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ABSTRACT

The binary case was studied in [1], but the method used there doesn’t give the
tight answer for nonbinary cases and we presented in [2] another method for the
corresponding result. Here we formulate the main theorem and prove the auxiliary
statements used in [2].

During the transmission of g-ary words of length n over the channel at most t
errors occur, and the encoder knows the set E of t positions, where these errors
are possible. The decoder doesn’t know anything about these positions. Let & =
{E| EC{1,2,...,n},|E| =t} be the set of all subsets from {1,2,...,n} of size
t and let M be a set of messages (M| = M) . A code word z(m,FE) depends
not only on the message m € M but also on the configuration of possible errors
FE . So there exists the natural correspondence between the message m € M and
the list of code words [J Eegt{x(m,E)} , which we use for the transmission of this
message. Thus the code X for the set of messages M represents a collection of
M lists {Ugee, {z(m,E)},m € M} . Sinde we can use the same word for different
configurations, the size of a list can be essentially smaller than the size of the set
& (1€ = (7)) - Let us define the cylinder C(a, A) with the base a = (a,...,a,) and
the support A(A C {1,2,...,n}) as the set of words (y1,...,yn) with y; = a;,
if ¢ A.Ttis clear that the size of the cylinder C(a,A) is equal to ¢4l and the
number of different cylinders with the same support A is equal to ¢*~ 4l .

As aresult of the transmission of the codeword x(m, E) every word of C(z(m,E), E)
can appear as output of the channel. The code X corrects t localized errors, if the

decoder can correctly recover every message m € M . The following condition is
necessary and sufficient for it:

C(z(m,E),E)NC(z(m',E'),E") =@ for all E,E' € &, m,m' € M,m#m/. (1)
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The maximal number of messages, which we can transmit by a code correcting t
localized errors, is denoted by Ly (n,t) .

Proposition 1:

where S; = Zzzo(q - 1)iC"

» is the size of a sphere of radius ¢ in the Hamming
n-space.

A proof of this bound in the g-ary case can be given as for the binary case in [3] or
[4]. The key inequality there has the following generalization.

Lemma 1. Let C(a;, A;),...,Cl(ar, Ar) be cylinders with pairwise different supports
A; #Aj,1# j . Then for the size of the union of the cylinders
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Proof: We proceed by an induction on n . For n =1 the statement is obvious. Let
C(a1,Ay),...,C(ar, Ar) satisfy the condition of the Lemma. We consider now the
new family C of cylinders:

a) if n¢ A; , then C(a;, A;) € C

b) if n € A;, then C(agk),Ai ~n) € C for all k(k =0,1,...,q — 1), where

( ) (azlv"'aa’infhkj) .

We have

q—1
c=[Jc®
k=0

where C*) — all cylinders from C whose last coordinate is equal to k(k =0,1,...,q—
1) . It is easy to show that

SRR

k=o |CeC(k)

Jc

CceC

If follows from the condition of the Lemma that the support A; ~n of ¢ cylinders
C’(agk), A;~n),k=0,1,...,q— 1 differs from the support of other cylinders at least
for ¢ —1 subfamilies C*, k = 0,1,...,¢ — 1. Thus one proves the Lemma using
the induction step to estimate | (Joecew C |- It is easy to obtain Proposition 1 from
Lemma 1. In fact for every union of cylinders (Jgcg, C(+, E) there exists some union
of cylinders UE€U§=0 g, C(+, E) such that
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U C(E)= U C(-, E)

Ee& EeUi_, &

and therefore by Lemma 1

Eec&,

= U ctn)=s. 2)

EeJi_, &

Now we have from the condition (1) that
( U C(:):(m,E),E)) N ( U C’(x(m’,E’),E’)) = o for m #m'.
Eeé’t Elegt
From here and (2) the Proposition follows.

The following lower bound can be easily deduced by the standard greedy algorithm
(maximal coding).



Proposition 2:

Proof: Let X be the code X = {UEegt{sc(m,E)}, m € M} for M messages,
correcting t localized errors. As
<M- (7;) g

and the number of different cylinders with the same support E’(|E’| =t) is equal to
gt , for any support E’ € & there exists a cylinder C(a, E') with

U U C(z(m,E), E)

Cla, E'YNC(x(m,E),E) = @ for all m € M and E € &,
if

M (7;’) ¢ < ¢t (3)

Therefore, if the inequality (3) takes place, it is possible, according to the condition
(1), to construct the code for M + 1 messages, correcting t localized errors. Hence
Proposition 2 follows.

Already Proposition 1 and 2 imply the asymptotic equivalence within a constant

n

Ly(n,t) < ©_ Wwhen t is fixed and n — oo.
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We draw attention to the fact that this equivalence is known for nonbinary error—
correcting codes, except ¢t =1, only for t =2 and ¢=3,4 [5].

The following theorem gives the precise constant in the equivalence.

Theorem. For every constant t

Ly(n,t) = —(1—|—0(1)) = . . —(1+0(1)),

where o(1) — o0 as n— oo (o(l) depends certainly on t and q ).

When proving this theorem [2] we refered to the following recurrence relation, having
an independent interest.



Lemma 2. If N <(q—1)T+1, then

LyN+T,1) > ¢V L,(T,1).

Proof: On the first N positions we always transmit a parity check ( mod ¢q) code
of the size ¢V~!. The last T positions we reserve for the code, which allows us to
transmit L,(7,1) messages and to correct a single localized error. The method of
transmission depends on the position of the localized error in the following way:

a) The error is on the last T positions. We use our code as a code, correcting a
single localized error.

b) The error is in the first N positions. We use our code for the transmission of
both, the message and the number of the position, where the error can occur.
According to Proposition 1 and Lemma 2 at least (¢ —1)7 + 1 different words
in the output of the channel of length 7' correspond to everyone of Ly(T,1)
messages and therefore we can make the successful transmission, if

N<(qg—1)T+1.

The proof is complete.
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