1) for odd .

Proof. By definition of C(n, f) we have the recurrence relation

C(n, ) =min { Cn—1,, p)

C(0, B) = 1.

We can modify a tree Be #(n, f) to a tree B’ € B(n, f) by lengthening all
- edges so that 3°;_/,;=f+1 holds for all internal nodes and then cutting
~ the tree at depth n. Clearly, C(B') < C(B) and we can therefore write

C(n, f)= min C(n——‘l,ﬁ)+C(n—ﬂ—l+l, p) for n>ré—_2—F—I=I (3.12)

1<I<f

An upper bound for Iim, , . (1/n) log C(n, B) is readily obtained by deter-
mining the rate of growth of C satisfying

o 1
C;[)=C;(1[)_1+C£{)_[3—1+1 for n>(é_—2t_—l (3'13)'

and by minimizing these rates over I. We obtain the characteristic equation
A= pnmly gr= b= (3.14)
which can be written in the form |
ABFY = ppri=ty 2l A>1. (3.15)
Allowihg [ to take any real value, we see that |
f()= A‘”‘"-i—k’;—-exp{(ﬂ +1—1)log A} +exp{llog i}
has first and second derivatives

f'(I)=log A(exp{lvlog A} —exp{(f+1—1)log A})
()= (log 2)* f(1)>0.

The minimum occurs for /= (f + 1)/2, and by convexity the smallest value
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for integers occurs at /= [_(,8+ D2LT(B+1)/27] We have thus seen that
forall A>1

AL D254 AT B B+t 1 for (=1, .., f (3 16)

and hence for /= (f+1)/2],[(B+1)/27] we have the smallest positive
root of (3.15).

It remains to be seen that for this root, say A* log A* is a tlght bound i

Thxs however, is a special case of the following result.

LEMMA 4. We are given L linear equations

(1) bn=g1(bn~—ls-"a bn—k)

with non-negative coefficients and the characteristic equation 3* =, (A).

Suppose that for [=1* the largest root A* satisfies
(ii) A** <y (A*) forI=1,.., L,

then for any positive initial values a, ..., a; we have for the recursive equation
(i) a,=min;¢;<; g/(Ay_1y . @y_y), lim, o(1/n)loga,=log A*

Proof. Obviously as in the previous argument lim, _, . (1/n)loga, <
log A*, because all coefficients are non-negative. If @, =1*,¢=0, 1, .., k,
are chosen as initial values, then the sequence (d,)*_, produced by (iii)
equals the sequence (A*")2°_ ), because A** =min,; ., ¢, W¥,(A*). Therefore

lim —loga =log /1*

n—oo N
Now for our initial values there is a y >0 with
a,=yA*"  for t=0, , k
and since all coefﬁcienfs are non-negative also

a,=vya, for n=0,1,2,...

Thus

1
lim —loga,>log A*

n— oo H

Remark. Positivity of the initial values is essential for the result to hold,

as can be seen from the
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EXAMPLE. bn=2b";2, C,,=C,,“2+Cn_3_, an=min(2an_2, an_2+a,,_3).
For (a;, a;,a:)=(1,0,1), a,=0 and generally

B 0 forneven'
%=1 fornmodd.

We summarize the results of Propositions 1, 2, and 3.

THEOREM 3. (i) N"(oo, f,0)= 0", §,0),
(ii) v(oo, B,0)=0w(w, f,0)=log A*, where A* is the largest root of
APt = /IL(’””/“+/1“’3+”/” For odd B, log A* =2/(B +1).

B. Solution for All Cases Involving co-Past

We have determined N"(oo, B, ¢) in Theorem 2* for all p>pf—1and in
Theorem 3 for ¢ = 0. We now settle the remaining cases. For this we make
use of the fact

N"(0, B,0)=0"(c0, B, 0)

established in Theorem 3 and the idea underlymg the strategy used in
proving Theorem 3.

PROPOSITION 4. 'N”(oo, B, @)= N"(0, B+ ¢,0), if ¢ <f-1.
~ Proof. Using only the first positiohs in the box we see that

0"(c0, B+ @, 0) < N"(c0, B, co);

and thus
N*(o0, f+ ¢, 0) < N"(00, B, @).

We establish the reverse inequality by showmg that the strategy mentioned
above can be adapted. :

Let the future be x* = (x, .., x,,) and let 5 be the usual state of the box,
where 0 <s< f.

Map (s, x?) onto s + |x*|;, which can be viewed as a new state in
{0,1,.,B+¢}. Since p<f—1 implies [(f+1 +9)272 Qe+ 1)/27=
o+ 1 >(p, a suitable element, 0 or 1, to follow our optimal strategy for
N"(o0, B+ ¢, 0) already exists in the box.

THEOREM 3*. (i) v(co, B, 9)=1/B for ¢ = f— 1.

(i) v(oo, B,0)=log A*, where A* is largest root of AP+'—
Ar(ﬂ+1)/2_1+/{l_(ﬁ+1)/2_l '

et




64 AHLSWEDE, YE, AND ZHANG
(i“) V(OO,ﬂ, (p)=V(OO,ﬂ+(p,0)f0r(p<ﬂ—1 “
(IV) ) V(OO: ,[}9 QD):'YCU(OO: pa (P)fOI' all (P .

Proof. The only statement not directly contained in Theorem 2*,
Theorem 3, and Proposition 4 is (iv) for ¢<f—1. Here the identity
follows from (iii) and

(0, B, ¢) > w(w0, B, 9) > w(o0, f+ ¢, 0)=v(c0, f+ ¢, 0).

C. 4 Limit Theorem for m — oo

The result below may be appreciated after one has thought, about the

corresponding problem for the future. There we have strong evidence for
the

Conjecture. lim,, , , v(r, B, @) # v(n, B, 00 ).

THEOREM 4.  For all (finite and infinite) values of ¢

nli_f:; v(m, B, ¢)=v(0, B, 0).

Proof. Since by Theorem 2*, v(r, f, o) =v(co, ff, 00), only the cases
¢ < oo are to be treated. Here the proof is based on an interesting strategy .

which closely resembles our strategy in the case of knowledge of time. The
finite past is used to divide the time into cycles. '
We consider first the range of values

p<p 7r=kf+1;

gz[_ﬂi“f_fp

(3.17)
5 ], I<r<t, k> 1.

1t is convenient to use the following diagram, which indicates the division
of time, ‘

Py Py Py

r r I [ Jij 1)
past P working future F

area B

At the beginning either B is filled or we wait until this is the case. Since we
let n tend to infinite for fixed (7, B, @) this has no effect on the rate. We
may as well assume that B is filled.
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Strategy 1. The strategy is a combination of two basic procedures.

Procedure 1. Either P is not filled or it does not contain all 1’s or all
0’s. O sends ¢ 1’s, if there are as many in the box and in the forseeable
future, that is, in BF; otherwise he sends ¢ Os.

(This is possible because the worst situation which could arise is that
there are ¢, 0’s followed by ¢, 1’s in F, but then there are at least
£ —@;> @y 1's in B and after they have been sent the 1’s of F have started

to enter B.)

Procedure 2. P is filled with ¢'s (¢ equal- 0 or 1). O continues to send
¢’s until there are none left in B. Then he sends ¢ times the other letter.
At the beginning P is empty and Procedure 1 applies. O knows when it

terminates, because at that time' P, is filled for the first time with ¢'s only.

Then O applies Procedure 1 k times until P,, .., P, are filled. Now @
again follows Procedure 1 until P, , is filled. Here if not all elements in
P are of the same kind, @ completes Procedure 1 for the remaining £ —r
steps; the termination occurs when every P, has elements of one kind.

Otherwise Procedure 2 applies. Clearly, from now on P is filled and one of -

the two procedures always applies. When they terminate every P, has
elements of one kind.

‘The strategy ends when n letters are sent. This generally occurs while
a procedure is not completed. However, this procedure yields output
sequences of the form

every letter & (¢=0,1) appears in blocks of length
mel{l,2, . kt, (k+1)¢, (k+1){+1, .. ., n} with the excep-
tion that the last block of a word may have any length
m<n—|I :

. Let R(n, ) count the number of those sequences. It satisfies a recurrence
relation with the characteristic polynomial

An=1n~/+ln—2(+ +in—(k+1){

Ty L AR LA B LR RS ITE NI (3.18)

This can also be written as
/{n:/ln—t’_*_xn—ﬂ_{_ +An~(k+1){(l+x——l+/{—2+ +/{—n+(k+l)()
or equivalently as

M=l ity A ATR(L AT 4 L g kR0 (3 qg)
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Let p,(m) be its largest root and let p(n) be the largest root of
4 —f —2¢ i — k¢ 2’
R i vt (3.20)

For every n the express1on to the right in (3.20) exceeds that of the right-
hand expression in (3.19). Therefore

p(m)> py(m) (3.21)

and by continuity
| lim p,(7)=p(r). | (3.22)

We conclude that

lim —log R(n, ) <log p(n)

n—soo M
and, since by our strategy

N*(n, B, ¢) < R(n, ¢),

also
v(m, B, p)<log p(n). - (3.23)

Since 7 = k¢ + r, we derive from (3.20) that p(n) is increasing m 7 and has
a limit p=1lim,_,  p(n). It is root of

AM=14+1"741"Y% ... =

(3.24)

or 1Y =2. Therefore

: | ;
p =2 f________._M o (3.29)

This and (3.23) imply

. 1 | o,
lim v(=m, B, (p)'s-{;. (3.26)
Now for B+ ¢ odd we have £ = (B+ 1+ ¢)/2.
By Proposition 4, v(oo, B, ¢)=v(c0, f+¢,0) and by Theorem 3,
v(o, B+ ¢,0)=2/(B+ 1+ ¢). These facts and (3. 25) give the result for
¢ <p and ¢ + ¢ odd. '
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Case f < ¢. Ignore the 1ast @ — B + 1 positions in F. Thus we are inrthe
case (f, o) = (B, B—1) with £ = and the previous result gives

’ 1
lim V(T[, ﬂ} (P) < lim V(ﬂ, ﬂ’ ﬂ - 1)<B’;
which by Theorem 2* equals v(oo, f, c0). Since obviously v(co, 8, ) <
v(m, B, f—1), the result follows here also.

Case ¢ <P, 9+ f even. Actually we modify our previous strategy so
that it covers the case ¢ + f odd as well. Define '

/0=Lﬁ3;—¢J, /F[ﬂf—;i‘q.. - (3.27)

- When there are #; 1’s in BF, then (as before!) send them. Otherwise send
o 0's (not, as before, £, 0’s). Repeat this until P is filled, ‘

In the case ¢ + f odd there is no difference from the previous strategy.
But if the sum is even, then we have blocks of length 7, filled with 1’s and
blocks of length 7, filled with 0’s. As long as both letters occur in P, O
always knows when he has finished the task of sending such blocks.
Otherwise (as before!) he continues to send the one letter occurring in P
until B has none left. For the analysis of this strategy it is essential that
these blocks longer than 7 — 1 have no effect on the asymptotics, as can be
seen from (3.24), which now is to be replaced by the familiar

Ap+1+q)=/{Lﬂ+1+¢)/2J+XF(/3+1+¢)/27' (3.28)

In the usual way we thus obtain

lim v(x, , @) =log 4*,

with 1* the largest root of (6.28). By Theorem 3* therefore

lim v(z, B, 9) =v(c0, B+ ¢, 0) =v(o0, v, ).

Remark. Inspection of the strategies used in Sections 5, 6, and 7 for the
- cases (7, B, @) with ¢ equal to 0 or oo shows that they can all be subsumed
into or be replaced by this last basic strategy. We conjecture this to be so
for all (=, B, 0) and for (, B, @), if 7 is sufficiently large compared to ¢.

4. N" in the Knowledge of 1-Future or 1-Past

Whereas knowledge of the co-future is worth more than knowledge of
the oo-past, the situation is reversed for very small values of ¢ and n. We
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settle here the cases (m, )= (0,1) and (m, @) =(1,0). Actually, (m, @)=
(0, 1) is not better than (n, ¢)= (0, 0).

THEOREM 5. N”(0, B, 1)=2" and thus v(0, §, 1)=1.

Proof. Clearly, N™(0, 8, 1)<2", because |%|=2. Consider now as
“states” the set {(5; x):0<s<p;x=0, 1}. A strategy / maps this set into
{0, 1}, where of course (0, x) =0 and f(f, x) = 1. Let us look first at the |
possible transitions between states.

L (5,00 = {(s—1,0), (s—1,1)}, if s>0.
I (s, 1) =" {(5,0), (s, 1)}, if s>0.
L (5,0)=°{(s50), (s, 1)}, if s<B.
IV. (5,1)->{(s+1,0),(s+1, 1)}, if s<pB.

We classify the strategies as follows:
Case 1. ffollows rule I for s>0 and rule IV for s<p.

Case2. There is an s* 0<s*<pf, for which f follows rule Il or
rule IIL. '

Suppose first that an optimal strategy falls into the first case. Starting
with a full box let #'(s, x) be the set of possible output sequences with state
(s, x) after i transmissions. Then for x =0, 1:
 With the symbols {J and * denoting disjoint union and concatenation
operations, respectively,

@i(s,x)=@/i;’(s+1,0)aé1u@"_l(s——l.,l)*O, O<s<f (4.1)

(0, x) = F (0, 0)x 0w F~}(1,0) 1  (42)

B, x)=F 1B, )x1OH 1 (f-1,1)%0 : (4.3)

‘and hence inlvthis case o , _
@' =2 |9, - (44)

Now note that in Case 2, when we follow, for instance, rule II for s =s%,
we never reach a state s’ exceeding s*; that is, we always have at least
p —s* 0’s in the box. In state (s*, 1) we send 1 according to rule II and for
s’ <s* as for s =s5* we do not need the extra f —s* 0’s. Therefore we can
decrease the size of the box from g to s* and follow the isomorphic
strategy. By induction on the size of the box we arrive at =1, where we
must send whatever arrives.

The situation is symmetrically the same if rule III is to be applied. Thus
N"(0, B, 1)=2".
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Our next result is expressed in terms of the binary entropy function A.

THEOREM 6. (a) V(L B, 0) < sups(1— (B —1)8) h(3/(1 — (B—1)6)).

, 1(b) (1, B,0)>log yp, where Vp is the positive root of AP —
AP —1=0. ‘ '

(©) sup,(1— (B~ 1)8) h(5/(1 — (B~ 1)8)) = log .

Proof. (a) The states are now {(x,s):x=0, I; 0<s<p}. First we
analyse the strategy

f0,5=0  for s<p

and

f(l,s)=.l for s>0. " (4.5) .

This strategy simply repeats the previous action, if this is possible. First we
derive the stated upper bound, and later we show that this strategy and
also this bound are optimal: Note that the sequences produced by f have
the following structure: . o

The first letter, 0 or 1, occurs ¢ o times, then the other letter in & # ; times,
then again the first letter ¢, times, etc., such that for a suitable d< Ln/B ]
the vector I=(¢,, £, .., £,, ) has the properties |

d+1 ‘
X fi=n and  ¢£,>f for i= 1, .., d (4.6)

i=0 '
Furthermore, the cardinality A (f) of the set (f) of output' sequences of

length n satisfies

M(f)<2X58) L(n, B, d), where L(n, B, d) is the number of
vectors 1 of length d+ 2 satisfying (4.6). : (4.7)

Obviously, L(n, B, d)equals the number of vectors (Cosli—=By s Cy—B,lyry)

with components in N, and

Z°+§: (£;—B)=n—pd. (4.8)

This number equals ("~%*9) and therefore

M(f)<225'ipd<”-ﬂd+d>.

d

B R
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This implies

W(1, 6, 0) < Tim ~log M(f)

n—»oco N

< max (1_(5—1)5)11(1—;(—5—-——).

0<s<1/p B—1)o

(b) First we derive the desired lower bound for |#"(f)| and then we
show that f is better than all its competitors.

Let M"(m), m=1, .., §, be the number of output sequences of length n
for which the set of possible states is either {0, 1, ..., m} ot {f—m, .., B}.
Note that these are the only sets of states occurring when we start with
state set S and any memory O or 1. Therefore

; | |
M (f)=Y M"(m). (4.9)

m=1

One readily verifies the relations

M'm)y=M"""(m—1) for m=2,.., p—1 (4.10)
M'1)=M""Yp) ' (4.11)
M"(B)=M"""(B)+M""}(f—1). ’ (4.12)

By (4;12) and (4.10)
M”(ﬂ)=M”“(ﬂ)‘+M”““”fz’(1)
and hence by (4.11) |
M"(B)=M"""(B)+ M"~#(p). (4.13)
With M"(8) = A" therefore |
e L Y O L

which implies the desired lower bound for M™( f), because by (4.9) and
(4.11) ' '

p—1
MY ()= M"(m)+M"(B)+ M~ '(p)
m=2 :
and by (4.10) and (4.11) -
M(f)= S MB). 414

f=n—f-—1
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Now for any competitor g different from f, we distinguish between two |
cases. . '

Case 1. 3Is*,0<s*<f, g(1,5*)=g(0,s%)=c. If ¢ =0, then from
{s*, .., B} we never leave this set, and if ¢ = 1 this is the case for {0, ..., s*
Since max(s*, f—s*) < f the suboptimality of g follows by induction in B,
the case f=1 being trivial.

Case 2. 3B*,0<p* <p, g0, p*)=1, znf g(1, B"‘)=O.‘ s* is 'calrle‘d a -
reversely ordered state of g. Clearly, a function G has no reversely ordered
states .if - :

G(1,9)>G(0,5) for s=0,1,..,8 (4.15)

f has no reversely ordered states. By symmetry we can assume that
B*+1<B—B*+1, or that

1sﬂ*<§._ - C(4.16)

. We can decrease the output space only by assuming that initially we start
with (0, {0, 1, .., B*}) or (1, {0, 1, .., B* — 1}). If we replace B by B*, then
strategy g behaves almost like strategy /- The difference is that there is now
a transition from (1, f) to (0, B*) and no transition from (1, B*) to
(0, B* —1). We just skip (1, B*) altogether and again only decrease the
output space. We then have the following cycle, where. arrows indicate
transitions and we avoid drawing the loops.

OOT—= 0D —— (0.2 —— (0, p*~ 1) —— (0, %)

1

(1,0) e—— (1, 1) =——(1,2) .- —— (1, p*— 1)

To make the situation symmetric we also skip (0, 0). The possible state sets
are now .

{1,2,..,m)}, {B*—m,p*—1}  for m=1,.., p*

and we let M*"(m) denote these numbers after time n. Now note that the -
relations (4.10) to (4.12) hold for these new starred quantities. .

The initial conditions are now different, but this has no effect on the rate
of growth. Therefore

1 .. -
lim —Mn(g)>10g ‘/’/J‘>I°g‘ﬁﬂ- . (4.17)

n—soo N

Thus, we have actually also proved that f is the only optimal strategy. |
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(¢) The function F(é)—(l——(ﬂ—l)é)rh(é/(l—-(ﬂ—l)é)) is defined .
for d€[0,1/8]. Since F(0)=F(1/8)=0 and F(5)>0 otherwxse an
extremal value must be a maximum, if it is unique.

Using the definition of the bmary entropy functlon h, we readlly verlfy
that

F(8)= —61log 6+ (1 — (f—1)8) log(1 — (B — 1)5) |
;(1—ﬂ5)1og(1—'ﬂa). | o (aa)

Since for any differentiable function G, (Glog G) = =G'(log G +1), we
- obtain

F'(3)= ~log 6 — (— 1) og(L = (B — 1)5) + flog(1 —§5), (4.19)
which has a unique root 5* satisfying
(1= (B—1)6%)P~ = (1— B6%)F.  S*c [0 18] (420)
Since F can be written in the form |

(1= (8= 1)3) =0~ 11
S (1—po)y B

F(6)=1log

~ we derive with (4.20)

1—([{—;1)5* E

T (421)

F(6*)=log

It remains to be seen that (1—(B—1)6*)/(1—p6*) is a root of
7 /1” AP='—1=0. Again using (4.20), we obtain _

(1 —‘(ﬂ—.l)é*)l’_' (1 _(ﬁ_ 1)5*)13—'1. |

(1__135*)/3 . (1.__'_55*)ﬂ~1 _1,
_1—=(B-1)6* 1-p5*
5% 5* ‘—1—0,

Remarks. (1) We add an interesting example. Whereas by Theorem 5,
v(0, B, 1) =1, we have v(0, §,2) < 1. To see this we consider the strategy f -

- defined by the following didgram, in whxch the row-index nges the number
of 1I's in the future
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0t .. p—4 p-3 B—-2 p-1 .8

00 . 0 0 0 I 1
10 . 0 0 1 0 1
20 - 0 1 0 I 1

V’It éan»bé shown that , , -
1Y (NI<L192 ()] + l@”"z(fv)l +9=2(1)]

and the largest positive root Aoof 2 —22— ) 1=01is smaller than 2.

(2) We have actually proved directly that v(1, B, 0)=log Yy We
have included (a) and (c) to see that there is an alternative expression for .

v(1, B, 0) and an alternative way to derive it.

5. RESULTS FOR a > 2

A. On N0, 8,0) as f— oo

The function N0, B,0) obeys complicated recurrence relations, We
present here a result for o =3 and f — oo which says that asymptotically -

in f the cases ¢ =2 (see Theorem 1) and ¢ =3 show the same behaviour.

THEOREM 7. limg_, ., v3(0, B, 0)=1.

lProoﬁ We have the set of states .

ix s(1)=p}.

=

& ={6(1), 522, s st N,

Any ‘strategy f: & - {1, 2,3} can be described by a chart of triangular

structure. We' give an example for f = 3 in Fig. 1. If, for instance, in -

- (300) s

A send a 1 for state s .
ij send' a 2 for state s .

o \ send a 3 for state g .
‘@3) . ¢ ‘ :

FIGURE 1

A4
v
»

 (odor—>
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state s = (s(1), s(2), 5(3)) we send a 1, then we must consider transitions
to the three states (s(1), s(2), s(3)), (s(1)—1, s(2) + 1, s(3)), and
(s(1)—1, 5(2), 5(3) + 1)), because any one of the letters 1, 2, 3 can-enter the
box. Thus the arrows describe the possible transitions of states. Since every
state can return to itself we have omitted the loops indicating these trans-
itions. :

Our first observation is that for any chart representing a strategy there
is at least one line with arrows in opposite directions. To see this, let us |
start with state (B, 0, 0). Necessarily f(B, 0, 0)=1 and thus there is a trans-
ition to the state (f—1,1,0). Now either f(f—1,1,0)=2 and our claim
is established or f(f—1,1,0)=1 and there is a transition to (f—2, 2, 0).
Since f(0,,0)=2, for some 'y necessarily f(f—7v,7,0)=1 and
S(B—v—1,7+1,0)=2. Thus in state (f—7, y, 0) any input word without
a 3 as a letter .is reproduced by f and hence

@ () =2"  v5(0,5,0)>1. BCHY)

We now show asymptotic achievability of this bound by a strategy £, which
corresponds to the chart shown in Fig. 2. We give the formal description:

Since v4(0, §, 0) is monotonically increasing in f, it suffices to consider
cases where f # 0 mod 3 and f> 3. It is convenient to use the abbrevation

y=IB/31

Under our assumptions we can partition the set of interior points
| I={s:s(i)>1fori=1,2,3}
into the sets
I=1In{s:s(i)<?y, s(j) =y withj= (i + 1) mod 3}
(i=1, 2, 3)7 and the sets of bou‘ndary points into the sets .
B,={s: 1<5(i)>y, s(j)=0for j= (i +2) mod 3}

-~ and. .
Ci={s:y<s(i)< B, s(j)=0forj= (i+2) mod 3}

FIGURE 2
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(i=1,2,3). Set 4;,=1,U B,. f takes the value i exactly on D;,=4,uC,
(i=1,2,3). The points Pl::(yaﬂ—,y, 0), P2=(09 Vs ﬁ—y)ﬁ and P3y=
(B—7,0,y) play a special role. We can enter 4, from A4, only via P, (and -
similarly 4, from A4, only via P,, and 4; from A4, only via P;).
Furthermore, starting in 4, we can come to D, only via D, and this
takes at least y steps. Moreover, if we start in C,, then again it takes y steps
to come to D;. The other transitions obey analogous rules. Therefore
%"(f) has the following structure: :
There are three types of sequences depending on the initial state. If this
state is in 4, U B, U C,, then we have at least y letters from {1, 2}, at least
y letters from {2, 3}, at least y letters from {1, 3}, etc. Therefore

() <3 1Lim )| 2% 62

where L(n,y) is the set of sequences of numbers (£,,7,, ..., 4, ,) With
£;2yfori=1,.,dand 3¢9°! ¢/, =n. As in Section 4 we have the bound

.1 ' ‘ 0
— < —_ — ————
nlgr:onl()g lL(n’Y)I\ogixx/y (‘1 Y 1)6)11(1—();__1)5) ,

and the right side tends to 0 as § and therefore y tenids to 0. This and (5.2)
imply the result. - ' | . |

B. A Formula f'or,va(oo, 2,0)
The set of all possible states is now

FD={11,12, .., 10; 22, .., 20; .., oat}.

Let S(y’) be the set of states in & under strategy f; if the past is y'. After |
¥ has left the box there is a set 4(y*) = & of possible elements in the box.
' Sinqe then all letters in &' can enter the box, S(y') is of the form

S(y)= U {ol,., 00}, where g0’ =g¢'c. (5.3)

G e A(y)

The possible sets of states in one more step under S are
F)={S(yy):yex}, | (5.4)

which depends on A(y') and up to a permutation of {1, 2,..,«} only on
|4(y")|. For instance, if |4(y')| =1 and w.lo.g A(y')= {1}, then S(3*) =
{11, 12, .., 10(}. If f prescribes sending 1 for all states in S(), then we get

LN ={S'D} = {11, 12, ., 10; 22, ., 20, ..., w0t} = T,
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We denote this by 1 - a. If | A(y")| =2, that is, wLo.g. A(y')={1,2}, then
S(y)=1{11,12, .., 1a; 22, ..., 20}. Sending 1 whenever there is a 1 in the
state and otherwxse 2, we obtam : : -

- F(y)={S(y1), S(y'2)}={{11 12, .., 10522, .., 2&;-..; aa},
{12,113, ., 1e; 22, . oux}}

We denote this by 2 - {a, o 1}.
Analogously, we define

ko{ma—1,a—k+1} for k=1,2,.,a (5.5)

This describes a strategy F, which we shall prove to be optimal. In order
to compare 1t with an arbttrary strategy f, we introduce the following
notion.

If |A(y")] =k, then we set |
BY=1{seS(: 111, 5 =j}i 1<j<o (5.6)
Thus vt/e can assign to f and the ngen y' an operation 7 '
ko (B, B (5.7)

It counts how often f outputs y,,, = j (1 <j<a) as s varies over S(y°).

We now prove optimality of F by induction in m=n—i. Because the
case m = 0 is vacuously true, we assume optimality of F for m </ and show
optimality for m=/¢. If we use f at time i, then by the induction hypothesis
we can use F at time i+ 1. This results in the operations k — {8, ..., B}
and B - {a,0—1,.,0— B +1} for j=1, .., k' correspondmg to Z(y').
Clearly, k<k'<u.

Similarly, if we use the strategy F twice, then k—{a .,0—k+1} and
a—j+1-{a,a—1,.,j}forj=1,.. k We show that the ﬁrst strategy fF
can only be worse than FF and thus complete the proof.

A comparison can be made by comparing the systems of state sets after
JF and FF have been performed. We obtain the trees shown in Fig. 3,
where the labelling of the nodes incidates the “sizes” of the state sets and
edges are labelled by the letters sent. Since by definition Y | B/ =
a+(x—1)+ --- +(a—k+1), the number of states in “k-x a,” both' trees
have the same number of terminal nodes. However, for the operation of the
system in the future the sizes of the state sets at the terminal nodes are
. relevant. F ortunately, for any y there are at least as many sets of sizes
greater than y in the tree fF as in the tree FF. This fact follows from the
lemma below, and since the number of successors of a node increases with
increasing size of the state set, our proof is complete.
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FF
1 yaxa ' ; 3 1xa
kxa (a=1)xa v b3 axa
: a1 2xa
(“"_kﬂ)xu - I —> axa
fF
axxa
(a- s”’mxu

- kxa 7

axa .

(a-B)ik')H)xu

FiGURE 3

We formulate the auxiliary result in terms of matrices.

For e=1,2 let M, be an (xxk,)-matrix with 0,1 as entries and the
properties” -

(a) M.(, ])>M(l j)fOI‘l<l andallj

(®) M, j)> L, MG, ') for j .

() Xy, ML, j) at(@—1)+ -+ +(@—ky+1).
Moreover

(d) Z,Ml(z,) o— j+1forj—-1 wky.

LEMMA 5. If for any number ¢ and any ¢ co,lurhns Jis ...,. Je
(€) X7 X My(hj)<a+(@—1)+ - +(a—f+1)
then for every 5

k,

¥ Y M, )< Z Y. My(i, ).

j=1 i<é j=1 i<é
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Proof. 1f M, has a 1’s in the first column, then omission of this column
in both matrices reduces the problem to matrices M with o' =a—1, k.=

k.— 1. In the case k, =1 the result obviously holds: 4
If M, has fewer than a 1’s in the first column, we change M, to M ¥ with

one more 1 in the first column and one less 1 in the last column, which has

the same number of 1’s as the second column. )

Since (a), (b), (c), and in particular (e) again hold for M ¥, and since
Y Y s My(i, )2 30 3, s M3(i, j), the result follows by iteration
of the two reductions.

In the application the number of I's in the ith row of M, equals the

number of (x —i+ 1) x o state sets.

Analysis of strategy F. Let a} count the number of i’s in the fth compo-

nent of the output sequences. Initially, at =0, we make the convention

a;=0,.,a, =0,a,=1 For t=1 we have a} =al= ... =q!, which can

be written as
a

(aiv a;> ey a1)=(aa, 7700 o P PN ad+da——1+ +a1)= (O: 0: ey 1)Da9

where

D,=|: .. ;
1 ... 1

As can be seen from the definition of F in (5.5) (or from the diagram FF),
in general

t+ 1

-3

t+1

(ai™, .,a.*)=(d', .., al)D,

a

and thus
| (@}, . a?) = (0,0, .., 1)(D,)"
We have |%"(F)| =3.%_, a7 and therefore

1 .
lim —log |%™(F)| =log y,,

n—-o0wo N

~where Y, is the largest eigenvalue of D,.

We summarise our findings.

THEOREM 8. Strategy F is optimal. v,(c,2,0)=log y,, where y, is
largest eigenvalue of D,.
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Further, observe that for a =2, ¢, =(1+ \[ )/2 and that by Theorem 6,
(1, 2,0) = log((1 +/5)/2)

COROLLARY.  v,(m, 2,0) =log((1 ++/5)/2) for all x> 1.

0. ON-T IME AND ORDER

Recall that. we know from Theorem 2* in Seetion 5 that
T"(m, B, @)= N"(c0, B, 9) for ¢>f—1landallz>0. (6.1)

Analysis of our strategies achieving v(oo, fi, @) for ¢ <f—1 (Section 3)
- shows that they do not make full use of the available knowledge From
knowledge of the oo-past they use only

(a)- knowledge of time,
(b) knowledge of the 1-past.

The following result is a consequence of this observation, of (6.1), and
the obvious mequahty T"(m, B, @) = N"(0, B, @).

THEOREM 9. Foralln>1, P, and ¢

) ’C(ﬂ?, B9 (p)= V((X), ﬂ9 (p)

- Thus for =2 only (0, §, @) remains to be investigated. We study here
the case ¢ =0.

The analysis of T"(0, f§, 0) requires a new setting of ideas. Thus far we
have found only a lower bound, which is tight for f=2. Actually, the case
f=2 can be settled much more quickly via Theorem 8, as we explain
below. We included the following approach because it contains a new idea,
which may be useful otherwise or may be improvable.

Since O knows the time, a strategy is now a sequence f = ( fl, vees In) of
maps f;: {0, 1, .., B} — {0, 1} with £,(0)=0 and f,(8)=1. A

Suppose that at txme t the set of all possible outputs is {y*(1), s V(K)}
and that for j= -k, L(y'(j)) is the set of all possible states for
output y‘(j). Then :

1) = 19" () <j<k~f); | (62)

that is, |%"(f)| depends only on the k state sets and not on the outputs at
time 1.

We mvestlgate this situation by cons1dermg more abstractly any & sets of
states Uy, .., Uy, c & = {0, 1, ..., B}; that is, we study Y™(Uyy oy Ug; f) with
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m=n~—t. Since the strategy is fixed we drop the letter f in our formulas.
We associate with the sets U,,..., Uy sets Vi, .., Vy, where

V,= U (UynUyn - nU,,). (6.3)‘

i{aig# - #liy

The lower bound mentioned is a consequence of the following inequality,
which holds for all j.

LEMMA 6. [F™(Uy, ... U Z ™ (Vis s Vi)l

Proof. We proceed by induction in m.

For m=0 nothing is to be shown. For fixed m set

L= {se: f,_.(s)=¢} and define for any Z< &
Ze=ZAP%  e=0,1. (6.4)
Furthermore, set

Z*=Z7°0(Z°+1), Z“%=Z'u(Z'-1). (6.5)

Obviously we have

@"(U,, .y U = @™~ U, .., U)| + @=L (U %, ., UL (66)
and by the induction hypothesis for m —1

. . .
I@M(Ula eeey Uk)l 2 Z '@m_l(Vl(Uf*a eeey Uret*)) 1 sfsk)l (6‘7)

Since by (6.4) and (6.5) |
Us* = (U0 %) 0 (Uin #7)+ (~1)),
we have | | |
VU, .., U
= U N (Un )0 (Uyn )+ (=1))

W#h#* - #ip J=1.,0

(U0 wee)

h#ELQAE - Fip j=1,0,7C

+ {0’ (— 1)F} = V!(Ub ooy Uk)e-*9
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again by (6.4) and (6.5). Now #™~! can decrease only if the sets of states
decrease and thus by (6.7)

(U, ..., U = Z 9"V AUy, o, Uy 5 1< <k}, (68)

- e=0

The expression on the right side equals [#™(V,, .., ¥,)| and the inequality
is established.

THEOREM 10. Let {a,(f)}, be a sequence of positive integers satisfy-
ing the recurrence relation :

a,(B) =, 1(B) + a,_4(B)
and the initial conditions
a,(B)=n+1 ~ for n=1,2,..5;
then | |

@) Tn(0,B,0)>a,B)
(i) T"0,2,0)=a,2)

(iii) (0,2, 0) =log((y/5 + 1)/2).

Proof. (i) Since for any strategyfwe have f(0)=0 and f(1)=1, we
have yo &' # . One also readily verifies that |

|5ﬂ°*my1*|;2_ S (6.9)

Moreover for any non- empty Z< .5’
CAdVE U v  (6.10)

Now from |97(#)|=|9"~(&)°%)| + [~ (#1%)| = |~} (%, gix)|
and Lemma 6 in ‘conjunction with the fact & =% U #* we conclude
that

YL 219U, SO S ) = |97 (F) + (P A ]
' (6.11)

Furthermore, again by the lemma and the monotonicity of |@" 1| in the

- . state sets

B2 > 2 U2, ) = @z U 2,
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Reiterating this argument we derive with (6.9) and (6.10)
9" S I ) 219" (S (6.12)
and thus from (6.11) | |
BN 2" L)+ 1)

Verification of the initial conditions is left as an exercise.
(ii) Our strategy for achieving the lower bound uses only knowledge

of the parity of the time. It is described in the following diagram. The

entries are the letters to be sent.

state -
mod T 012

0 0
1 0

11
01
We now analyse the operation of this strategy. Starting with the set of

states & = {0, 1, 2} at time t=1 we send O for the states s=0, 1 and 1 for
the state s =2. Then we have ’ v

F*=5 and F'*={1,2).
The transitions , |
/99

S

{1,2}
apply for all odd ¢ Similarily, for all even ¢ we have the transitions

&

d
AN

{0, 1).

Furthermore, for even ¢ (resp. odd ) we have the transitions {,2} »&
(resp. {0, 1} - &). Therefore only &, {1, 2}, and {0, 1} occur as state sets.
~ The occurrence of {1,2} and {0, 1} is alternating in time. They always give
rise to exactly one output. Therefore, the total number of state sets after #
letters have been sent equals a,,. Since {0, 1} and {1, 2} have isomorphic

S
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transition rules we can denote them both by the symbol C. Let B stand for
&. Thus, the transitions of state sets can be symbolized by

Let b, count the B’s and ¢, the C’s after n letters are sent. Then we have
bn+.1=bn+cm Cn+1=bn9 an+1=bn+1+cn+1' (613)

~ Therefore b,,,=b, +bn' 1» Chy1=C,+c,_; and.also a,, =a, +d,, ‘-
All numbers are Fibonacci numbers The initial conditions are by =c; =1,
=2, c,=1,a,=2, a,=3.

(i) It is well known and easy to show that, independehtly of the‘-
initial conditions, the rate of exponential growth of Fibonacci numbers is

log((+/5 +1)/2).

Remark. The inequality 12(0, 2,0) >l_og((\/—5- +1)/2) follows from
Theorem 8, because v,(o0, 2, 0) < 1,(0, 2,0) and (\/5+ 1)/2 is a root of

0 1 10 .
det((l f1> (0 1)1) —/1+/1—-1_v0

We now collect the results on O"(xn, f, ¢), which are explicitly or implfcitly
contained in earlier results. ' '

THeorem 11. (i) (oo, f3, (p)—v(oo B, @) for allqo
(ii) w(r, B, ©)=v(n, B, o) for all n.

A Proof. First observe that (2.7) remains true, if order is present. There-
fore the proof of Theorem 2 applies literally and gives w(o, f, )=
v(00, B, o0). Since by Theorem 2*, v(x, f, 00) = v(00, B, o0) we also have

- w(n, B, o) =v(n, P, c0); that is, (ii) is proved. Since again by Theorem 2*,

v(o0, B, @) =v(00, B, @) for ¢ = f—1, (i) is proved also for ¢ = f— 1.

- For ¢ < —1 we have from Theorem 3, w(c0, §,0) = v(oo B, 0). We also

know that
W00, B, 9)=v(w0, f+,0) for p<p—1.
Since obviously w(o0, B, ¢) = w(o0, B+ @, 0); we conclude that

(00, f, )= v(c0, B, 0).

‘The reverse inequality is obvious.




84 . AHLSWEDE, YE, AND ZHANG

1. SURVEY OF OUR RESULTS FOR v(1, f, ¢)

T, ¢ v(m, f, @) Theorem
0,0 1
0,1 5

0
1,0 sup(1—(f—1)0 h( ) 6
m, 00 1/B 2%
o, <f—1 log A*, A* root of 3
' ' AB+1+0 _ pT(B+1+0)271 4 L (B+1+0)2]
0, 2p—1 1/B i 3

Finally, we emphasize that all our results are for a model in which initially
all states are possible. The set of output sequences #"(f) under strategy f
is the set of sequences which can be obtained as J, #"(f, ), where s is an
initial state.

Alternatively one can consider a model in which initially the box is

empty. It is then filled by an arbitrary state and the output process starts.
At time n— f§ of the output process no new letters enter the box. The last
. B steps are used to clean the box. One readily verifies that this model and
the model considered in this paper lead to the same rates. Mathematically
the alternative model is less smooth. We report only some typical results.
The quantlty correspondmg to N” is marked with an asterisk.

(a) N*"(O p,0)=2"" ﬁ+l+ﬂ—~ for n>p.

n . l_(n—_(kmOdﬁ))/ﬁ_J) |
b * = = 1.
(b) N n'[ioo };( kB | for n>1.

(€) N*Yo0,B,0)=(n+1)|4| =Y s.,16], where 4 is
defined as follows: let /o= (B+1)2] ¢,=
[(B+1)/27, and let 6= (£, ..., £¥)), where ¢V =¢, or
£, and || =3 /P, then A={5:n—f<]|d|<
n—p+¢£®*} - |

The methods of proof are the same as those in the other model. We have
v*(o0, B,0)= vy(0, B, 0).

Incidentally, here the tree covering problem (Proposition 3) has an

analogue for trees with certain weights on the leaves, which allows an exact .

analysis. It is not only asymptotically but also strictly optimal always to
choose 7, and ¢, as lengths of two outgoing edges, as specified above.
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8. CONJECTURES

Before we state five challenging conjectures let us first express our belief
that any progress towards a determination of Ni(=, B, ¢) for a>2 will
depend crucially on the solution for the two subcases :

(m, B, @)= (o0, B, ) (solved only for a =2)

and _ ,
(z, B, )= (00, B, 0) (solved only fora =2 or f=2).

‘We wonder whether general strategies in the spirit of the remark at the end
of Section 3 can be found. We turn now to explicit statements.

Conjecture 1. lim, _, ,, v2(T, B, ©)# v,(m, B, ).
Conjecture 2. “limg_, ,, v,(0, B, 0)=log, [ (a+1)/27]
(The cases o =2 and a =3 were established by Theorems 1 and 7.)

-Conjecture 3. We believe that the lower' bound on T5(0, B, 0) given by
Theorem 10 is not tight for f> 2 and that the following strategy is optimal.

St-modﬂ 012 . .. ﬂ—*—l
0 000 - 0
1 1000 - 0
2 11000 . 0
3 111000 0
g 1‘11’.....'. 1

Conjecture 4. We view & ={1,2,..,a} as a directed cycle and claim
that an optimal strategy for N"(1, f, 0) is to send the next available cyclic
successor of the letter which was sent before. A letter is next successor of
itself. '

Conjecture 5. w,(0, B,0)=v,(1, B—1,0).

Actually, the inequality w,(0, f, 0) <v,(1, f—1, 0) has been established by
analyzing the following strategy: For se {0, 1}* '
f,.,0,1,..1,0)=0 (last out)

£0,..,0,1,.,1)=0  (first out)
f(1,.,1,0,..0,1)=1  (last out)
fd,.,1,0,0,..0)=1  (first out)
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and in the other cases
f(s) = f(81, .y S5) =5, (ith out, if i=min{j: s;,=35,}.

It can be shown thaf

,(0, B,0)<log Y5, =v,(1, B — 1,0) (by Theoreni 6).

‘9. TowARDS A THEORY OF CREATING ORDER

Contents

I. Directions of developments of our basic model for sequences.
II. Examples.
HI.  Ordering and source coding.
IV. Ordering, sorting, and Maxwell’s demon.
V. A calculus of machines.
VI. Why do we want to create order?

L. Directions of Developments of Our Basic Model for Sequences

We show now that our basic model is just a prototype in a rich class of
models involving rearrangements of sequences. Some lead to fascinating
~mathematical problems and some may be termed “semi-realistic” but still
are to be expected to add to our understanding of ordering. Instead of
lengthy definitions sketches of the models are given. In some cases they

allow several specifications.

a. Multiple In- and Outputs

s in- and outputs. Instead of one object leaving and one object entering
at any time instant, there may be s objects leaving and entering the box.

Varying number of outputs. Here s is again the number of objects enter-

ing the box. The number of objects leaving the box can be chosen by the
organizer subject to the constraint that there be enough space in the box
for the next s objects to enter.

' Merging. There are numerous problems. We mention one which we find
“particularly neat. Suppose that there are two input sequences, both with
letters from %. @ can look ¢, say ¢ =1, steps into the future in both
sequences and he can choose to serve any one of the sequences, that is, let
its next letter into the box. The other sequence must wait. What is the

optimal rate for the output sequence?
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Splitting. Again in the simplest case there is one incoming sequence, but

now O produces two output sequences. He can at any time extend any one
- of those sequences according to the state of the box. What are the extremal
rate pairs and the minimum of the sum of rates?

Correlation. Suppose that in the probabilistic model iid. RVs X,, t=
1,2, .., are of the form X,=(Y,, Z,), where both Y, and Z, take values in
the same set. If ¥, =y, and Z,=z,, then at time ¢ both y, and z, enter the
box. O can output two letters and produce one sequence. What is the mini-
mal mean output entropy? ‘

b. Objects with Special Features

Varying-length objects. Here & consists of intervals of different lengths
and -also the working area is an interval in which intervals can be stored
without overlaps. Here it is to be guaranteed that the longest interval will
find space when its entrance is due. . '

Death, birth. Suppose that 2 consists of different animals. During the
ordering process some animals die and others are born with certain
probabilities. There is room for several models and questions. Similar
-problems arise if radioactive material is to be put in a depot. Generally,
one.may aim for a theory in which objects follow probabilistic transition
rules anywhere in the process of ordering.

Idle objects. Suppose that one of the objects, say a, in & is idle. The
receiver is not interested in this idle object. The organizer is free to output
or ignore idle objects. On a management line “idle” stands for empty space.

A different and original coding problem involving idle letters has been

introduced by Roskind and Humblet (1980).

Box with exclusion rule. The previous model can be generalized as
follows. Only a subset &’ of the set of states is- permitted. At any entrance
time it must be guaranteed that any object. entering will again lead to a
permissible state. This model applies to cases where the objects consist of

chemicals certain combinations of which are explosive and should therefore

be avoided. , g

c. Compound Objects

Box with reaction rules. The previous model suggests another one. Sup--

pose that certain combinations of chemicals can enter a reaction or certain
pieces of garbage can be bundled, but that then this compound object can
be thrown out by the organizer. Further specification of the model must
state which compounds are permitted or what percentages  of certain
compounds are permitted. '
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Representatives. For any ieZ ={1,2,.., o} there is a set of repre-
sentatives #(i)< {1,2,..,y}. For any state (s(1), ., s(@)), 2oy s(i)=5,
the organizer can output an re %(i) instead of an i with s(i) > 1.

Objects with many properties. Let Z be a set of L-dimensional vectors.
The following refinements of the basic model can be studied. There are L
receivers and receiver # distinguishes vectors only with respect to their Zth -
component; that is, only this property (such as weight or color) of the
objects matters to him. Accordingly he distinguishes output sequences.
Thus for every strategy f each receiver has his own set of possible output -
sequences. What can be said about the extremal L-tuples of the
cardinalities of such sets?

- Exchanging parts of objects. In the previous model the components of
~ vectors may stand for mechanical parts. O is now allowed to exchange
parts in the box. This leads to a formidable ordering problem if one
receiver is interested in all the output vectors.

d. Errors

Probabilistic. If © wants to output i and the state is s, then w(j | i, 5) 1S
the probability that he actually. outputs j. It is assumed that w(j| i s)=0,
if s(j) = 0. In the probabilistic model entropy again serves as a performance
criterion and in the non-probabilistic model a canonical criterion is
expected cardinality. T

Confusion rule. C(i, 5) is the set of objects which can be thrown out by
0, if he intends to send i

Frequency rule. If i is intended, O acts wrongly at most An times in
time n. -

Receiver can »distingui.sh only certain objects. Let (%, &) be a graph. We
say that x, x’ are indistinguishable for the receiver, if (x, x') € &. The graph
contains all loops. Let (%, &) be the product graph, that is, ‘

(x", x'""Yeé" <> (x,,x,)ES for 1=1,..,n

If now f(2”) is the image of 2" under strategy f, then the receiver is inter-
ested in I(f(2")), the minimal cardinality of a maximal independent set in
(™). The task is to determine min I(f(Z")) for classes of strategies as
defined previously. , o ~

Our probabilistic models use the classical concept of probability. Events
obeying quantum probabilistic laws may be included. It is needless to dwell
upon various combinations of models. We surely have missed some basic

questions, but we are satisfied, if we have spread some seeds.
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1I. Examples

It is Very reasonable to assume that the orgamzer has some memory of
past actions, especially if he is a human being. Knowledge about the future
seems at first glance less reasonable, especially if the input process follows
no laws, as in our non-probabilistic model, or is memoryless, as in our
probabilistic model. Still, there are many cases where knowledge about the
future can be assumed. One may just think about a production line trans-
porting items to a working area. A worker (orgamzer) can see what is on
the line a certain distance ahead. :

Production of goods. In many production processes several different

goods are produced in succession. They can be locally ordered in a work-

ing area.

Arrival of goods and documents. A scientist receives reprints devoted to
several subjects in which he is interested. He does not always take the time
to put them in files according to his principles of classification. Instead he

makes some local rearrangements—for instance, on his desk— before he

does the final classification. Every administrator faces similar problems in
dealing with documents and letters. Every salesman knows that the
organization and bookkeeping of incoming goods is a formidable task.

Garbage collection. Every‘ household produces garbage, which daily is

organized 'such that, for mstance all paper and bottles are collected
separately.

In all these examples the order creation can be viewed as a preliminary
activity, which may be followed by various goal seeking actions. In the case
of the management line the “organization” of parts makes it easier to put
- them together. The “organization” of reprints simplifies the search for a
final classification. The “organization” of garbage helps in the final separa-
tion into various categories.

I11. Ordering and Source Coding

To obtain some more specific ideas about possible concepts we look now

at ordering by contrasting it to or relating it with other concepts in the

familiar source coding theory of information theory, which was founded by
Shannon (1949) and deals in its simplest settmg with the following
problem:

Having modelled the source by a sequence of independent identically
distributed random variables (X,)™ , with values in a finite set &, we ask
“How much storage space is necessary to store reliably, for fixed #, the out-
puts X" = (X, .., X,,)?7” Formally, this problem can be stated as follows.
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Let N be the set of natural numbers. For a function?: " - N we d.en'ote '
by |l /|| the cardinality of its range. f is said to be an e-reliable description
of X", if there exists a function g: N — Z” such that

Pr(g(f(X")=X")21-¢
For any ¢e (0, 1) (typically very small) the quantity
log, N(n, ¢) =log, min{ | f|: fis an e-reliable description of X"}
f .

measures the number of positions needed to store X" e-reliably in a binary
alphabet.
Shannon’s souce coding theorem says that

hm llog N(n, )= H(X),

n-+ o0 N
~where H(X) is the entropy, that is,

H(X)=— Y Pr(X=x)logPr(X=x).
xeZ ‘

Here it is important that we do not record the outputs X" =X, ---X, them-
selves, but a “description” or symbol f(X") representzng them. We emphasize
that, in orderzng, all objects produced by the “source” are themselves to be
stored. This is a crucial difference between source coding and ordering,
where the material is always preserved and compressmn can be achieved
solely by reordering matter.

However, if in addition one is interested in descriptions (records) of the
storage of the objects, then this leads to a theory combmmg the theory of
ordering and the theory of source coding. That means in particular that we
aim for an ordering of objects which allows a simple description. One may
think of reprmts which are first ordered and then their positions are
described in a file.

Suppose now that we allow descrxptxons which may be wrong in An posi-
tions of our output sequence y". As is well known from rate-distortion
- theory this will shorten the descriptions significantly. Moreover, in order to
obtain essentially optimal descriptions one should not encode optimal
- orderings but should design a combined ordering—description procedure. We
hope for a general theory which includes both a theory of ordering and
rate-distortion theory.
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IV. Ordering, Sorting, and Maxwell’s Demon

Generally, ordering is any activity which reduces alternatives or reduces
entropy, if this concept is defined, that is, we are working in a probabilistic
model. The sets of objects need not be sequence spaces. There is an
apparent connection to sorting. In Knuth’s (1973) work sorting is the task
of putting a specified family F= (a,),., of members from a linearly ordered
set £ into its linear order. Here a; = a;. may occur. Many algorithms have
been designed to meet this goal under various constraints, for instance,
those imposed by .the machines used. Several performance criteria for
storage space and running time are in use. Roughly speaking the main dif-
ference between sorting problems and the more general ordering problems
we have in mind is that, in sorting, the number of alternatives is reduced
to one (the linear list) whereas in ordering -the number of alternatives is
reduced optimally (resp. the entropy is minimized) under specified limita-
tions. The step from sorting to the more general ordering is analogous to
 the generalization of ordinary channel codes (with one option for decod-
ing) to list codes (with a list of options for decoding). Ahlswede (1973)
explained that “information” can be understood as “list size reduction.”
“Gain of order” is an analogue to “gain of information.”

The importance of ordering problems in science can perhaps best be
demonstrated by their connection with the second law of thermodynamics.
At what price can an intelligent being or a machine reduce entropy of an
ensemble? '

Generations of physicists have persuaded us that there is no way to
operate on a thermodynamical system in equilibrium so that we finally
receive more energy than we have put into the system. It seems to us that
the only justification for this belief is that nobody was able to achieve the
opposite. We have not found a convincing theoretical argument in the
extensive literature!

The most famous experiment of thought in this respect is known under
the name “Maxwell’s demon.” Brillouin (1957, p. 162) writes: |

The sorting (!) demon was born in 1871 and first appeared in Maxwell’s
Theory of Heat (p. 328) as “a being whose faculties are so sharpened that
he can follow every molecule in his course, and would be able to do what
is at present impossible to us. Let us suppose that a vessel is divided into
two portions, 4 and B, by a division in which there is a small hole, and that
a being who can see the individual molecules opens and closes this hole, so
as to allow only the swifter molecules to pass from 4 to B, and only the
slower ones to pass from B to 4. He will, thus, whithout expenditure of
work raise the temperature of B and lower that of 4, in contradiction to the
second law of thermodynamics. ‘

In connection with Maxwell’s demon one may look at other dynamical
systems, in particular those which have been invented to better understand
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Boltzmann’s H-theorem. The Ehrenfest urn model is the most famous
system of this kind.

We think that a systematic study of ordering problems other than the
- Maxwell demon problem should also shed some light on the former. It
seems to us that the physicists’ belief in the second law, which is hallowed
by failures in designing a perpetuum mobile of the second kind for more
than a century, has had the negative effect that ordering problems in other
models were not studied at all or at least not with enough effort. Excep-
tions are studies in biology. For instance, Eigen and Winkler (1975)
investigate how certain life games bring about order, for instance, the
ability of reproduction in certain dissipative systems, and Prigogine (1979,
p. 97) mentions that cells in nervous systems perform complex operations
which are based on principles similar to those of a management line.

V. A Calculus of Machines

The simple permuting machines which we have used can be charac-
terized by a quadruple 4 = (o, 7, B, @). Interesting questions arise if we
study relations among several machines.

Comparisons of machines. Theére are some natural relations with respect
to performance. We say that

M= (0,7, B, p) is better than M'=(a, 7', ', ¢'), if Nz, B, ¢)<
N(#n', B, ¢') for all n. | , o
M is asymptotically better than A, if v (n, B, @) < v (7', f', ¢').

M is uniformly better than ', if for all n, of = Z" and all strategies
J' for .#' there is a strategy f for . such that |f(f)| < |/ ().

M is strictly better than .4’ if even () < f'(s/) holds.

Notions similar to the first three can be defined for probabilistic models
if entropy takes the role of cardinality. Instead of using one input distribu-
tion only, one can also make comparisons for classes of such distributions.

Can the pairs of machines satisfying such relations be characterized?

Com)nutativity. A product 4 - #’ can be defined by first using .# and
then using .#’ on its outputs. For several types of machines we can prove
statements of the kind

M - M’ is asymptotically better than #'. 4.

Commutativity in this asymptotic sense holds only in exceptional cases.
Whenever we have several machines available with which to create order
it is certainly important to know in which sequence we should use them.
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Instead of operating -in serial it may sometimes be better to use the
machines in parallel. Further questions arise if the machmes have different
costs of operation.

V1. Why Do We Want to Create Order?

The foregoing discussion was meant to increase our awareness of the
complexity and range of the topic “ordering.” It may be instructive to
contrast these ideas with those held by Shannon (1956) and those held by
Wiener (1955) more than 30 years ago.

There is still another way to look at things. Why do we want to create
order?

Answers have been glven explicitly and implicitly in the Introduction and
in the discussion of Maxwell’s demon. We have also mentioned a short
record as a possible goal. This makes it easier to instruct someone about
the positions of objects in a sequence. There is a related, though different,
goal: we want to make the task of searching as easy as possible. This is not
achieved automatically if the organizer optimally reduces the set of
alternatives. Instead, this reduction must be best suited for the available
searching algorithms or machines used for the search. Here much work is

to be done. The quantities defined in the Introduction are addressed to

only one aspect of the ordering problem.
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