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On Identification Via Multiway Channels
with Feedback

Rudolf Ahlswede and Bart Verboven

Abstract —Identification for multiway channels was men-
tioned by Ahlswede and Dueck as a challenging direction of
research. In case of complete feedback, a rather unified theory
of identification is presented. (For the classical transmission
problem the dream of such a theory did not get fulfilled for
more than twenty years.) Its guiding principle is the discovery,
that communicators (sender and receiver) must set up a com-
mon random experiment with maximal entropy and use it as
randomization for a suitable identification technique. It is shown
how this can be done in a constructive way. The proof of
optimality (weak converse) is based on a new entropy bound,
which can be viewed as a substitute for Fano’s lemma in the
present context. The “single-letter’” characterization of
(second-order) capacity regions rests now on a new “entropy
characterization problem,” which often can be solved. This is
done for the multiple-access channel with deterministic encod-
ing strategies and for the broadcast channel with randomized
encoding strategies.

Index Terms —Identification, multiway channels, feedback,
coding scheme, capacity region, randomized strategies.

1. INTRODUCTION AND THE RESULTS

HLSWEDE AND DUECK [1] have introduced a

new model for communication, which they call iden-
tification (ID), hereby contrasting Shannomn’s original
transmission (TR) problem. Whereas in [2] one-way chan-
nels with feedback were analyzed, we present here, as
promised in [1], contributions to the theory of multiway
channels. The discussion concentrates on cases where
complete feedback links are present. We establish as an
always valid principle the idea of [2], that the average
maximal entropies of common random experiments among
communicators determine the optimal (second order)
identification rates. The achievability proof follows the
method of [2] page 8, to use keys selected by the common
random experiment with blocklength » and short, for
instance length vV , encryptions for the messages to be
identified. The wide applicability of this method is due to
the fact that this “Vn trick” can be applied independently
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for several users simply by timesharing without an essen-
tial loss in rates.

However, the converse proofs of [2] use special sroper-
ties of one-way channels and do not seem to be adaptable
to multiway channels. We present here a new rethod
(Lemma 1), which yields weak converses for these chan-
nels. Its essence is an elementary relation in terms of
entropy between the cardinalities of sets and their proba-
bilities in arbitrary discrete probability spaces.

In our second main contribution, we show how the
encryption method just mentioned can be made construc-
tive (see Sections I-F and I-G). It was inspired by
Ahlswede’s idea of an iterative reduction used originally
for the TR problem [7], [8]. Finally we emphasize that the
determination of the maximal entropies obtainable with
common random experiments can be difficult for some
channels (see Examples 1 and 2). This shows that the
theory is not trivial. It cannot be expected from a general
and not trivial theory that it gives detailed answers to all
special questions. We remind the reader that after the
foundation of mechanics there was still no explicit answer
to the motion of three bodies. This hint may help to judge
the state of our theory. Some examples are discussed in
detail. We give now the formal statements of our concepts
and results.

A. Review of Known Concepts and Results

We first briefly review concepts concerning identifica-
tion via one-way channels with feedback. Extensions to
multiway channels then almost suggest themselves. Unless
stated otherwise, we use the notation of [1] and [2], in
particular, script capitals £, %, --- denote finite sets.
|&7| stands for the cardinality of set &7. The letters P,Q
always denote probability distributions (PD’s) on finiie (or
countable) sets. X,Y, -+ are random variables (RV’s)
with PD’s Py, Py, - .

P(/) is the set of all PD’s on &7. For a stochastic
|27\ X |% |-matrix W we denote by W" the transmission
probabilities for n-length words of a DMC. Other notions
such as entropies and information quantities are either
standard or those from [1] and [2]. The functions “log”
and “exp” are understood to be to the base 2.

Let us now turn to the identification problems of [2].
There are two concepts, deterministic and randomized
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feedback strategies, with corresponding code concepts.
The vector-valued function

fr=1fn 1l (1.1)

is a deterministic encoding strategy of blocklength n, if

fi€Z and f,;: Z'~' - & for t > 1. It is understood that-

after the received elements Y;,---,Y,_; have been made
known to the sender by the feedback channel, the sender
transmits f,(Y;,---,Y,_,). At t=1 the sender trans-
mits f.

The distribution of the random variables Y,(t =1,2,...)
is determined by f and W. We denote the probability
of receiving y"=(y, ",y )€%" by W"|f)=
Wl f) Wl Fp) - - W, fuly1se 5 Ve )

Let ¢ be the set of all possible encoding functions
as defined in (1.1). A (deterministic) (n, N,A) IDF code
for W is a system {(f",2)i=1,2,---,N} with f"e
F4.9.c@™ forief{l,2,---,N} and

WD) <A, WD) <A,
forall i,j€{1,2," -, N} with i #j. (1.2)

A randomized (n, N,A) IDF code for W is a system
(QC1i), Di=1,2,-- -, N} with Qp(-|i)€ P(F), D, C

/", with
Y Qr(gli)yW™(Zflg) <A (1.3)
g€,
ZyQF(glj)W"(.@,-lg) <A, (1.4)

forall i,je{1,2,---,N} with i #j.

Let N,(n,A) (resp. N,(n,A)) be the maximal N for
which a deterministic (resp. randomized) (n, N,A) IDF
code exists, We summarize the results of [2] as follows.

Theorem AD (Coding Theorems and Strong Converses):
If the transmission capacity C of W is positive, then, for
all A €(0,1/2), we have

a) lim,_,1/nloglog N,(n,A) = max, ¢ o-H(W(-|x)),
b) lim, 1/ nloglog N,(n,A) =max, ¢ gygH(P-W).

In identification the receiver does not necessarily want to
know the message i€ ={1,2,---,N} given to the
sender, he only wants to know the answer to the question
“Is it {?” Here i could be any member of .#. The
quantities e} =1—min;. , W™ Z]|f") and e} =
max, ;W™ ;| fI*) are called first kind and second kind
error probabilities. (n, N,A) IDF codes guarantee these
quantities not to exceed A. The quantity 1/nloglog N is
called (second-order) rate of the code.

Clearly, analogous definitions can be given for multiway
channels. The receivers want to identify with small error
probabilities of both kinds. Senders may or may not be
allowed to randomize. Achievable rates are replaced by
(second-order) capacity regions.

Insofar we have spoken about multiway channels with-
out very specific definitions. We describe now a suffi-
ciently general class, introduce then mystery numbers and
use them to characterize capacity regions.

n-—ow
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B. A General Model for Communication Systems

To describe a communication system in general, we
introduce the following parameters:

e (), the set of terminals: at each terminal w € Q
information can be sent and /or received;

¢ T, the set of messengers: for each y €T, there will be
a message set £/,

The situation at each terminal o € (Q is further described.
by

* o/ cT, the set of messengers reporting to w;

* @, cT,where y € 4, indicates that the messages of
A, should be decoded at Z,;

e ¢ cT, the set of feedback signals linked back to w,
i.e., o € ®, indicates that all symbols received at o'
are also available at w.

Finally, the communication between terminals is gov-
erned by a discrete memoryless channel matrix, i.e., a
stochastic matrix

w: 11 2,- 11 %,
weE weE
with input alphabets {Z_} .o and output alphabets
{#Z/}, cq- Notice that we assume an input and output
alphabet at each terminal. However, allowing |2 | =1 or
|2/ |=1, resp., we can effectively model also situations
where o only receives or sends signals, respectively.
The reader can convince himself that the following
axioms provide plausible assumptions:

Al: %n'@w=¢ and Umeﬂ%= UmEQ'@w=I‘;
Ay maxl| 2. L1} = 2

Ay if | 2| =1, then o7, = ¢; if |%| =1, then &, = ¢;
Ay if &, =¢ and |Z,|>2 then |2[|>2; if &,=¢

and |%/|>2 then |Z,|>2;

and as a convention to simplify notation further on, we
also assume

AS: wE (Dw.

These definitions and axioms define a general discrete
memoryless communication system. We will restrict our
attention to the class of systems with supervisory feed-
back, i.e., where for all w,w’ €} it holds that

Ag if &, NF,;# ¢, then ®y,CD,.

This assures each terminal encoding y’s messages (y €T')
of at least all the output signals that are known at the
terminals decoding these messages. The set of decoders A
is defined by

def

AS{we B, *¢). (15)

We mainly consider the case of passive decoders, i.e.,
where

Ay forall we A, |Z,|=1,

to avoid decoders to influence the communication.
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To illustrate our model, we state the following explicit
communication systems (CS).

CS 1) One-Way Channel: Q={1,2}, [[|=1, o,=T,
'%=¢’ '@1=¢s Q2=F, LI)1={1,2}, (I)2={2}, %= 1=
{0}, and W: 27 x{0} = {0} X %;,.

CS 2) Multiple-Access Channel (MAC): ©={1,2,3},
I'={a,b}, o ={a}, o, ={b}, A=, B,=¢p=%,, &,
=T, @, ={1,3}, ,=1{2,3}, ®,={3}, 25=2,=2,={0},
and W: 27 X 25, x{0} = {0} x {0} X 2.

CS 3) Broadcast Channel (BC): Q={1,2,3}, T ={a, b},
A =T, oty = A=, B,=¢, #,={a}, B;={b}, ©,=
{1,2,3}, ®,={2}, ®,={3}, 2,=2,=%,={0}, and W:
2, x{0} x{0} = {0} x 2, X Z,.

CS 4) Interference Channel (IC): Q={1,2,3,4}, I'=
{aab}5 ‘Syl={a}’ M2={b}’ ‘MS = 'Mti= ¢’ '@1= '@2 = ¢7
By={a}; #,=1{b}, ®,={1,3}, ®,={2,4}, ®,={3}, ¢, =
4, 25=2,={0}=2,=9%,, and W: 27 X Z, x{0} x (0}
- {0} x{0}x 2, X %;.

CS 5) Relay Channel (RC): Q0 ={1,2,3},IT|>1, &, =T,
M2=MB= ¢’ Q1= Q2= ¢a .Q3 =r, (Dl ={1;3}, (I)2={2},
®,={3}, 25={0}=%/, and W: 27X 2, x{0} = {0} X %,
X .

CS 6) Two-Way Channel (TWC): Q={1,2}, T ={a, b},
o, ={a}, o, =1{b}, B,={b}, #,={a}, ®,=P,={1,2},
and W: 21X 25, = Y X %,,.

C. Classes of Feedback Strategies, Common Random
Experiments and Their Mystery Numbers

In dealing with different kinds of feedback strategies it
is convenient to have the following concept. Let Z(n=
1,2, - - - ) be a subset of the set of all randomized feedback
strategies %" of a DMC W with blocklength n and let it
contain the set # of all deterministic strategies.

We call (Z#,);_, a smooth class of strategies if for all
ny, n,€Nand n=n,+n,

Fo T X (1.6)

where the product means concatenation of strategies.
Now for f"€ &, the channel induces an output se-
quence Y™(f™). For any smooth class we define numbers

F )= H(Y™"( ™). 1.7
#(F7) = mas H(Y"(7) (1.7)

By (1.6) and the memoryless character of the channel
W(F, ) 2 u(F)+ u(F), (1.8)

and therefore p=u((F):_)=1lim,_ 1/nu(F,) exists.
It is called mystery number to attract attention.

We call F'=(F'):_, also the complete class of
strategies. We mentioned already the class of determinis-
tic strategies &< =(Z4);_,. Both classes are smooth.
Between those classes there is a natural smooth class
F*=(Z°);_, of what may be termed stochastic strate-
gies. For every member F"=(F,---,F)e%° F, is a
RV on & and F,: "1 > for t>2 are stochastic
functions, that is, for each y’~!, F(y'~1) is a RV with
values in 2. Stochastic functions are like channels,
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stochastic strategies are “stochastic versions” of determin-
istic strategies. One readily verifies that for a DMC

W(F) =u(F7), (1.9)

however for multiway channels there are differences (see
Example 1). For these channels each sender has his class
of feedback strategies. If they are all smeoth, then a
region 7 of achievable mystery tuples is well defined.
Also, by concatenation all common random experiments
are of the i.i.d. type and the AEP holds and the “Vn -trick”
can be applied. It yields the direct coding parts in the
Main Theorem and Theorem 2.

Stochastic strategies for multiway channels must have
the property that for ¢#>2 and given outputs yi‘l,
y3~L... at all receivers the RV’s F(yi~1,yi=%---),
Fo(yi7 Y y57Y,--+),--+ in the strategies of all senders
are independent. This condition seems reasonable if the
senders share only the knowledge of all outputs at each
step.

Remark I: Of course the complete class & gives the
largest rates. However, ratewise inferior classes often
have other advantages such as smaller coding efforts.
They therefore also should be studied.

Finally we give the formal definitions for the general
communication system of Section I-B. We assume that
each terminal o uses feedback strategies from a smooth
set &, , for encoding. We will denote &, for the smooth
class of composite strategies,

def
& ={8"=(fDuealfl€Z .}

As before, we denote {£},_, by #Z. The channel outputs
produced via the composite encoding strategy g" can
then be denoted as Y(g").

For every decoder w € A (cf. (1.5)), we introduce

Z2(g") =(YH(&"))wea,

The set of mystery vectors for the system is then defined
as

(1.10)

(1.11)
WA=

n

(1.12)

' H(Z,(s"
lim {(vw)weAIEg"e.f,":Vw eA:0< vmsu},
n—see

where the convergence of sets is understood in the
Hausdorff metric and follows here by the memoryless
character of our channel and the smoothness assumptions
for the classes of strategies.

D. Main Theorem and Consequences

Using the notation of a general (2, 1") communication
system in Section I-B, we define an (n,{N,}, . r,A) IDF-
code for a general (Q},T") communication system and a
smooth class of feedback strategies & as a system

(EREN)S

(1.13)
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with encoding strategies g, € #,, message vectors

m= (l‘)’) ET’ (l )VE.@ l E,/// { ’N‘y}’
(1.14)
and decoding sets
_@(“’)CQZ”X 1T 2, (1.15)

o €D,

that satisfies the upperbound A on both kinds of error
probability (which can be defined similarly to (1.2)~(1.4)).
Achievable ID-rates (R,), .y are defined as usual, and
the region €(£) of all these rates is then the (second-
order) ID-capacity region.

Main Theorem: Consider an (2, ') communication sys-
tem with passive decoders (i.e., 4, holds) and supervisory
feedback, and a smooth class of feedback strategies, #£.

a) If all messengers y €' can transmit at positive rate,
then (R ) er €Y (£), if and only if there exists
some (v )mEA e f//(f) such that

0<R <v,, forall we Aand y e #,. (1.16)

b) If T, is the set of messengeis which can have only
transmission rate 0, then €(£) is obtained as a
projection of the region described in (1.16) into the
intersection of the hyperplanes % = 0(y €Ty).

The proof of this theorem will be given in Section III.

Remark 2: The main theorem of course presents a
nonsingle-letter characterization of €(#£) in the usual
language of information theory. Still, we want to state its
merits:

e first, the machinery for deriving such a characteriza-
tion had to be developed for the ID-situation (sub-
stitutes for Shannon’s random coding argument and
Fano’s lemma);

¢ secondly, the characterization involves only opti-
mization over single strategies, rather than over
codebooks of strategies;

* as entropy quantities, mystery numbers are easier to
determine than quantities involving mutual informa-
tion; this is largely responsible for the fact that we
can derive a single-letter characterization from the
limiting characterization in the main theorem di-
rectly (see Corollaries 1-4); we remind the reader
that in the present literature on transmission there
is no such direct derivation of the single-letter ca-
pacity region for the MAC from its nonsingle-letter
characterization, and that for none of the situations
studied in the corollaries below, a complete trans-
mission result is known.

Our methods of proof for the Main Theorem also apply
for communication systems not satisfying A4, if all strate-
gies permitted are deterministic.

Theorem 2: For a general communication system with
supervisory feedback, and for the set of deterministic
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strategies Z9, the characterization of €(£9) is also given
by the Parts a) and b) of the Main Theorem.

We now state some applications of the Main Theorem.
We restrict the discussion to the genuine Part a) since the
situation in Part b) is always obvious from there.

Corollary 1: For the MAC as described by communica-
tion system CS2 in Section I-B, and the set of determinis-
tic feedback strategies £%, it holds under the condition of
Part a) of the Main Theorem that

gMA( jd) = [Osﬂﬁm] X [O:Mﬁm]s
where
pia = maxH(W(-1xy, x,)).
X1 X2

Notice that in the explicit entropy expressions we will
discard the degenerate in- and outputs of the channel W,

Proof of Corollary 1: Since A={3}, 7(£%) is a
one-dimensional region. Now, for g"=(f7, f5)e Z¢
and Y" =YJ(g"), since H(Y") = X'  HY,lY'™ 1
and HY|Y' " '=y""D=HWC|f;,(y'™), L,y "M <

ax, ”H(W( |x,,x,)), it obviously follows that %(£%)

[0 ul, 4) and from the Main Theorem (or Theorem 2)
hence also the corollary. O

Corollary 2: For the MAC as described in CS2 and for
the set of stochastic strategies &°, it holds under the
condition of Part a) of the Main Theorem that

gMA(CZS) = [0’ M;IA] X [O:V‘ﬁm]’
where
4 max max H(Y
Hma™ P, e P(X) P,e P(Z,) ( ):
and

Py(y)=1X ZPI(xI)PZ(xz)W(y|xl’x2)'
Xy X2
Proof: Let G"=(F',F})e &', and denote Y"=
Y7(G™). Since, given Y'~"'=y'"1 the RV’s F,(y'™")
and F,(y'"!) are, by definition, independent, we have

H(Y™) < nigyy,
which proves the corollary by the Main Theorem. O

Remark 3: Using the converse methods in [2] and re-
garding the MAC as a one-way channel, one can obtain a
strong converse to the above characterizations.

Example 1: 1n [10] it was shown that the rate point
(R,;R;)=(0.76,0.76) is achievable for transmission via
the binary erasure MAC defined by

W(ylxy,x,)=1 iff y=x,+ x5,

and

2=Z,={0,1},%,={0,1,2}.
If both senders each choose a key at random, transmit it
at this rate 0.76 and decode each other’s key from the

feedback signal, they can each apply the “Vn trick” to the
pair of keys, and achieve the ID-rate pair (R; + R,,R; +

R,)=(1.52,1.52). As one can easily calculate that uf}, =
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1.5 for this MAC, this clearly shows that the randomized
ID-capacity region &), ,(£") exceeds €, (£°).

Corollary 3: For the BC (see CS3), it holds under
Condition a) of the Main Theorem that

{BC(‘Z,) = {BC(EZX) =%z,
where
Rie ={(v,v,)AP € P(27): 0 <v, < H(P-W,),
0<v,<H(PW,),
where W, and W; are the marginal channels}.
Proof: Let Q€ &' = P(£?) and let YJ and Y7

denote the corresponding channel outputs at terminals 2
and 3, respectively. Now,

H(Y;) < Y H(Yy,), H(Y)< ¥ H(Y;,),
t=1 t=1
where Pr[th = y2,Y3t = y3]= erg‘lpt(x)W(y25 Y3[x) for
some P, € P(2). Therefore,

Y%= Re.
Since this region is also achievable with the stochastic
strategies of #*, this proves the corollary. m|

Example 2: For & = Z_",- a natural candidate for the
single-letterization of %(£?) would be the region

R ={(Ry,R))Bx € Z,: 0 < R, < H(W,(-Ix)),
0< R, < HWs(-Ix))}.

However, let us consider the BC with 24=2] and
W(y,, yslx) = Wy(y,lx)Q*(y,;), where Q* satisfies
H(Q*-W,) = maXp ¢ g(oy H(P-W,). If now the sender
uses the deterministic strategy g, defined by

t—1

(v Ly ) =va,
it generates in this way the maximal entropy n- H(Q*-W,)
at terminal 2. This proves the ID-achievability of (H(Q*
W,),0), which clearly in general is not contained in the
region %. '

Remark 4: In [3] the deterministic BC was treated. In
that case feedback is implicitly present and therefore its
nonfeedback capacity region equals the feedback capacity
region, in particular for randomized encoding. In [3] the
direct part is proven by applying the “vVn trick” twice to
H(Y}) and H(YJ) resp., and an application of the con-
verse from [1] gives an upperbound which coincides with
this inner bound in the case of a deterministic channel.

Theorem 2 has the following consequence.

Corollary 4: For the TWC (see CS6) it holds under the
condition of Part a) of the main theorem that

KTW(Zd) = [O’V?‘W] X [O’V%W] H
where ’
viw = maxH(o(", 1x, x,)).
X1, %2

E. A Method for Proving Converses in Case of Feedback

For one-way channels the approach of [2] gives sharp
upper bounds (strong converse). However, it does not
seem to generalize to multiway channels with complicated
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interactions of feedback strategies. Settling for a weaker
bound (weak converse but stronger than soft converse of
[1D, we found a method (Lemma 2) which always works,
that is, it relates rates to the number (%), that is the
maximal entropy of a common random experiment of
blocklerigth n that can be produced under the restric-
tions present. For example for the DMC with restric-
tion to deterministic strategies this number equals
nmax, HW(-|x)). The common random experiment with
this entropy uses one coding strategy and not a whole
codebook! In case of randomized strategies the number is
nMax p ¢ g g H(P-W).

For an (n, N, A) IDF code, the encoding strategy f* €
&, generates a RV Y;" with distribution

Pr(Y=y"|=W"(y"If"). (1.17)
Of course, for i=1,2,---, N,
n def
H(Y") <, = w( ). (1.18)

The basis of our method is now a very general entropy-
setsize relation, which we prove in Section II.
Lemma 1: For P =(P,, P,, - )& P(N), the set of PD’s
on the positive integers, define
e(d,P)= max{ Y. P:JcCN,|J|= [ZH(P)"]-f-l}

jelJ

and e(d) = minp ¢ g,e(d, P). Then

1
e(d)=1—3, forall d>1.
Remark 5: For discrete mernbryless sources X" =
(X,," -+, X,,) Shannon proved that
€(d,Pg) = max{ Y, PE(x"): Tl = [2‘"’("")]}

xtelJ
satisfies

lim e(d,PE)=1, ifd>1.

n—oo
Lemma 1 shows what can be done for arbitrary discrete
sources, -
Application of Lemma 1 to the distribution of ¥;” gives
aset & CZ™ with

1
Pr[yred]=1- -, (1.19)

€] < [24HOD] 41 <240 42, (1.20)

Define now Z* = 2,N &,. By (1.3) and (1.19) Pr[Y," €
P*]>21-1—-1/d. Under the assumption A<1—A—
1/d by (1.4) these 9;* are necessarily distinct. With the
abbreviation K = 2= +2 we get therefore

K
(‘gﬂ) <K2nKlog|9/\
k =

N< Y

k=1

and loglog N <du, + o(n).
We summarize this result.
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Lemma 2: For any (n,N,)A) IDF code with coding
strategies Z,* and corresponding p* = u(F*)

loglog N < du* + o(n),

provided-that d >1 and A <1/2(1—-1/d).

Remark 6: In case of the DMC for deterministic strate-
gies u% = nmax,_ o H(W(-|x)) and for randomized
strategies u* = nmaxp . aaryH(P-W). For A tending to 0
in Lemma 2 we can let d tend to 1 and thus obtain weak
converses.

F. A 3-Step ID Scheme for the Noiseless BSC

We begin with the definition of the scheme. Some
heuristic understanding is provided subsequently. The
proof of asymptotic optimality is given in Section 1V. We
are given a set of messages .#={1,---,M}. For any
constant « > 1 define

K = [(log M)“| (1.21)

and 7, <m, < -1 as the K smallest prime numbers.
For k € % ={1,---, K} define a key ¢,: A4 —{1, -, m,}
by

¢ (m)—1=mmod m,. (1.22)

Let {¢,: k€ %7} be a cipher and .#' ={¢,(m): me
Ak € XY={1,2,- -, 1} the set of all possible encipher-
ings serving as “message set” for a further cipher {¢}:
l € %"}, where X' ={1,- -+, K'} with

K’ = [(log mg )] (123)
and ¢): &' —{1,---,m} satisfies
¢;(m')—1=m mod,. (1.24)

Step 1: The sender chooses k € % randomly according
to the uniform distribution on % and transmits
it (and therefore also ¢, ) over the channel. This
requires [log K] bits.

Step 2: Similarly the sender chooses an [ € %" at ran-
dom and transmits it (and therefore also the
key ¢}) over the channel. This requires [log K']
bits.

Step 3: m € .# being given to the sender he calculates
¢(p,(m)) and sends it to the receiver. Knowing
both, k and /, the receiver calculates ¢j(¢@,(+71))
and compares it with the transmitted encryption
@) (9 (m)). In case of equality he decides m =
and otherwise he decides m # 1.

Theorem 3 (Optimality of the 3-Step Scheme): The
scheme satisfies:

a) the error probability of first kind equals zero;
b) the error probability of second kind tends to zero as
the blocklength n tends to infinity;

. loglogM(n) 1
c) lim —————— = —
n— o n o

and thus achieves any rate below the capacity 1.
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G. Extension of the 3-Step ID Scheme to the DMC With
and Without Feedback

Outcomes in random experiments below must be la-
beled by consecutive integers 1,2,3 - - to make the num-
ber theoretic setting of the previous scheme possible.
Otherwise the only changes on the scheme are the follow-
ing. The uniform random experiments for the choice of
the two keys, known to sender and receiver, are formed
now under the given circumstances. We discuss three
cases.

1) Deterniinistic Feedback Strategies: The sender sends
b times a letter x* €2 with HW( |x*)) =
max, . oo HW(-|x)). As in [2] the generated se-
quences Z* = U,y _p <72 (x*") and an era-
sure e for the sequences in 2%\ 2* give an essen-

- tially uniform -random experiment (Z* U
{e}, WP(-1x**)) used for the key selections in the
first two steps with appropriate b’s. A factor (1—
2exp{— E(e)b'}) enters the changes in error proba-
bilities of the second kind. The erasure option and
also a small error probability in performing Step 3)
add a small error probability to both kinds of errors.
Since |2*| = exp(bH(W(-|x*))+ o(b)} the scheme
achieves rates below H(W(-|x')), provided that W
has positive transmission capacity C.

2) Complete Randomized Feedback Strategies: Replace
D* by Ugyo-or<eZox Wwith Q* =P*-W and
H(Q*) = max . g H(PW). Now rates below
H(OQ¥*) are achievable, if C > 0.

3) Randomized Encoding Without Feedback: As in [2]
use now standard transmission codes with uniform
distribution on the set of codewords. Here sender
and receiver know -the outcome of the random ex-
periments in Steps 1) and 2) with a small error
probability only, but this can be digested. Notice
that the resulting scheme is totally constructive if
the transmission codes used are constructed. Here
the ID capacity is C.

II. ProoF oF LEMMA 1
We can of course assume that P, > P,---. We show
first e(d,P)>1-1/d. Set L=[27®4])+1 and c¢=P,.
By Schur-concavity of the entropy function the distribu-
tion P;, defined by

c fori=1,--,L,
L
Pi,= a= ZP[—(L—l)C, fori=1, (2.1)
i=1
P, fori=L+1,

satisfies H(P')< H(P) and by monotonicity e(d, P’) <
e(d, P). Furthermore, again by Schur-concavity for P”,
defined for a suitable T by

P, fori=1,---,L,

pr={c for L<i<T -1, (2.2)
b<e, fori=T,
0, fori>T,
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H(P")< H(P") and e(d, P") < e(d, P'). Therefore, it suf-
fices to prove e(d, P)>1—1/d only for PD of the form

P=(a,c,--+,c,b,0,--+).
Since [2H"4]+1 > 2, obviously

e(P,d)y=a+b. (2.3)
If a+b>1-1/d, we are done, and otherwise we have
d(l-a—-b)>1 (2.4)

and a fortiori by the grouping axiom [2#(P4]+1
>[2d0-a=tlosT-D] 4+ 1 >T —1+1=T. This implies
e(P,d)=1>1-1/d in this case.

Conversely, fix d and consider only distributions Q =
(a,c,:+,c,0,---), that is, with b=c in the notation
above and also with

1
>1——.
a d

(2.5)
Then
e(Q,d)<a+ [2H(Q)d].c =a _;,.[2[h(a)+(1—a)lmz(T—l)]d]C
<a+(T-1)""9920@d.c 4 ¢
and since c=1—a /T —1 we conclude that

1—a
e(Q,d) <a+(T—1)"" D 1.phdd(1 gy 4 77

Now by (2.5) (1— a)d —1 <0 and by letting 7 — we see
that
e(d) < igfe(Q,d) <a.

Since this is true for all a obeying (2.5), the result follows.
Remark 7: In our applications only e(d)>1—1/d is
used. O

III. ProoFr OF MAIN THEOREM AND THEOREM 2

Since we congider supervisory feedback, the direct part
of the Main Theorem follows from smoothness and mem-
orylessness, as discussed in Section I-C. We, therefore,
concentrate on the converse part of the Main Theorem.

Let € > 0 be arbitrary and fixed. Since %(#) is com-
pact, there exists a number of vectors (W), c,, =
1,- -+, L = L(e), such that

L

WZ)C U {|(vn)wesVoeA:0<p, <2+ €}

=1 - i

(3.1)

Let n>ny(e) be sufficiently large such that for all

g"=(f1,cq there exists a (v,), A€ %(£) such that
forall we A

H(Z;(g"
(z2em)
n
Finally let an (n,{N,} cr,A) IDF-code be given as

described in (1.13)-(1.15), to which we also refer for
notation. By the passive decoding Axiom A, and (1.15)

+e. (3.2)

AASE S (3.3)
where we have denoted
=11 & (3.4)
o €D,
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Forall I=1,---, L, define

H(Z;(gn
H(D) = {mIVw €A: —(—(L) <v{P+2e). (3.5)
n
By the definition of (v), . , in (3.1) and the choice of n
in (3.2), U £ ,.#(D covers all messages m.
Therefore we can choose I* such that
I Y€ FN‘Y

VG (3.6)

We will now consider the marginal channels

Ww: n %'——)9::’

o' EQ

forall w €A,

as one-way channels, and derive a marginal IDF-code for
each W, from the above IDF-code for W.
To this end, denote for w € A

HF={m,Am' e #(1*):¥, €B,:i =i} (3.7)
Then it follows from (3.6) that, for all y € &,

IJV*I>&
w "L'

We can assume w.lo.g. that L=1L(e)>4, and N, >4L
for all y €T. Since log(a /b) > loga /log b for b >4 and

a > 4b, it then holds for all y € &, that
loglog|.#,*| > loglog N, —loglog L. (3.8)

Let us now fix some injective mapping o: A_* — #(1*)
such that, for all m,, =(i,), c 4 € 4%, it holds that

O'(mm)=(i'7)yer, forall ye 4, .

(3.9)

: o
iff i, =i,

Let us now define the encoding strategies {h, |m, € 4.}
for the one-way channel

W,: 2 x{0} - {0} x 27, (3.10)
With Qﬂ= Hm’eﬂ%" by
R, = 8aim,): (3.11)

Then {(h}, ,25). m, &4,

IDF-code for W, in (3.10).
Now assume that 2A <e/n+¢€ and apply Lemma 2

with d=1+€> 1. Since o(m )€ #(I*), it follows from

(3.5) that

*} forms an (n,|# %))

1
—loglog |/ < (1+ €)(v¥ +2€)+e,  if n>n(e).
n

(3.12)

3

" Combination of (3.8) and (3.12) gives, for all @ € A and

alye 4,
1 ) 1
—loglog N, <(1+¢€)(v$V+2€)+ e+ - loglog L(e).
n

Letting n — o and € — 0, this proves the converse part of
the Main Theorem. 0
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Proof of Theorem 2: 1t can be seen from (1.15) that
(3.3) does not hold in general for all communication
systems (cf. two-way channel), so that I.,@,S,‘:)I can no longer
be directly related to the output-entropy H(Z?D).

However, if the feedback strategies are deterministic,
this functional relationship also enables us to describe
-@,51":,) in such a way that (3.3) does hold. Thus the previ-
ous arguments apply and give the converse part of Theo-
rem 2. The direct part goes by the “yn -trick” as usual. O

IV. PrROOF oF THEOREM 3, OPTIMALITY OF OUR
CoDpING SCHEME

Two elementary facts from number theory are used
(see e.g., [9]). The first follows from the prime factoriza-
tion theorem and the second from a weak version of the
prime number theorem originally due to Chebyshev, Here
are the statements.

Lemma 3:

a) the number of prime divisors of an integer m does
not exceed log m;’
b) the kth prime number m, satisfies m, = 0(k log k).

It is clear from the definition (1.22) that ¢, (m)= ¢, ()
exactly if |m — M| =0 mod ¢,. Lemma 3a) then implies a
result basic for our analysis.

Lemma 4: For any m,m € .#, m + m

K7{k € #: g (m) = o ()} < K~ log M.

Error Performance of Scheme: Since the transmission is
noiseless, the error probability of the first kind is zero.
The total error probability of the second kind equals

Pr{e)(@x(M)) = @i or(m))li = m]
<Pr [(pk(r?'l) =@ (m)|h+ m]
+Pr [ (e (1)) = @i @i (m))le (i) # @r(m)].
By Lemma 4 we have with K =|(log M)*|
1
Pr [y (771) = pi(m) i # m] SW

anq in exact analogy
Pr[g)(@u(7)) = ¢i(@i(m))l@i(h) # @i(m)]
1

<S————1-
(log mg)*
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Since with M also my tends to infinity and since a>1,
the total error probability tends to zero.
Blocklength n of the Scheme: Clearly, n=[log K]
+[log K'] +[log 7 ].
From Lemma 3b) we have 7y =0(K’log K’). Also,
log K’ = 0(logLog K). Therefore,
n=[1+0(1)]log K = a[1+0(1)] loglog M,

and thus the result is proved.
Remark 8:

1) In the method of [2] there is not our second step.
However, there only the existence of appropriate
keys is shown,

2) In the related work [6], there is also not our second
step. After transmission of ¢, then ¢,(m) is trans-
mitted directly (and not only identified, as in our
scheme). Therefore 2n bits are used and the rate is
only 1/2.

3) By further iteration one can reduce blocklength
slightly at the price of a larger error probability and,
vice versa.

4) In Step 3), transmission could be replaced by a
suboptimal constructive ID-scheme.
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