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Our main discovery is the following identity: For ei'ery family of =22 of
non-émpty subsets of 2= {1, 2, ..., n} '

2 W"(X)E_l,
X2 h
0
where | |
W (X)= ﬂ Al
) XoAeso

.'It can be viewed as a sharpening of the famous LYM-inequality. We present also
generalizations to other posets. The total impact for combinatorics remains to be
explored. The identity seems to be particularly useful for uniqueness proofs. in
Sperner ’Iheory. We also discuss a geometric consequence. © 19% Academic Press, Inc.

1. Ti{E MAIN IDENTITY

We give first a slightly different formulation of our main identity in terms
of concepts, which are needed later. For every Xe 2 =29 and every of < 2

Xo= () 4 and  W,0)=x, (11)

X:A € s
Using the functions
wi=3Y w,(x), - (1.2)
Xe .

where 2 is the set of all i-element subsets of Q, we can write
W (X) & wo

L n Z n\’
'X'(m) =i()
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THEOREM 1. For every family o of non-empty subsets of Q={1,2,..,n}

Proof. Note first that only the minimal elements in .« determine X,
and therefore matter. We can assume therefore that & is an antichain.

Recall that in Lubell’s proof of Sperner’s Lemma all “saturated” chains
which pass through members of &, are counted:

Y 14|l (n— |A|>!.

Aex
No chain is counted twice, because &/ 1s an antxcham Smce there are n!
saturated chams in total, clearly

Y At (n—]4Dl <Al

Aeof
or

> -< 1

M(lzl)

~ Our observation is that we can also count the saturated chains not passmg
through . The key idea is to assign to s the upset

0?1={Xe.?.X:AforsomeAed} - ‘ (1.3)

and to count saturated chains according to their exits in 4. For this we

view 2 as a directed graph with an edge between vertices B, C exactly'if v

B> C and |B\C|=1.

Since ¢ ¢ o, clearly ¢% Therefore every saturated chain startmg in
Q €% has a last set, say exit set, in %. For every Ue ¥ we call e=(U, V)
an exit edge, if Ve 2\%, and we denote the set of exit edges by &, (U). The
number of saturated chains leaving % in U is then

(n= U8, (U)] (U1 = 1)L

Therefore
Z (n—UD! I, (U)H!Ul-l)'—n' - (14
Ue¥ .
and since é”&,(X)~—Q for XEQ?’ U, also

164 (X)) _

))

()

=1 (1.5)
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Now just verify that ,
- 6 (X =W, (X). (1.6)

Remark. 1t is surprising that this identity has not been found earlier.
For instance in [10] an effort is made to improve the LYM -inequality by
adding some, but not all, missing terms.

The simple proof above was the result of an analysis of two somewhat
more complicated proofs, which are reproduced in Section 6 for readers
interested in “proof techniques.” It extends to general posets.
~ The name LYM-inequality was introduced in the survey article [5] to

honour the authors in [4], [2], and [3]. More recent books concerned

with this subject are [6], [7], and [8]7.

2. CONSEQUENCES FOR FAMILIES OF SETS

For any antichain o/ = 2 set of=.of nf#}. Then the LYM-inequality can
be written in the form

’ n
i=1

I . - (2.1)
o

The next trxck 18 standard For any function ¢: N - R, one.can rewme the
. LYM-inequality as

"ic(z) ),
“en (1)
which yields | | |
iilb(i)i-sa’,-lsmfxx c(i)(?)- o (2.2)

For the ease of reference we state the special case c(i)=ifori=1,2,..,n
as ‘

CoROLLARY !. For any antichain of = P

i|o4| < max t<n>=m<n>, " where m=|}-J+l=[-’H ]
t<isn \ i m ~ 2 2

The bound is best possible.

FM:
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A. New Results for Generalized Antichains
Theorem 1 together with (1.2) implies:

‘THEOREM 2.  For any family of <P
A : (n\
Y W (X)<m ( )
Xed m
Obviously by (1.1) this result implies Corollary 1. However, it covers also

other cases of interest.

DEFmNITION.  We call {w/(1), ..., (M)} a cloud-antichain (CAC), if
Ay P for 1<i<M and if for every i#j any A;es/(i) and any

| A;e o4(j) are incomparable.

In case |#(i)] =1 for 1 <i< M this reduces to the familiar concept of an
antichain. From Theorem 2 we deduce an extension of Corollary 1.

" THEOREM 3. For the CAC {/(i): 1<i<M)} ™ |at(i)| INtewin Al
<m().

Proof. Let .#(i) be the set of minimal elements in (i) and let
M= M(i). For Xe (i) we have

() 4= () 4= () 4 (by incomparability)=X .

A€ of (i) X > Ae H(i) X>Ade N )

Thus T2 A D N s Al S T2 T ye iy Wt X) < Sy Wo(X)

and the result follows with Theorem 2.

B. An Extension to Several Families

THEOREM 4. - For k families s/, s % of non-empty subsets of Q and

X <0 define
' . k _
Wt () =| | Xd,-f
J=1
and _ ‘
WO ot= X W (X))
. Xe2

Then

= ng)l ark

G

<k
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and |
‘ (+k n
O L Weews 3 ()

Proof. Since by our definitions
_ ) |
W <Yy W,
j=1

(i) immediately follows from Theorem 1.
To prove (ii), note first that from its definition

ng,...,d" S 1 (l-)

and therefore the numbers o= Wﬁ,l w/l( ) satisfy 0<«,<1 and by i)
Z,,, o, <k Therefore 4 ,

s(ena{f p(foener £

= max. lik ,r(n)

ost<m—k L \r
and since 3., _, W stk (X) = Z._.x W‘.(Q',....d": C7- 1 4;i(7), the result (ii) -

follows.

- 3. GEOMETRIC CONSEQUENCES

THEOREM 5. For an n-dimensional unit-cube C"= {0, 1 }" with the usual
n2" ! edges: ‘

(1) a hyperplane cuts at most m( ). edges and this bound is best
possible, :

(it) it ‘takes n hyperplanes ‘with non-negative coefficients to cut all
edges. :

Proof. '(i) A hyperplane in n-dimensional space is determmed by a
vector A=(2p, 4y, oy ,,) of coefﬁcxents for the linear equation Ao =
A.x,. -
l-1 I

~ Let us assume first that 1,>0forr=1,2, .., n. A vector yeCris mlmmal
if Z,ﬂ 32 2 4o and if replacement of 1 by 0 in any component of y results
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in a vector y’, with Y'7_, 4,3, < 4o. Let #°(\) be the set of minimal vectors.

If an edge (x, x') is cut by the hyperplane such that 377, A,x,=A and
7, A,x, <A, then x and x'- differ in a component in which all vectors
from ¥ (L) below x have a 1. '

" The vectors xe C” can be identified with the sets X={rx,=1}. Let
s/(L) be the family of sets corresponding to ¥ (X). By the foregoing
remarks the number of edges {(x, x’): x’ <x} with vertex x fixed, which are
cut by the hyperplane, does not exceed W ,,(X). Denoting the total
number of edges cut by the hyperplane by F(1), we thus get

FAME Y W0, (X). | (3.1)

Xe? . :
For hyperplanes with arbitrary coefficients (44, s 4,,) @ coordinate trans- -
formation ’

' Ax if 4,20
T x.)= 'll ) t

Cx.) {1 —x, if A,<0
leads to the case of non-negative coefficients just treated. By Theorem 2"
therefore 3 B

.mfx'p(x)gm (”;) | (32)

The case A= (m; 1, ..., 1) shows that this bound is best possible.

(i) For k hyperplanes with the vectors of coefficients %
(j=1,2, .. k) we define as before the set #(3’) and put o/ =(}’) in
Theorem 4. The number F(A!, .., A*) of edges cut by these hyperplanes is
bounded by Y, ., Wi «(X). Since all edges shall be. cut, by (ii) of
Theorem 4 : ' ' ‘

OSISn—k’;:I_*_l I‘

R ‘ | I+k

n2""'< max > r( >
. and since n2"~'=3"_, r("), nccessarily k >n. That on the other hand »
hyperplanes suffice, can be seen by the example A/=(j,1,.,1) for
j=1,2,.., noralso by the example ‘ ‘

{1 for j=t

W=
0 for j#¢

t

My=1 for j,t=1,2,..n
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Remark. According to [9] it has been conjectured by S. Poljak that
(even without any restrictions on the coefficients) it takes n hyperplanes to
cut all edges of the n-dimensional unit cube. Note, however, that for k< n
the bound 3o, ., _, Z!*% | r(?) is not an upper bound on the number of
edges cut by k hyperplanes with arbitrary coefficients. Already in case n =3
and k=2 one can cut 10 edges, whereas 1(3)+2(3)=09. :

4. UNIQUENESS PROOFS

We demonstrate now that simple uniqueness proofs can be given via our
* identity. - ' ‘

The reader is reminded ‘of our convention
n
=|= 1. ‘ . ]
m [ 7 J + . | (4.1)

We also use the elementary facts.

n\ . (n '
: / = ‘ ' 4.2
mx 1())=m () )
. (n n\ {exactly for I##m,m—1,if niseven
l(l ).<‘m (m) { for I#m,ifnis odd. (43)
A. Sperner’s Ca&e
.For an antichain &/ in 2 the identity says
- I o W (X
1=Y — + )y ——fi(—-)—. (4.4)
Ae.pl(n> X¢d‘Xl(n>
[4] | X]
If o/ is maximal, then || = (Lw2,)» and therefore by (4.4)
g n n»s . .
- - LiJug’rﬂ (4.5)
W (X | Cien
> -———f—'L—)—=O. (4.6)

T (1;:)

Obvibusly A =Z,, if n=2k. We show now that foi n = 2k + 1 the assump-

tion o # 2, 2 violates (4.6).

For this note that W, (X)=0 for Xe®,\of implies that in the graph

defined on 2, U 2, by containment X has no connections with P\ . Since
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there are no connections between o, = 2. N and o, = P A, we have
two connected components o, U (#\«) and (2\)U . However,
2, %, is obviously connected. .

B. Uniquéness in Theorem 2

Since for every family & with set of minimal elements .4
W (X)=W ,(X), and since every antichain occurs as a set of minimal
elements, it suffices to characterize those antichains & with

Y W, (X)=m (;’1) , (47)

Xe?

THEOREM 2'.  Equality occurs in (4.7) for of =P, if n=2k+1=m+k,
and for every antichain of < %, U ., which is “saturated” in P,,, if n="2k.

Prooﬁj It follows from'(4.7) and our identity that
w =0, if |X] . 4.8
L0=0, if | 1(m><m(m) 49

For n=2k +1 we have therefore W (X)=0, if | X] #m, and thus & = 2,.

On the other hand for n = 2k, k(}) =m(2) and we can conclude only that
AP, U o is saturated in 2,, because otherwise there is an antichain
A'=af U {X} with Xe P\ o and Yew W (Y) 2er Wo(Y)+X],
which contradicts the optimality of <.

It remains to be seen that equality occurs in (4.7) for these antlchams
Let o/, be the elements of 2,, which are connected with an element of <7,
and let d(,., X) count the number of connectxons of .9/,( thh X. Then we
have

| ([ 2 + 
5 WM(X):Mf(k+1)((k+,l)—wk ;),

R o, X)

Xe-ﬂk

=kl + G+ 1) () - -y ot
2k C
=(k+1).(k+l>' (4.9)

The notion of antichains .of <., Y %, which are saturated in W ‘but not
in Z,, is mcanmgful
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EXAMPLE. Letv('n, m, k)=(4,3,2)-and
#,={{1,2,3}}, 4= {{1,4},{2,4}}.

. The antichain o = o, U &, cannot be extended by {1,' 2,4}, {1,3,4}, or

{2, 3,4}, however, it can be extended by {3, 4}.

- C. Uniqueness in.Corollary 1

Since for an antichain o, 3", , |4 <X .5 W,,(X), the equality

) lAl::m'(";) o  (4.10)

Aeos

can occur only for antichains, which are contained in the class charac-
terized in Theorem?2’. By (4.9) thus necessarily 3, . ap (k+1)=
Lxew A, X) or, equivalently, 24 U s/} is a connected component of
% . This is possible only if o, =1 or & =%,. We summadrize this
result. ‘ —

COROLLARY 1/, T. here is equality in (4.10) exactly Jor =2, if
n=2k+1, and for o € {Z.. 2.}, if n=2k.

D. Announcement of Further Results

In another paper we show that Bollobas’ inequality [13, 67 can also be
lifted to an identity and that this identity enables. us to prove the unique-
ness conjecture [ 14, Remark 1] of Griggs, Stahl, and Trotter:

5. AN IDENTITY FOR POSETS

Let now # be a finite partially ordered set. In case it doesn’t have a
unique maximal element, we introduce an element X, which is above the
original maximal elements. 2 ean also be viewed as a directed graph:with
an edge e=(X, Y) connecting X and Y exactly if X> Y and there is no
element between X and Y. The idea of using the concept of exit edges of
an upset % for counting saturated chains applies to any such poset. The.
sets involved in such a count are: :

&(U), the exit edges starting in U

€(X), the saturated chains ending in X
¢(X), the saturated chains starting in X .
€, the set of all saturated chains.in 2.
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Then 'clea‘r'ly , _ :
| S % B iEw) =4l )
Uew V:(UV)ea)
‘More generally we can incorporate the case of a weight function

F (6 - R. (5.2)

With #(e) as the set of saturated chains passing through edge e we can
express the identity in the following form.

THEOREM 6. 3yca X cow) Lceste FIC)=Zceq F(C).

Sometimes the quantities in this -identity can be fully or partially
‘calculated. - This was the case in (1.4), other examples are given below. To
any of <2 we can assign as in (1.3) an upset % and the sets of exit edges
&.,(U), Ue. Thus Theorem 1 is an immediate consequence of Theorem 6.
For an upset % # { X} there is still another way of using the idea of exit
edges. Let .# be the set of minimal elements in %. We call an edge-
e=(X, Y) free (relative to %), if :

Xe¥U\A  and Ye./flu(g’\%)
Let F(Y ) denote the set of free edges endmg in Y.

THEOREM 7. er,«u(yw)zeef(r)ZcEme) F(C)=3% cee F(O).
In the poset of subsets we get for F=1

ZIFW o= ¥I= 171! =

and
F(Y)={XeU\M: XY, |X— Y] =1).
‘ Therefore ' .

| I3’(Y)I

Actually, by looking at the upset 01!’ =Y — M we see that the only dif-
ference between the two identities is that we look at first entrances in the
second. and at last exits in the first. Other equivalent formulations can be

=1 (5.3)

L
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obtained by looking at downsets rather than at upsets. Moreover, we can
give a general method for producing identities: For any blocking set # < 2,
that is every Ce ¥ meets an element Be %, we can count the saturated
chains according to their first entrance (or last exit) in 8. Whether nice
identities come up this way depends on the structures of & and #. Insofar
- we have considered only blocks, which are upsets. For arbitrary of < ? we
have set up identities via associated upsets % =%,,. There are many “hull
operations” which assign blocking sets to arbitrary .o and which could
have been used in place of % ,. We analyse now the identity in Theorem 6
in special cases. o :

EXAMPLE 1. THE a-REGULAR TREE j;,, OofF DEpPTH n. Here -the rank
function is the length of the path from the top to X. For any &/ c 7, ,
define the upset # = {Xe 7, ,: X> A for some 4 € o/ }. By Theorem 6

Z Z . an-—r(U)--l_:an

UeU ec&(U) . .
or -

E(U ’ '
'UZ:%‘JT%:L (53

If o is an antichain, then we have |€(U)| = o for Ue o and therefore

X osmsL (5.4)

Ue of

which is Kraft’s inequality [117. If, in addition, o is blocking, then
ZUe.nl (l/ar(U)) =1 . : v

EXAMPLE 2: CASCADE GrAPHS. It is a small exercise to show that
Renyi’s inequality [127] in his uniform flow theorem can be replaced by an

identity.

EXAMPLE 3. SUBSPACES OVER GF(g). Let %,(q) denote the lattice of
subspaces of a vector space of dimension 7 over the field GF(q), ordered by
inclusion. Then %,(q) has a rank function HX)=dim(X) and the number
N (Z,(q)) of subspaces of rank k is the Gaussian coefficient '

[n:, L:(q'n;_vl)‘(qn——l__l')..___(qnv—k+l___1)
k1, (=g =10 (g—1)
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Now for an & and the associated % in %,(q)

n—r(U) r(U)~1

Y Y 0 ML wmar-@) - TT Nl Ly o(@)
k=1

Ue e £(U) k=1

= fI N(Z -k +1(9),

that is . v o ‘
) n—r(U) n—r(U)"—f—l-—k___lr(U)—-l U —k noogn—k+1_
q . q q
|&(U)] - = || —
uz:au ( kI;Il- - g—1 : kI—_——Il g—1 kl;lx q—1

or equivalently

o r(U)—1 r‘(U)—k__ _ /

Uea TIEY (g% =1)

and finally

1.

I

o 1
2 WU)'-[ AR
r(U) 4, L |,
Since the calculation of |£(U)| is somewhat lengthy, we give only the
result. For this let {4: U>Adesl}={4,,..,4,} and for T< {1, 2,..,5)
denote by A7 the subspace spanned by (J, .4, then by inclusion-
exclusion’ -

L s qn—l(A(r)-)___l N
ewi=3y -1y L——
, =0 . |1 =1 q
T<{1,2,

a8}

6. Two FURTHER PROOFS OF THEOREM 1

In spite of the fact that the proof given in Section 1 is so perspicuous and
short, we present here two proofs, which preceded it. We hope that this will
be appreciated by readers interested in “proof techniques.” The first proof
. is by induction on the ground set 2 and does not seem to have a parallel

in Sperner Theory. The second proof resembles Sperner’s pushing opera-
tions [1]. ' ' ~

Proof 1. Obviously I(of)=3"_, (W9D/i(")) equals one for n=1.
Acsmine this for |Q|<n we prove it for n. Clearly w® =T, if




COMBINATORIAL EXTREMAL THEORY 149
For every ke 2= {1,'2, ., n} and 2\ {k} we define
| gy ={A € ot: A= Q\{k}) (6.1)
and for X < Q\{k}

ﬂ. A'. | (62)

W_d(k)(/Y’ n—1)= _
, : VX< Ae oA
Then obviously for X< Q — {k}-
WowXon=1)=W,X). (6.3)
Since () 4 iy 427, it éufﬁces_ to consider only sets X' > T. Therefore
| WaXon=1)
‘I:‘——l_("j(k)) = Z ) L] 1
D\(k})>x>T |y (",_ ) :
» \xi /-

(L if TeQ\(k}
“{o, if T¢& Q\[k}!

and
Z I¥ () =n-—-t (6.4)
k=1 : -

On _the other hand

n n . W X, *i,
Z Iy (H) = Z Z ' d‘k)(n_n-l !
k=1 k=1 \{k}>Xx IXI( )
' | By

.z_"i* sy PHaw@n-D)

J=11XI=] k\(k} > X j(n——l)

Sy ) W)

J=11x1=] j(””l)

This and (6.4) imply
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or

t

n—1 W t
) ~—ﬁ—(——z+.—: 1.
j=11XI=j J("> n
Since t/n= W/n("), we have established 7,(s#) = 1.
Proof II. We need a few deﬁmtlons For 9 « & we set
t*={Xe? ,;:X>Y for some YeT}. (6.5)
Also, for Ae# and Be? ,, we set | |

1, if Ac<B

0, if A& B (6:6)

d(A, B)={

For the given & let now / be the smallest number with &= "% # .
We introduce now an operation on families of subsets, which leaves. I,
invariant. Repeated application of this operation leads finally to {2}, for
which 7, takes the value 1, because

0, if X#Q

Woa(X)={"
ViayX) {n, if Xx=Q.

We define now the “pushing up” transformation S by
St)=(A\A)yO A} | (6.7)

and write o/’ = S(). :
We analyse now the effect of this transformatxon Clearly, Y _ =Y, for
[ Y} </— 1. Next we establish this ldcntxty for |Y|=/+2.1t suﬁices to show :

. that

ﬂ A= () B

YoAdes YoBes .
Since |Y]>/+2, for A< Y there are AU {a}, AU {b} < Y with intersec-
- tion A. Therefore (N, . 4., 4> () y-pcrr B and the opposite inclusion is

- obvious.. We calculate now the contributions of the set of cardinality / or
' l+1 to I () and I, (.;J) Clearly

W(l)_1|m| wh. =0 (6.8)
WD = U+ D)l S+ Y l+1—~d(Y ), (69)

Y € oA+
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where d(Y; )= 4 d(Y, A), and

[N

WD =+ 1) 1ot \ot [+ (14 1) |t ). (6.10)

Now from these results

A I s -
. Yedf'
1) . (7+1) l+1>’
[ e -
Ae st (n n
,_<1> (’“)(zu)J
-y PRI 0.
de s n n ' N
d~_<l> (IH)(HI)J
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