## A Recursive Bound for the Number of Complete K-Subgraphs of a Graph

R. Ahlswede, Bielefeld, FRG N. Cai, Bielefeld, FRG Z. Zhang, Bielefeld, FRG

## Abstract

The following inequality was conceived as a tool in determining coloring numbers in the sense of Ahlswede, Cai, Zhang ([1]), but developed into something of a seemingly basic nature.

<u>Theorem</u> For any graph  $G = (\Omega_n, \mathcal{E})$  with n vertices let  $T_k$  be the number of complete k-subgraphs of G. Then for  $k \geq 2$ 

$$T_k \ge \frac{T_{k-1}}{k \cdot n} [2(k-1)|\mathcal{E}| - (k-2)n^2]$$
 (1)

<u>Proof of the Theorem stated in the abstract.</u> By its definition we have  $T_1 = n$ . We show (1) by induction on k.

For k=2  $T_2=|\mathcal{E}|=\frac{n}{2\cdot n}[2|\mathcal{E}|]=|\mathcal{E}|$ , so (1) holds even with equality. For the induction step from k-1 to k we need some notation.

V(m) denotes a set with m vertices and  $\mathcal{T}_m$  stands for the set of all those sets, which are the vertex set of a complete m-subgraph. We also set

$$\mathcal{E}_v = \{ v' : (v, v') \in \mathcal{E} \} , \qquad (2)$$

$$\mathcal{E}_{V(m)} = \cap_{v \in V(m)} \mathcal{E}_v , \qquad (3)$$

$$T_m(V(m-1)) = \{V(m) \in T_m : V(m) \supset V(m-1)\},$$
 (4)

and start now with

$$T_k = \frac{1}{k} \sum_{V(k-1) \in \mathcal{T}_{k-1}} |\mathcal{E}_{V(k-1)}|.$$
 (5)

Next we bound  $|\mathcal{E}_{V(k-1)}|$  from below with the help of the identity

$$\left| \bigcup_{V(k-2) \subset V(k-1)} \mathcal{E}_{V(k-2)} \right| = \sum_{V(k-2) \subset V(k-1)} |\mathcal{E}_{V(k-2)}| - (k-2) |\mathcal{E}_{V(k-1)}| , \qquad (6)$$

which holds, because vertices from the union which are counted more than once in the sum are actually counted k-1 times and they are exactly the vertices in  $\mathcal{E}_{V(k-1)}$ .

Since the union has a cardinality not exceeding n, we get

$$|\mathcal{E}_{V(k-1)}| \ge \frac{1}{k-2} \left( \sum_{V(k-2) \subset V(k-1)} |\mathcal{E}_{V(k-2)}| - n \right) .$$
 (7)

Substituting this in (5) yields

$$k(k-2)T_{k} \geq \sum_{V(k-1)\in\mathcal{T}_{k-1}} \left( \sum_{V(k-2)\subset V(k-1)} |\mathcal{E}_{V(k-2)}| - n \right)$$

$$= \sum_{V(k-2)\in\mathcal{T}_{k-2}} \sum_{V(k-1)\in\mathcal{T}_{k-1}(V(k-2))} |\mathcal{E}_{V(k-2)}| - n |\mathcal{T}_{k-1}|$$

$$= \sum_{V(k-2)\in\mathcal{T}_{k-2}} |\mathcal{T}_{k-1}(V(k-2))|^{2} - n |\mathcal{T}_{k-1}|$$

$$\geq T_{k-2} \left( \frac{(k-1)T_{k-1}}{T_{k-2}} \right)^{2} - n |\mathcal{T}_{k-1}| \quad \text{(by convexity of } x^{2})$$

$$= \frac{T_{k-1}}{T_{k-2}} ((k-1)^{2}T_{k-1} - n |\mathcal{T}_{k-2}|)$$

$$\geq \frac{T_{k-1}}{T_{k-2}} \left( (k-1)\frac{T_{k-2}}{n} (2(k-2)|\mathcal{E}| - (k-3)n^{2}) - n |\mathcal{T}_{k-2}| \right)$$

$$= \frac{T_{k-1}}{n} (2(k-1)(k-2)|\mathcal{E}| - ((k-1)(k-3)+1)n^{2})$$

and therefore (1).

The following consequence is useful.

Corollary If for some  $\alpha > 0$   $|\mathcal{E}| \ge \frac{k-1}{2k}n^2 + \alpha n^2$ , then

$$T_{k+1} \ge \alpha^k \ n^{k+1} \ . \tag{8}$$

<u>Proof:</u> Since  $\frac{k-1}{2k} \ge \frac{\ell-1}{2\ell}$  for  $\ell = 1, 2, \dots, k$ , the assumption implies

$$2\ell |\mathcal{E}| - (\ell - 1)n^2 \ge 2\ell \cdot \alpha n^2$$

and therefore by (1) and since  $T_1 = n$ 

$$T_{\ell+1} \ge \frac{1}{\ell+1} \frac{T_{\ell}}{n} 2\ell \ \alpha n^2 \ge \alpha n T_{\ell} \ ,$$

which implies (8).

Remark Our result falls into the context of paragraph VI.1 of [2]. A well-known result by Turan ([3]) concerns the determination of the maximal number  $t_k(n)$  of edges in an n-graph such that  $T_{k+1}=0$ .

The optimal graphs have the following structure:

For n = km + r, r < k, partition  $\Omega_n$  into r sets with m + 1 vertices and k - r sets with m vertices and include exactly all edges connecting vertices of different sets.

Therefore one has for Turan's function

$$t_k(n) = \binom{r}{2}(m+1)^2 + \binom{k-r}{2}m^2 + r(k-r)(m+1)m . \tag{9}$$

It is remarkable that our quite general inequality almost implies this identity. In fact, in an optimal graph clearly  $T_k \geq 1$ , because otherwise an edge could be added. Therefore from the inequality we conclude

$$|\mathcal{E}| \le \frac{n^2(k-1)}{2 \cdot k} \tag{10}$$

and if n is a multiple of k, that is,  $n = m \cdot k$ , then (10) takes the form  $|\mathcal{E}| \leq m^2 \binom{k}{2}$  and thus the bound in (9) follows.

For general n=km+r an easy calculation shows that the bound in (10) is tight, if  $\frac{(k-r)r}{2k}<1$ . This is for instance always the case also for r=1,2.

- [1] R. Ahlswede, N. Cai and Z. Zhang, "Rich colorings with local constraints", Preprint in SFB Diskrete Strukturen, Bielefeld 1989.
- [2] B. Bollobás, "Extremal Graph Theory", Acad. Press, 1978.
- [3] P. Turan, "An extremal problem in graph theory (Hungarian)", Mat.Fiz. Lapok, 48, 436–452, 1941.