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Abstract

The following inequality was conceived as a tool in determining coloring numbers in the
sense of Ahlswede, Cai, Zhang ([1]), but developed into something of a seemingly basic
nature.

Theorem For any graph G = (2,,€) with n vertices let T be the number of
complete k-subgraphs of G . Then for k > 2

Tk—1

>
T 2 k-n

2(k = DIE] ~ (k - 2)n*] . (1)

Proof of the Theorem stated in the abstract. By its definition we have T; =n . We
show (1) by induction on % . ' .

For k =2 T; = €] = $%[2|€]] = |€] , so (1) holds even with equality. For the
induction step from k—~1 to k we need some notation.

V(m) denotes a set with m vertices and 7,, stands for the set of all those sets,
which are the vertex set of a complete m-subgraph . We also set

Ey={v':(v,v') €&}, (2)
Evim) = Nvev(m)€u (3)
Tn(V(m—1)) ={V(m) € T, : V(m) D V(m - 1)}, (4)
and start now with )
Ty = z Z ' |‘€V(kf1)| : ' - (5)
V(k—1)€Ti_1

Next we bound |y (x—1)] from below with the help of the identity

U Evik-2)| = Z 1Ev(k-2)| = (k = 2)[Ey(k-1)] 5 (6)
V(k—2)CV(k—1) _ V(k=2)CV(k-1)

which holds, because vertices from the union which are counted more than once in the
sum are actually counted %k —1 times and they are exactly the vertices in Evik—1) -

Since the union has a cardinality not exceeding n , we get

1 .
Evie-nl 2 +— ( > 1Ev(k—2)] = n) - . (7)

V(k-2)CV(k—1)
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Substituting this in (5) yields

Kk=2)Te > Y > IEvik_a)| —n

V(k—1)€Tk—1 \V(k—2)CV(k-1)

= Z Z 1€V (k—2)] — 7| Ti—1]

V(k=2)€Ti_2 V(k~1)€Ti_1(V(k-2))

= Y Ha(VE-2)P -n T,
V(k—2)€T,_,

kE— 1T q\? |
B (g#i) —n Ty (by convexity of z?)

Ty
= ;’;:2 ((k —‘1)2T,c_\1 —n Tp_y)
Tr-1 Tk 2 2
> ((k — )22k — 2)I€] = (k — 3)n?) — Tk_g)
= Lok — 1)k - 2)1E] = ((k - 1)(k — 3) + 1n?)

and therefore (1).

The following consequence is useful.

Corollary If for some a >0 1] > 221n? 4 an? | then
Tiy1 > aF nFt1 (8)
Proof: Since k2;k1 > [2_—; for £=1,2,...,k , the assumption implies
26| — (£ — 1)n* > 2¢ - an?
and therefore by (1) and since T} =n

1 T
Tov1 > 7————% an? > anTy ,

which implies (8).

Remark Our result falls into the context of paragraph VI.1 of [2]. A well-known result
by Turan ([3]) concerns the determination of the maximal number tr(n) of edges in
an n—graph such that Tj;; =0 .

The optimal graphs have the following structure:

For n=km+r,r <k ,partition Q, into r setswith m+1 vertices and k — r
sets with m  vertices and include exactly all edges connecting vertices of different sets.
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Therefore one has for Turan’s function

i) = (5)om+ 024+ (557 )m2 k= riom + 2y )

It is remarkable that our quite general inequality almost implies this identity. In fact, in
an optimal graph clearly T; > 1 , because otherwise an edge could beadded. Therefore
from the inequality we conclude

n?(k —1)
< A T

o1 < 0 (10)
andif n isamultipleof k ,thatis, n =m-k ,then (10) takes the form [£| < m? (’2‘)
and thus the bound in (9) follows. .

For general n =km +r an easy calculation shows that the bound in (10) is tight, if

(k r)r < 1 . This is for instance always the case also for r =1,2 .
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