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We introduce the concept of a cloud-antichain, which is a natural generalization of antichains
in partially ordered sets, and solve some seemingly basic extremal problems for them.

Following the discovery of our identity (in [1]) we found the ‘missing term’, which converts
Bollobas’ inequality into an identity.

It immediately yields the uniqueness in the Sperner Theorem for unrelated chains of subsets,
which are an example of a cloud-antichain. '

Introduction

An antichain & in a poset 2 can be characterized as a subset without chains of
length 1. This lead Erdds [7] to consider subsets without chains of length k.
Instead of excluding certain chains one may exclude other configurations. This
general point of view was taken in [5]. Here we give another generalisation of the
concept of an antichain, which covers also cases which have been studied already

(see [2]).

Definition 1. (%,)/, is a cloud-antichain (CAC) of length N in 2, if

(a) BicPfori=1,2,...,N,

(b) for all pairs (i, j) of indices any members B, € %, and B; e %; are not
comparable.

The sets %, are also called clouds. They are obviously disjoint. Antichains are
characterized by the property that all clouds have size one. This suggests the next
notion.

Definition 2. (%)L, is a k-cloud-antichain (k-CAC), if |B|=k for i=
1,2,...,N.

In [2].the maximal length of k-CAC’s with each %; being a chain has been
determined in case 2 is the poset of subsets of a finite set.

We prove uniqueness of the optimal configuration found in [2]. The proof is
based on the approach of [1] to lift LYM-type inequalities to identities. Here it is
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Bollobas’ inequality [3—4], which we are able to improve to an identity. Another
such example is an inequality in [5].

Next we consider incomparable varying length chains of subsets and determine
their maximal length as well as their maximal weight under a canonical weight
function. We also take a look at cloud-chains.

Definition 3. (6", is a cloud-chain (CC) of length M in 2, if
(a) ‘6,-<,:9’f0r’i=1,2,...,M, _
(b) for all members C; € 6, and C; € ¢; we have C,<C,, if i <j.

Whereas CAC’s are complex objects, it is easy to analyze CC’s. In order to
better understand CAC’s we investigate here the case N =2 and maximize the
sizes of the clouds. We get a tight bound for |%,| |%,|. Amazingly, a neat proof
can be based on an ancient inequality [6]. This encouraged us to consider other
two family extremal problems, namely, mutually intersecting systems (MIS)
(o4, B) defined by the properties o, B<2%, Q={1,2,...,n}; AN B+#§ for all
Aed and B € B and mutually comparable systems (MCS) (&, %), for which
A>BorAcBholdsforall Ae o, B e %.

For the ranges of triples (||, |9|, |4 N B|) of cardinalities we establish
asymptotically optimal results for MIS’s and exact results for MCS’s.

Part I: Identities

1. An identity behind Bollobas’ inequality

First we generalize our basic identity [1] in the same way as Bollobas’
inequality generalizes the LYM-inequality. For this we use an elementary result,
which can be found with a short proof in [2].

Lemma 1. For two sets A, Bc Q={1,2,...,n} with A c B exactly
.<n—|B\A|>-l
n!
|A]

maximal chains in P = 2% the power set of 2, meet {C: Ac C c B}.

Theorem 1. Suppose A, < B,, ..., A;c B are subsets of {1, 2, ..., n} such that
A; & B; for i #]j, then ’

E’:(n—- |B,-\A,-|>‘1+ S Wa(X) (l;I)_l= N

i=1 |4l xeo |X|

where

O={Y:3i:A,cYcB;} and Wjy(X)=

N4l

i<
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Notice that the special case A;=B, for i=1, ..., is our identity of [1] and
that a consequence is Bollobds’ inequality »

S(n— IBi\Ai|>_l
= 1. 1.1
3 Al (11)

Proof. We repeat the proof of our basic identity in [1] so that the meaning of
occurring terms is clear.
For U={XeP X>A for some Ae )} the number of saturated chains
leaving U at U is
(n = [UND!WA(U)(U| = 1.

Since the sets {X: A; c X < B;} are disjoint, we have therefore
[ .
2 2 (=lUDHAIUI =D+ 3 (n— U Wa(U)(U| = 1)! = nl.
, i=1A;cUcB; v UeO
Furthermore, by Lemma 1
n— |Bi\Ai|>—1

D (n—|U|)!|A,-|(_U_1)!:”!( Al

AjcUcB;

and the result follows. O

2. An identity related to Lemma 4.5 of [5]

In {0,1,...,m} x{0,1,...,n} let (i, )< (i', j') exactly if i <i’ and j <j".
An auxiliary result in [5] is:
IfI<c{0,1,...,m}x{0,1,...,n}is an antichain, then

Py (T)(j)(r?:,nylg L @)

The authors of [5] express the opinion that this inequality is interesting in itself.
Actually, it is the LYM-inequality for the poset defined. To see this just count the
saturated chains through

(in ]t) el= {(ilx jl)’ et (iT: ]T)}

Their number is

<m +n _it’_jt>(it +jt>
m—i, I

and since the total number of saturated chains is (™} "), we get

i(m +n—i —]))(i, -.1-]‘,)<m +n>"l$ 1.

=1 m — it lt m
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Now observe that the rth summand equals

C(mAn—i =)+ m! n!
(m +n)! (m—i)ti,! (n—j)jV’
which is just

0

This was to be shown.
Next we derive the following identity.

Theorem 2

o (M) (U (oo

< = m+n = {m+n m-+n\ =
I (z,+1)(i+l> * (k+1,)<k+].> <i+]. )(z,+],)
» . t t t

M~
i

Proof. We follow again the approach of [1]. To
I={@, j): 1<t<T)}
we assign the upset '
U={( ) (i, )= (ir, j,) for some t}
and we count again the saturated chains according to their exits from 9.
W.lo.g. we assume i;=i,=---=i;. Then necessarily j, SjhH=--- =g,
because [ is an antichain.
Therefore exits from % occur in three kinds of elements:
(a) (iu ]) with ft<i$jt+1 - 1:
(b) (i,j) withi<i=<i_,—1,
) (o)
Counting the chains accordingly and rearranging binomial coefficients gives the
identity. O

Part II: Uniqueness via identities

3. Uniqueness for equality in Bollobas’ inequality

Theorem 3. Suppose that AchBl, ..., Ayvc By are subsets of Q such that
A; ¢ B, for i #j, then

ﬁ’:(n - |Bi\A,~|>‘1 1

i=1 1Al




On cloud-antichains and related configurations 229

implies the existence of a D c L and a t with

(A:1<i<N}={A:AcD,|A|=t} and B,=A,UD.! (3.1)

Proof. For a system reaching equality we know from Theorem 1 that
Wy(X)=0 for XeO. (3.2)

Let ¢t =min; |4;] and without loss of generality |A,|=t. For y € B, consider
A;U {y} and notice that A; U {y} € 0. Therefore W,(A, U {y} =0) and all of the
t-subsets of A; U {y} with 1 element in B, and ¢ — 1 elements in A, are in . We
proceed now inductively. Suppose we know already that all z-subsets C with
|[CNBy=r, |CNA|=t—r are in &, we show then that all ¢t-subsets D with
IDNB,|=r+1, | DNBy=r+1, | DNA|=t—r—1are in .

For this notice that every ¢+ 1 subset E with |[ENB,|=r+1, [ENA,|=t—r
contains by induction hypothesis at least » + 1 members of & (with ¢ elements).
Since r+1=2, by the unrelatedness assumption necessarily E € 0 and thus
WL(E)=0. ‘

Hence all r-subsets of E are in & and we have completed the induction: all
t-subsets of A, U B, are in . Let us call this set of subsets '

Clearly,

—|B;\A
|.Sd’| — (n I 1 1|)
|44

Furthermore, for every i by unrelatedness B; = A; U C; with C; = B;\A,. Now
any member A; of &' could take the role of A; and therefore

B_;\Aszl\Al forAl-E&f'.

Thus
1 ||
1= = =1 d ="
A,% (n = |B,-\A,-|> (n N AVE an
A,

| A,

4. Uniqueness in the Spemer' Theorem on unrelated chains of subsets by
Griggs, Stahl and Trotter

A family of sets{A(i, j)) = {1,2,...,n}: 1si<N, 0<j =<k} satisfying
forall i, A(i,0)cA(, 1)c---c A, k), | (4.1)
for all i, i', j, j', with i #i', A(, j) ¢ AG', j') (4.2)

is called a collection of unrelated chains with k + 1 sets each. Denote the maximal
value of N for such collections by f,(n).

I'The bar denotes complementation in the ground set {1,2,..,n}. In later sections it also denotes
complementation in the Minkowski sense for families of sets.
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Theorem 2 of [2] states
n—k »
5=\ 1) 43)

The following collection achieves this optimum.

The sets A(i, 0) are the t-subsets of {k+1,...,n} and for j=1, A(, )=
A(,00U{1,...,j}. Heretequals |(n—k)/2] or [(n—k)/2].

Notice that instead of speaking about a chain we could equivalently consider
the family of sets between its first and last member. Thus for the above collection

AizA(i,O), BizAiU{l,...,k}
and the A/s are the |(n —k)/2|-subsets (resp. [(n —k)/2])-subsets) of {k +
1,...,n}. We call this a canonical collection.

Theorem 4. A collection with fi.(n) unrelated chains of length k is canonical.

Proof. Let {A;: 1<i<N}; N=f,(n); where &, = {A(;,0), ..., A(i, k)}, be an
optimal collection of unrelated chains. We begin as in [2] :

(n _ If:I\Ai|> = (nlz;|k) = ( l(nn——kl;/z ] ) (4.4)

f(n) =,-=§'1 gl((nn——k)/z)(n_:j |\Al') <(nn——kl)c/2> (4.5)

by Bollob4s’ inequality
N n— IB,\A,I -1 .
2‘,1< A ) =1. (4.6)

Since there must be equality everywhere in (4.5), we also have identity in (4.6)
and in (4.4), that is, fori=1,..., N

]A,~|=ln;kJ or [”;kl, BAA, = k 4.7)

By Theorem 1 the collection is canonical.

Part III: Further special cloud-antichains and cloud-chains
5. On incomparable varying length chains of subsets
Suppose now that in a CAC (%)X, all clouds %, are chains. What can be said

about Y)Y, |9B,|?
A tight upper bound can be derived by the approach of [2]. There all chains are
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assumed to have k + 1 elements. We allow chains of varying lengths and let B(n)
be the maximal number of elements in (Y, %;. Using Bollobds’ inequality one
obtains as in [2]

b =3 i =maxc+0( ")) BRERY
The value l .
D EC0 ()

is achieved for a canonical collection. It remains to be analyzed for which values
of [ we have f(n, )= ﬁ(n). By an elementary calculation we get

fu, Df(n, 1+1)"1 =31, _n=!

T1+2 [(n=D/2]"
We show next that , :
f(n,1)>f(n,t) for2<t<n andall n=5. (5.3)
Notice that by (5.2)

flr, Df(n, )™ =

For n odd therefore

(5.2)

t

1—'Il+1 n-—1 2 n—1
=il +2 f(n—l)/Z] t+2,5 [(” —l)/2]

n—?2

2
, 1 ot -1 2_2[[/2] . = [¢/2] >1.
flm, Df(n, 7= [n—22] i+2° 1
Similarly for even n =6
2 —
f(n, )f(n, )7 '= gl "1 3 ol > 1

>
t+2 [((n=1)/2] t+2
and (5.3) holds.
The optimal values in cases n <4 are obtained by inspection.

fLD=Q1+ 1)(\1 ; 1) =2,
f(2,‘2) —(1+ 2)(2 ;‘2) =3,
e =271 =y,
fG,3)=4-1 =4,
fa0=1-(3) =,
F(4,1)=2. (
(3

f(4,2)=3.

J;
p—

[\)
SN—
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Thus for n = 3, 4 there are more than one solution. Also, / =1 is only for the case
n =2, where f(2, 1) = 2(g) = 2 <3, not optimal. Furthermore, by Pascal’s identity
f(n, 0)=f(n, 1) for n even, whereas f(n, 1) > f(n, 0) for odd n.

We summarize our findings.

Theorem 5. For n +2

pln)= 2([ 2)2/2])

- There are several non-isomorphic solutions for n =3, 4. There are two solutions
for n =4 even:

f(n, 0)=£(n, 1).

6. On incomparable chains with canonical weights

Next we study the function

R(n)= maXZ 2 1XI.

diet i Xe%

Such questions involving rang(X) = | X| have been studied for ordinary antichains

(cf. [9D).

For any ¢:N X N— N we can write Bollobas’ inequality in the form

Z C(IAJ;"fill;\A'l <1, (6.1)
“etalmn(" )

where A; is the minimal and B, the maximal element in the chain %;. If we define
now c by

A .
c(l,]1+A)=(A+ 1)'(1+5), then c(|AJ, |B])= D, |X| (6.2)
Xe%B;
and from (6.1)
— A )
S S x| < max c(, 1+A)(” ) 6.3)
i Xe%; I+A=<n {
Therefore '
— A
R(n) < max (A+1)<1+9)<” ) (6.4)
I+A<n 2 )

On the other side the expression to the right can be achieved by the
configurations described in Section 4 and we have equality in (6.4). The technical
work starts now. What are optimal values for [, A?
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Theorem 6.

R(n)= @[ —1)/2] + 1)([(”"__1)1 )

The proof is based on three properties of the function

g(n, A) 2 max (A+ 1)(1 + 3)(” - A). (6.5)

I: A+l=n I

Lemma 2.
@ g0n0=([15) M2,

n—1

®) o )=((," ) @I D21+ D),
(c) g, A+1)<g(n A) for A=1
Proof. Since
(") e o= (" e (")

= ([(nn—_ 11/2] )2[(" —b2l+ <[(nn——1;/2] )

(b) follows and (a) is obvious.
For the proof of (c) set now

5= ["; A]. (6.6)

s =" o)

and by Pascal’s identity

=) (2]

Then

Case: n — A even.

g(n, A+1)= <” - (f * D)[(A + 2)<s +i;—1>].

Notice that 2s —1=n—A-—1 and thus (n—(A+1)/s)=(n—(A+1)/s—1).
Therefore

g(n, A) = 2(" - (f M D)[(A + 1)<s +—2A—)].
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It suffices to show that
' A [ A+1
2(A+ 1)(s + 5) =(A+ 2)<s + T)

or (equivalently) that

A* A .
As+725+ 1. , (6.8)

The case A=1, s = 0,' that is n = 1, does not occur with A + 1.
Otherwise (6.8) holds for all A=1 and s =0.
Case: n — A odd.
Now we have

and [%ﬂ]:s_l

g(n, A+1)= (” —s(f: D)[(A + 2)<(s —1)+ %)]

Using (6.7) we get

g(n, A) —g(n, A+1)= <n - (SA * 1))[(A + 1)<s + g)] - (n _s(j‘-l—'- 1))[s -1}

Since
A
(A+ 1)<s + —2—) =222 —1),

it suffices to show that

n—(A+1\_ /n—(A+1)
("7 )=( )

s s—1

By our assumptions this amounts to showing that

2k 1/2k k
== — =1 =1.
<k+1> z(k) or that k+1 ? for k=1

The Theorem states that g(n, 1) is optimal. By (c) in Lemma 1 the only
competitor left is g(n, 0). Now one readily verifies that

g(2m+1,0)=g(2m +1, 1), g(2m, 0)<g(2m, 1). (6.9)
At any rate, g(n, 1) cannot be defeated. [

7. On cloud-chains

We call a cloud-chain (CC) (€,)M, a k-CC, if
|6l=k fori=1,2,..., M. NCA)
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Let M(n, k) be the maximal M for which a k-CC ()X, exists in 2{12") This
quantity may be termed the maximal length of cloud chains with parameters &
and n.

Theorem 7. For neN and 1<k <2"

n+1
[ ] J if 27 <k <2,
M(n, k) =

(2-[n+1J [n+1—1J+1)
max\c 1)+t if k=2"

Proof. We can associate with a CC (€,)!, an ordinary chain (C,)M, defined by

¢=U C | (7.2)

Ce%;
Notice that
Ci < C fOI’ all C € (gi+1' . (7.3)

C; may be the largest element in €; and it also can be the smallest element in
"%,+,. For a k-CC necessarily

|Ci1l — |Cil = [log, k] (7.4)

and therefore

M<[ n+1 }

[log, k|

In case 2'~' <k <2' we have [log, k] = and equality can be achieved in (7.5)
with the following CC: Start with %, as set of all proper subsets of an /-element
set Cy, then define 6,={C: C;c C g C,}, where C, extends C, by I-elements,
etc.

In case k =2, C, has to be member of %, and an [ + 1-element extension of C,
1s needed now for C,. Here C, can be in %; and thus an /-element extension of C,
suffices now again for C,. This procedure keeps alternating. Therefore

(7.5)

M(n, 2’)=max( max 2t , max2t+1> (7.6)

tI+1)<n+1 tQI+1)+Isn+1

and the result follows. O

Part I'V: Basic extremal configurations involving two families
8. Cloud-antichains of length 2

Several two family extremal problems have been studied in the literature,
however, to our knowledge not the following seemingly basic problem.
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In case N =2 the CAC consists of two families, say & and 94, of subsets of
@ =22, with the property
all A € & and B € B are incomparable. (8.1)

What can be said about the cardinalities of < and &?

Theorem 8. For Q={1,2,...,n} a CAC {sd, B) in P =22 satisfies
(i) || |B| <274
(i)  min|s], B} <272

and these bounds are tight.

Proof. Obviously (i) implies (ii).
Equalities occur for instance if

A={XeP:1eX,2¢X} and B={xeP:1¢X,2eX).
There are other such configurations as for example for n even
A'={XeP leX | X-{1}<s|(n—-1/2]},
B={xeP1¢X, |X|=[(n-1)/2]).
Now we come to the heart of the matter. Define
AvB={AUB:Aecd, Be B} (8.2)

and analogously & A .
~ A-special case of the inequality in [6] says

|| - |BI<|Ad v B| |4 A B (8.3)

The key observation now is that all four sets are disjoint. For & and @& this
follows from the incomparability. If now A’ e (# v B)N o, then A'=A U B,
which would imply that contrary to the assumption B < A’. Similarly A’ € (o A
B)N A implies A'=ANB and thus A’ B, finally, A’ € (£ v B)N (A A B)
yields AU B = A"N B” and thus B c A".

Now, since ||+ |B|+ | v B| + | A B| <2, by the mequahty of the ge-
ometric and arithmetic means || - |%B| - |4 v B| - | A B| < (2"/4)*, which, to-
gether with (8.3) implies the result. [

9. The asymptotic growth of mutually intersecting systems (MIS)

Recall the definition of an MIS in the Introduction. We speak of an MIS
- (A, B) as an (n, a)-MIS, if

AN B|<a-2"; o, B2 9.1)
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We determine here the optimal rate

e || |98
p(a) = sup sup

n (A Byn,a)mis 22"

(9.2)

Theorem 9. With the abbreviation vy =V1 -3«

20 1 vy <1 Y 2a> 5 a vy .
—t—+ =+t \/ 5= O=sa=y,
3 e st 9T973) V3 379 forV=ass

1 : 1
= fors=a<1.

4

p(a) =

In particular for o =0, p(0) =4/27.

Proof. With the help of an ancient inequality we derive first an upper bound on
p(a). This bound is described as the solution of an analytic optimisation problem.
Next this problem will be solved. The parameters, for which the optimum is
assumed, can be determined. Finally, using properties of these parameters we
construct a sequence of MIS’s, which approach in rate p(«a).

The upper bound. Assume that & and % are a non-extendable (n, «)-MIS. Then
for the set :

€={C:CNX#Pforall XesdU B} (9.3)
necessarily

€>ANAB. : ©(9.4)
Furthermore, for the set

€={C:Ce %) 9.5)
we have

€N(AUB)=0, | (9.6)

because otherwise by definition of € for some C C N C #@, a contradiction.
Define now

A* = A\ E, B* = B\C. ’ (9.7)
We derive a bound on || - |B| via the inequality

|A*| - |B*| < |A* v B*| - |A* A B | (9.8)
Since A v B < € we have a fortiori '

A* v B* < €. (9.9)
We show that also

A* A B*c €. (9.10)
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Assume to the contrary that for some A* € «/* and B* € B* we have A* N B* ¢
€. Then by definition of € there exists an X e SURB (say X e ) with
A*NB*N X =§ and thus X < A* N B*. Now, since by definition of B* we have
B* ¢ €, there exists a Y € B with Y N B* =§. Therefore also X NY =@, which
contradicts the fact that (s, %) is an intersecting system.

From (9.8)-(9.10) we conclude that

|*| - |B*| <6l - |6 =€) ' - (9.11)
Now define
€=ANE, €=BNE.
By (9.7), A =s4*U %, B=B*U %, and by (9.4), 4 N B =€, N ‘62 Therefore
| ] - 1B] < (|L*] + [G])(IB*| + | Gl), (9.12)
|6, + 6] <|6|+a-2" ' (9.13)

Furthermore, the sets of*, #*, €, and € are disjoint. This is clear for of*, &*,
and € by the definitions and follows for € from (9.6) and the fact & U % = of* U
B* U 6. We thus have

2{€| + |A*| + | B*| <2, . (9.14)
The inequalities (9.11)—-(9.14) give after normalisation by 2"

p(a)<p(a) sup(a +c;)(b + ca), | (9.15)

where the supremum is subject to the constraints
(%) ab=c? cite=c+a, a+b+2c=1,
®<(y, ¢, ¢ and all numbers are nonnegative.
Here we have replaced a + b + 2c <1 by the equality, because increasing ¢ until

equality is reached just increases (a + c,)(b + c¢,) without .violating the other
constraints.

The optimisation. We distinguish two cases.

Case: a+ a<b +c.

The case a+ a>b +c and symmetrically the case a +c <b + « are treated
later. Therefore we can assume a + ¢ = b + « and that there exist ¢,, ¢, with

a+b+c+a_1—c+a

1+ =b+c,=
a-—+iao; €y 5 5

(9.16)

This shows that ¢ = Vab is an optimal choice within this case. Furthermore, if
a>b (resp. a<b) then by Va+Vb=1, Vab decreases if a increases (resp.
decreases) and we have reduced our case toa+a=b+c(resp.at+c=>b+ a).
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In any case we are, by symmetry, in the next case.

Case: a+a=b +c.

From ab =c*—¢, €=0, and a + b + 2c = 1 we derive that a and b are the two
roots of (1 —2c —x) x =c*~&. W.l.o.g. a=b and thus

a=3—-c+Vi—c+e b=i-c-Vi-c+s (9.17)

By our assumption and the arithmetic-geometric mean inequality it is clear that a
best choice is ¢; = @, ¢, =c. We get

(@a+c)b+e)=G—c+Vi-cte+a)i-Vi-c+e)
=c—¢e+(c—a)Vi-c+e—i(c—a)2f(e),

and
1%

=—l4+—— 2 <y,
Fe == r—re

because by assumptiona —b =2Vi~c+e=c—«
Therefore -the choice £(c) =max(0,c —3%) is optimal. We are left with the
maximisation in ¢ of -

| gle)2c—e(c)+(c— a)Vi—c+e(c) - i(c — ).
Define |

_[g(c) forOscs=j,
&:(c) {0 fori<c=1,
_[g(c) fori<e=1,
82(¢) {0 for 0<c <}
Thus

8(c)=gi(c) +g:(c). (9.18)

Now for c <3

4 =14/1_ __C__a_.-_-
gl(c) 2 4 c 2\/%——_(,‘ 0

yields

1=__c—a/—%+2c___(3c—2—-%)2

Vi-c R

or

9¢? — (6a +2)c + &>+ a =0,
We get

¢ =135(6a +2) + V(6 +2)° —36(a? + &) =la + 1+ iVI—3a
and for

c=la+i+{VI-3a (9.19)
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it can be shown that gi(c) <0. Thus with y = V1 -3«

Omax%gl(c)=%a+%s+%8y+(%+% —%a)Vis— 3 B*(@). (9-20)
Now for §<c, g2(c) =% —3(c — @) and for @ =} therefore max. g,(c) = . For
a <%, maxp. g.(c) =% +ja.
In summary

max(B*(«),§ +3a) for a <},

i for a =3} ©.21)

B(a)= {
Actually, § + 2a<ﬂ (@), because for a =1 he quantltles are equal to 3, for
a=0p8*0)=2>%and *(a)<iforall <}

Construction of asymptotically optimal MIS. In the preceding analysis we
encountered the following facts: For a =%, c=c;,=c,=«, ab=(c—3)? and
a=b=73—« are optimal and for ¢ <1 this is the case for c;=a, c,=c=
Ja+3§+5V1—-3a and ab =% By our definition of an MIS in (9.1) in case a =1
it suffices to give a configuration for & = § achieving the value %. In this case and
also in case & <} the constructions are obtained by proper adjustments of the
parameters in the following basic scheme. Let n=k -l and partition Q=

{1,2,...,n}into the sets P,={k(i—1)+1,..., ki};i=1,2,..., 1 Consider
€={E c : ENP, =P, for at least one i}, ‘
F={FcFOP+#fpforalli=1,2,...,1}

Clearly, (%,' %) is an MIS. It has the parameters .
|€| =2 — (2¥ - 1), _ - (9.22)
|F| = (2" -1, (9.23)
18N F| = (2% — 1) = (2¢ — 2. (9.24)

Case: o =13

Define £ =&, B=F, €=ANB, A*=A\€, B* =B\ %. Thus

ERCR 22“[ (sl

and with the choice [ = u2* we have for any v>0 and k= k(v, u)
|- 198 =27 [(1 — e #)e ™ — v],
| N B|<2"[e7"—e 2 +v].

The result follows with the choice e ™ = 3.

A shifting procedure. One could have defined a (n, a)-MIS by requiring equality
in (9.1). For the rate function p’ corresponding to this notion p'(«) < p(a). We



On cloud-antichains and related configurations 241

show first that p’(a) = p(a), for a =} by shifting elements in the previous MIS
towards the common part. This technique is genuinely used for our proof of
p(a)=B(a) for o<} In the construction above ||27"—3%, |B|27"—1
| N B|27"— 3. :

Consider now any B e MIN 3B* = {X € B: AX' € B*, X 2 X'} and observe that

BNB'#@ forall B'e B*\{B)}. (9.25)

Define now #** = B* — {B, B} and similarly for A e MIN of*sf** = of*\ {4, A).
Finally set €** = € U {4, B}. These definitions are possible, because «* and B*
are closed under complementation! Now (9.25) and its analogue for & imply that
(A** U €**, B*™* U €**) is an MIS. Its common part has increased by 2
elements. Iteration of such shifts of elements gives for any k <3 |«*| an MIS
(AP, B®) with
| @)= ], |B9) = | B
and :
|| N BB = | N B| + 2k ~2"a,
if 2k ~ (& — $)2". This is possible because & <3 and |£*| ~ 12",
Case: a<3.
In the previous construction we have
|* = A\ A N B| ~2"(1—e™#)?,
|B*| = | B\ N B| ~2"(e™#),
| NB|~2"(1—e H)e™*
and therefore with € = of N B, |AL*| |B*| ~ | 6|
From the proof of the converse we know that ab=c? c¢,=«, c,=c are
optimal. We have to choose €, 4, = € with

6 =€, 6, c €, || ~ - 27 (9.26)
and can define

A =A*UEC, B =B*U%. ' (9.27)
Now : ’

|| B 27" ~(1—e ¥+ a)e ™
and since

max [(1 - e #)*+ ale™* = B(a)
u
the proof is complete. [J

Remark. A closer look at our proof shows that it yields more than we stated in

Theorem 9. If we call a triple (r;, r,, @) achievable in case there exist for all large
n MIS’s (o, B) with

E T

=27 — =7 and M<
on 1 2n/ 2> , =

%
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then we can actually get these triples by the specifications
n=a+c, n=b+c, absc’ c,+c,=c+a,

a+b+2c=1, and a<cy,c,,c.

10. Mutually comparable systems (MCS)

(A, B); OF A, B2 is an MCS, if all members Aef and Be B are
comparable, that is, A > B or A c B holds.

We write A oc B, if A and B are comparable and also of o %, if (o, B) is an
MCS. ‘

Our first observation is: '

XocA, XocA;, > XocA NA, Xoc A, UA,. (10.1)

We verify this now.

IfXcA), XcA, then XcA, NA,c A, UA,;

if X>A,, XoA,, thenX>A4,UA, DA, NA,; and

ifX>A,, XcA, then A\NA,=A;c X cA,=A,UA,.

This implies that an MCS (sf, %) is transformed into an MCS, if we replace of
(resp. B) by o (resp. %), the smallest set containing s/, which is closed under
unions and intersections. Furthermore, also (£ U {#, 2}, BU {8, Q}) is again an
MCS. Whereas for MIS we presented asymptotically optimal results, we give now
exact answers for the corresponding problems for MCS.

We assign to (&, B) the sets

C=ANB, A*=A\C, RB*=RB\€ (10.2)
and the parameters (a, b, ¢), where
a=|4|, b=|B|, c=|%b| (10.3)

Let J(n) be the set of triples achievable by MCS’s. It suffices to characterize the
set €(n) of extremal triples in J(n) because all other triples can be obtained by
omitting elements from &, B or 6. Notice that € is always a chain and therefore
only the values ¢c=0,1,...,n+1 can occur.

Notice also that extremal triples can be achieved only for MCS’s (4, B). The
following result is the basic tool for our analysis of such systems

Lemma 3. For every MCS (A, B) with o' = AN{B, Q}, B = B\{D, Q) there is
a non-empty T < Q with

() TcXforal Xesd' or Tc X forall X € B,

(i) {T}oc AU %.
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Proof. Let Z have minimal cardinality among the members of &' U %’ and
w.l.o.g. let Z € #'. The minimality of Z and the relation {Z} o< &' imply

ZcA forallAed'. (10.4)
Therefore the set
T=() A : (10.5)
Aed’ ' .

is not empty and satisfies (i). )
" Furthermore, by our definitions T € &'. Therefore {T} o= % and (ii) follows
with (i).
The Lemma says that for a T, #9 only some members of B (resp. o) are
contained in 7; and the others as well as all members of « (resp. 8) contain T,.
Applying the Lemma next to Q,=Q\T,, o, ={A\T;:Ae A}, B,={B\
T,:Be B} we find a T, Q\T; T,#0. Reiteration by a most n steps of this
construction leads to a sequence of sets

S$=T, 8=TUTL, S=TULUT,...

and a sequence of families of subsets of Q

Do, Dy, - - .
such that for j=0,1,2,... and S, =9 | |

S;cDcS;,, forall De9 (10.6)
and

Dicd or ZcRB, U9 =AU . (10.7)

The S$; may belong to both sets & and %, to one of them, or to none of them.
The last case can be ignored, because it is not extremal. A %; may be empty,
but then again for an extremal configuration always |S;,| = |S;| + 1.
Otherwise in extremal cases by (10.6) and (10.7) the %;’s must be ‘intervals’. In
an ad hoc terminology ¥ <29 is an (i, j)-interval, if

Z={X:YcXcZ} and |Y|=i |Z|=] (10.8)

Similarly, [i, j)-intervals, (i, j]-intervals and [i, j]-intervals are defined. The
notation reflects whether Y or Z or both are in #. Correspondingly we speak of
open, half-open or closed intervals.

We call & an i — j-chain, if

X={{x,...,x} &, o xiah o {x, .., i) (10.9)

We summarize now the foregoing explanations.

An extremal (&, ) is of the following form: There is a sequence of intervals
(of the 4 types described above) and chains with increasing indices such that
neither chains nor intervals occur in immediate succession. The chains are
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contained in € and the intervals are contained in «* or %*. At this point
calculations are necessary to establish the following result.

Theorem 10. The extremal set of parameters for MCS is
%(’l)z{(a, b, C):a=2a‘"2+c, b=2ﬂ—2+c, c=n+3— a,_ﬁ,
where l<a, B<a+ B =<n)

U{(a,b,c):a=2-2+c,b=2,c=n+2- a; where lsasn}

U{(a b, c)a=c,b=2°-2+c,c=n+2—B; where Isf=<nj}. | R

Proof. (1) In the configuration described above we can assume that all intervals

are open, because otherwise we can shift the ‘boundary points’ to the neighbour- .
ing chain and (a, b, c¢) is transformed into (a,b+1,c+ 2), if the interval is in
A*.

(2) No two intervals are in &* or in B*, because
2ith 2> 40k 2

says that replacement of two intervals by one is an improvement.
(3) We are left with two possible situations:
(a) 0—i-chain— (i, j)-interval — j—k-chain— (k, l)-interval— [—n-chain,
where 0<i<j<k <lI=<n. Here

c=i+l+k—j+1+n—-1+1,
a=2"-2+c, b=2"%_2+¢

and with the correspondence a =j — i, B = — k the result follows.
(b) O-i-chain— (i, j)-interval — J—n-chain. Here

c=i+1l+n—j+1, a=2"-2+¢, b=c

(or symmetriéally a=c, b=2""-2+c¢), 0<i<j<n. For a=j—i we get
finally '

a=2%-2+cg, b=c, c=n+2—-ua;, l=sa<sn. O

Notice that for =1 &/ and & equal the 0-n-chain, and for @ =n «f = 22 and
RB={0, Q}.

Remarks. (1) If (a, b, ¢) is extremal, then (a*, b*, c)=(a—c,b—c,c) is not
necessarily extremal. However, the set €*(n)= {(a*, b*, c): extremal triples
achievable by MCS) can also easily be determined by using not only open
intervals. :

(2) An analysis of MCS with more than two sets can be given along these lines.

A ot b bt st Sttt e e e
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