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Common Randomness in Information Theory
and Cryptography—Part I: Secret Sharing

Rudolph Ahlswede and Imre Csiszar, Fellow, IEEE

Abstract— As the first part of a study of problems involving
common randomness at distant locations, information—theoretic
models of secret sharing, i.e., of generating a common random
key at two terminals, without letting an eavesdropper obtain
information about this key, is considered. The concept of key-
capacity is defined. Single-letter formulas of key-capacity are
obtained for several models, and bounds to key-capacity are
derived also for other models.

Index Terms—Common randomness, key-capacity, wiretapper,
multiterminal source, multiway channels.

I. INTRODUCTION

OMMON randomness available at distant locations plays

an important role in various problems of information
theory and cryptography. For example, if common randomness
is available to sender and receiver, they can .use random
codes for transmitting information. In certain communication
situations random codes can far outperform deterministic
codes, e.g., in the case of arbitrarily varying channels; for
the latter, concerning the relation of capacity for deterministic
codes to capacity for random codes, cf. Ahlswede [1] and
Csiszar and Narayan [6]. Common randomness shared by
sender and receiver plays a key role also in the theory of
identification capacity as opposed to transmission capacity,
recently developed by Ahlswede and Dueck [2], [3]. The
significance of common randomness is perhaps most obvious
in cryptography, where a random key shared by two terminals
can be used for secure communication between them, by
encryption; here the common randomness (the key) should be
such that a third party (the eavesdropper) has no information
about it.

We propose a systematic study of the role of common
randomness in information theory and cryptography. In this
first part, attention will be restricted to generating common
randomness without giving information about it to a third
party, i.e., to secret sharing.

‘Secret sharing may be realized by generating a random
message at either terminal and transmitting it over a secure
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channel to the other one, but also in more complex ways that
may involve communication over a public channel and using
side information that may be available. Of course, once secret
sharing has taken place, it can always be used to achieve secret
transmission via encryption. While this general problem area
has been intensively researched, it has hardly been looked at
from the information—theoretic point of view. The popular
computational complexity approach (Diffie and Hellman [7],
Rivest, Shamir, and Adleman [9]) certainly appears fruitful.
Still, we argue that an information—theoretic approach to
this field is also needed. Even though it may not lead to
the emergence of new cryptosystems, it is likely to lead to
new insights, complementing the more practical complexity
approach in much the same way as Shannon theory, in general,
complements communication theory and coding theory.

An information-theoretic model of communication subject
to secrecy constraints is Wyner’s “wiretap channel” [10], to
be reviewed in Section III. Intuitively, a wiretap channel is a
channel with one input and two output terminals; one output
terminal is seen by the legitimate receiver and the other by
an eavesdropper or “wiretapper.” One question is at what rate,
if any, can messages be sent to the legitimate receiver while
keeping the wiretapper completely ignorant of the message
sent.

Recently, Maurer [8] demonstrated that the availability of
a public feedback channel could make secret transmission
possible even in such cases when the secrecy capacity without
feedback was zero. In fact, Maurer proposed a scheme that
enabled the legitimate receiver to share a random key with the
sender, using transmissions over the public feedback channel
in such a way that no information about the key was given
away to the wiretapper. In this scheme, both the legitimate
receiver’s and the wiretapper’s channel were assumed to be
binary symmetric, with independent but otherwise arbitrary
noise. Since the key generated by the receiver and shared
with the sender could be used to encrypt messages, secret
transmission became possible even if the wiretapper’s channel
was the better one. Maurer also hinted at a source-type model.
His presentation gave an important motivation for this work.

We will consider two kinds of models of secret sharing,
one having the flavor of source coding and the other of
channel coding. These two kinds of models are closely related.
Some problems that immediately present themselves will be
completely or partially solved. The large variety of related
problems is left for future research.

To facilitate understanding, first the simplest models will
be treated, in Section II. Qur main results will be stated in
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Section IHI and proved in Section IV. Throughout the paper, the
terminology of the book Csiszar and Kérner [5] will be used.

In the proofs, essential use is made of techniques devel-
oped by Csiszir and Korner [4] for the wiretap channel and
its géeneralization called broadcast channel with confidential
messages. Still, in order to keep the paper self-contained, the
paper [4] or more sophisticated material of the book [5] will
not be directly relied upon.

After this paper had been submitted, the authors learned of
more tecent results of Maurer on generating a shared key, that
partially overlap with results in this paper. Maurer’s results
will be published in full in [12], and some of them appear
already in [11]. In particular, Maurer [11] gave lower bounds
on what we call key-capacity for the channel-type model with
wiretapper, in the binary case. He also showed that the key rate
he had obtained in [8] was the best possible for that model.
This proof relied on a general upper bound stated but not
proved in [11], which was the same as ours in Theorem 2.
Maurer [12] addresses general source-type and channel-type
models with wiretapper (in our terminology) and gives lower
and upper bounds on key-capacity, including a proof of the
upper bound stated in [11]. He also obtains the results of the
Corollaties of our Theorems 1 and 2. Maurer’s results do not
include a single-letter characterization of key-capacity with a
one-way use of the public channel (our Theorems 1 and 2)
and nor do they include our Theorem 3. On the other hand,
his papers [11], [12] contain some other results which we do
not have in this paper.

II. GENERATING A SHARED SECRET KEY WHEN
THIRD PARTY HAS NO SIDE INFORMATION

The main results of this paper will be stated in Section III.
Here, we introduce simpler versions of the problems treated
there, in order to facilitate their understanding.

In both models, we consider secret sharing between two
terminals, to be called Terminal X and Terminal ). Both
models involve an unspecified integer n (the blocklength), and
we will be interested in the case when n is large.

Model S (Source-Type Model): We are given a DMMS (dis-
crete memoryless multiple source) with two component sources
and generic variables (X, Y). Terminal X “can see” the source
outputs X™ = (X4,---,X,) and Terminal ) “can see” the
source outputs Y™ = (Y3, --,Y,,). Further, a noiseless public
channel of unlimited capacity is available for communication
between the two terminals.

Model C (Channel-Type Model): We are given a DMC (dis-
crete memoryless channel) {W: X — Y}. Terminal X' can
govern the input of this DMC while Terminal ) observes the
output. In addition to transmissions of length n over this DMC,

which is considered a secure channel, also a noiseless public |

channel of unlimited capacity may be used for communication
between the two terminals.

Remark: In Model C, we chose to denote the input and
output alphabets by the same symbols as the corresponding
terminals, believing that this will be intuitive rather than
ambiguous. Similarly, in Model S, the alphabets of the two
component sources will also be denoted by X and ).
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Next, we describe what we mean by permissible secret
sharing strategies. Since we want to allow for all strategies
that are intuitively conceivable (even very complex ones
that may be quite inpractical), this description is somewhat
cumbersome. The main result of this section will be that
recourse to those complex secret sharing strategies is not
necessary because optimum secret sharing can be achieved
in a very simple way.

Communication over the public channel will be visualized
as an exchange of messages or codewords ®;, generated by
Terminal X, and ¥;, generated by Terminal ), at consecutive
instances ¢ = 1,:-:,k. Here, ®; and ¥; may depend on
all information available at the corresponding terminal at
instant 7. For convenience, these ®; and ¥; will be referred
to as forward transmissions and backward transmissions, re-
spectively. Of course, our model includes the possibility of
one-way communication, because ®; or ¥, (or both) may be
set equal to the empty word. It will be convenient to assume
that as the zeroth step of any secret sharing strategy, the
two terminals generate independent random variables My and
My, respectively, and all further steps are deterministic. This
does not restrict generality, because any randomized operations
at either terminal (at any step) may be equivalently regarded as
deterministic operations that depend also on an initially chosen
random variable My or My, respectively. )

Now the formal definition of a permissible secret sharing
strategy for Model S is as follows.

Step 0) The terminals generate random variables My and
My such that My, My, and (X™, Y™) are. mutually
independent.

Step 1) The two terminals exchange messages ®;, ¥y over
the public channel, where &; = &;(Mx, X"™), ¥,
Uy (My, Y™).

Step 1) The two terminals exchange messages ®;, U;
where q)i:‘l)i(Mx,X",\Ifi_l), v, = \Ifi(My,Yn,q)i—l)
(with the usual shorthand that upper index denotes a
sequence up to that index).

Final step (after k “exchange steps” have taken place))
Both terminals compute what they deem to be the key
established by the secret sharing process, as a function of
the information available to them:

K=K(My, X", U%),  L=LMy,Y" &), (2.1)

where K and L take values in the same finite set XC.

Of course, K and L must satisfy certain conditions in order
that we can speak of a successful secret sharing. Before stating
these (viz. (2.4) and (2.5) in Definition 2.1), first we define
the permissible strategies for Model C. Here, the situation
is more complex because two channels are available for
communication (the secure DMC, however, in one direction
only) and these may be used in an interactive way.

In the following formal definition of a permissible secret
sharing strategy for Model C, we .assume that the n symbols
transmitted over the DMC are sent at the instants i; < i3 <

+ < ipn, and the public channel is used at the remaining
instants ¢ € {1,---,k}\{é1,---,4,}; here 4; > 1, i, < k,
and for technical convenience we set 4,41 = k + 1.
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Step 0) The terminals generate independent random vari-

ables My and My.

Step i, 0 < 1 < i3) The terminals exchange

messages ®;, U; over the public channel, where ®; =

®;(My, U'71), U; = Uy(My, & 1),

Step 1 = i5, 1 < j < n) Terminal X determines the

jth input X; to the DMC, X; = X;(My, ¥%~1), and

Terminal ) observes the corresponding output Y. ®; and

¥, are set void.

Step i, i; < i < 1ij41, 1 £ j < n) The terminals exchange

messages ®;, ¥; over the public channel, where

®;, = &;(Mx, ¥©°1), U, =0, (My, YIL, @71y,
(2.2

Final step) Same as in Model S; now in (2.1) actually
K = K(My, U*), because X™ is uniquely determined
by My and UF,
Notice that a strategy as above always determines X; as a
function of My, My and Y7~1. The formal meaning of saying
that Y; is the DMC output corresponding to input X is

Pr{Yj=y| My =m, My =m/, Y/~ =471}
= W(y| X;(m, m', 7)), (23)
where X;(n, m’, y#~1) denotes the input X; determined by
My =m, My =m/, Y3=1 = yi=1 1t is easy to see that the
functional relationships in the description of the strategy and
(2.3) uniquely determine the joint distribution of all random
variables involved (once the distributions of My and My are
specified), as it is necessary for mathematical consistency.
Definition 2.1: For Model S or C, a number H will be
called an achievable key rate if for every e > 0 and sufficiently
large n there exists a permissible secret sharing strategy such
that K and L of (2.1) satisfy

Pr{K#L}<e (2.4)

%I((I)’“, TFAK) <e (2.5)

%H(K) >H—e (2.6)

and

1 1
Elog | K |< ;H(K) +e. 2.7
The largest achievable key rate is the key-capacity.

Here, (2.4) means that the two terminals have indeed
generated a common key (with a small probability of error),
and (2.5) means that this is a secret key: the exchange over
the public channel has given away effectively no information
about it. Condition (2.7) means that the distribution of the key
is nearly uniform in an entropy sense; this certainly appears
desirable if the key is to be used for encryption, the most
likely purpose of secret sharing.

Now we show that if H is an achievable key rate in the
sense of Definition 2.1 then, using the established key for
encryption, secure transmission at rate H is possible over the
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public channel. For this, we set (without restricting generality)
K = {1,---,N}, and consider the encryption of a random
message M € {1,---,N} (generated at Terminal X, say)
simply as M @ K where @ denotes addition mod N. If M @ K
is sent over the public channel, Terminal Y can decode M with
small probability of error (by (2.4)). The next lemma shows
hat a cryptanalist having access to the public transmissions
only, gets effectively no information about M.

Lemma 2.1: For a random variable M with values in
{1,---, N} and independent of (®*, U*, K), (2.5) and (2.7)
imply that

lI(<I>’~', T Mo KAM) < 2.
n
Proof:

I(®*, v* M © K A M)
Q1Mo KAM|S*, T
=HM@® K | o, ¥*) - HM & K | M, & T*)
<logN — H(K | M, &, ¥%)

(if) . ok
< H(K)+ne— H(K | M, %, TF)
i)

(
=I(K AM, &, ¥*) + ne < 2ne.

Here, (i) holds because M is independent of (%, T¥), (ii)
follows from (2.7) with |K| = N, and (iii) follows from (2.5)
because M is independent of (&%, U* K), O

Remark: The same proof shows that if I(®*, T*AK) were
exactly 0 and the distribution of K were exactly uniform then
we would have I(®%, UF M & K A M) = 0, ie., perfect
secrecy. In the simple models of this section this is indeed
attainable, but in the more complex models of Section III one
probably has to be satisfied with the almost complete secrecy
of Lemma 2.1.

For technical reasons, it will be convenient to introduce
also the concepts of weakly achievable key rates and weak
key-capacity. These are obtained by dropping the conditions
(2.4), (2.7) in Definition 2.1 and replacing (2.6) by

LK ATD)> H e, (2.8)
while condition (2.5) is retained. The fact that every achievable
key rate is also weakly achievable, as the terminology sug-
gests, follows immediately from the definition, using Fano’s
inequality.

In the simple models treated in this section it will be easily
shown that weak key-capacity actually equals key-capacity.
We expect that the same holds also for the more complex
models and all variants of the concept of key-capacity treated
in Section III; indeed, this will be established in all cases when
we can determine the key-capacity. Still, no attempt will be
made to prove a general theorem about this equality because
this technical problem does not appear to be of primary
interest.

The main result in this section is the following.
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Proposition 1:

a) For Model S, key-capacity and weak key-capacity both
equal the mutual information I(X A Y) and this is
attainable by using a single forward (or backward)
transmission only.

For Model C, key-capacity and weak key-capacity both
equal the ordinary capacity C(W) of the DMC {W},
and this is attainable without using the public channel
at all.

b)

Proof: First we prove the direct assertion of a), i.e., that
I(X AY) is an achievable key rate by using a single forward
transmission. The idea is to transmit a code of X™ of rate
~ H(X | Y) that, with the knowledge of Y™, makes the
reproduction of X™ possible with small probability of error.
A closer look at the proof of the Slepian—~Wolf theorem ([5],
pp. 238-239, Theorem 1.2) reveals that this can be done in
such a way that the desired secret sharing results.

For a formal proof, consider the DMC {W: X — Y} where
W = Pyx, fix € > 0,6 >0, n > 0, and pick consecutively
disjoint codeword sets C; of (n, ¢)-codes for this DMC, each
consisting of codewords of the same type, and each of size

M = [exp {n(I(X AY) —§)}]. (2.9

If this process can not be continued after having picked Cu,
say, then necessarily

N
P}}(UQ) >1-7

=1

(2.10)

(providing n is sufficiently large). Indeed, any subset A of A"
with P%(A) > 7 contains a codeword set C with the desired
properties ([S, p. 107]; there the constant type property was
not required, but it can obviously be attained by looking at the
largest subcode with codewords of constant type).

Now let Terminal X' transmit

_{i, ifX"eC;, 1<i<N
=10,

BX) if X™ ¢ Ui, C:.
Enumerate (in any way) the elements of each C;, and set

K = j if X™ equals the jth element of some C;. Terminal

Y, knowing Y™ and ®(X™) = 4, can use the decoder of the
channel code with codeword set C;; set L = 7 if this decoding
results in the jth element of C;. Then, since W = Py x, and
an (n, €)-code was used for the DMC {W}, we have

Pr{L# K| X" € C} <g, i=1,---,N.

This and (2.10) imply that

Pr{K#L}<e+m, (2.11)
no matter how K and L are defined when X" ¢ vazl C;.
Further, since each set C; consists of sequences of the same
type, the conditional distribution of K on the condition X™ €
C; is uniform on {1,---, M}, for every i = 1,---, N. For
convenience, for X™ & | J,_; C; we set K equal to a random
variable uniformly distributed on {1,---, M} and independent
of X™ Y™
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By this simple scheme a key has been obtained, shared
by both terminals ((2.11)), that is both uniformly distributed
and independent in the exact sense of & transmitted over the
public channel, and such that 1/nH(K) is arbitrarily close to
I(X AY) ((2.9).

Having proved the direct assertion of a), and the direct
assertion of b) being obvious from the DMC coding theorem,
it remains to prove the converses, i.e., that a weakly achievable
key rate can not exceed I(X AY) in Model S or C(W) in
Model C.

To this we send forward a simple lemma.

Lemma 2.2: Let U and V be arbitrary random variables,
and let ®4,---, Py, Uy,---, ¥ be such that for every ¢ <
k, ®; is a function of U and ¥*~!, and U; is a function of
V and ®*~'. Then,

I{UAV | & 5 < (UAV).
Proof:
IUAV | &% U= JUAV | ®*, &, &1, 0)
I(U, &, AV | &8~ k-1 1)
I(U, &, AV, Ty | &F1 k-1
=I(UAV |®*1, ¥+ 1),

<
<

here the last step follows from the assumption that ®; is a
function of (U, ¥*~1) and U is a function of (V, 1),
Repeating this argument k times, the lemma follows. .
Returning to the proof of the converse assertions of Propo-
sition 1, consider any strategy (permissible for either Model S
or Model C) with the property (2.5). Then
I(KAL)<I(K AL, 3, ¥

< I(K AL|®F, TF) 4 ne. (2.12)

Now, for Model S, we have

()
I(KAL|®* U*) < I(My, X" A My, Y™ | &% OF)
(ii)
< I(My, X" A My, Y™
@ r(xXn AY™) = nI(X AY). (2.13)

Here, (i) follows by (2.1), (ii) from Lemma 2.2, and (iii) from

the independence of My, My, (X™, Y™). Substituting (2.13)

into (2.12) completes the proof of the converse for Model S.
For Model C, we have

®
I(KANL|®%, UF) < I(My A My, Y™ | &%, TF)
(i)
< I(MX ANMy, Yn)
DS 1(Mx A Y | My, YIT). (2.14)
7=1
Here, (i) follows because for Model C in (2.1) we have
K = K(My, U*), (i) follows by Lemma 2.2, and (iii) is
the chain rule, taking into account that I(Mx A My) = 0. But
by (2.3), we have
I(Mx NY; | My, Y1)
= H(Y; | My, Y?=1) — H(Y; | Mx, My, Y71
= H(Y; | My, Y'™1) - H(Y; | X;) < I(X; AY)).
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Hence, the right side of (2.14) is upper bounded by nC(W).
Returning to (2.12), the proof for Model C is complete. [

III. SECRET SHARING WHEN THIRD PARTY
HAS SIDE INFORMATION

In this section, we consider generalizations of the simple
models treated in Section II to the case when the third party
to be kept ignorant of the result of secret sharing (to be called
the wiretapper) has access to more information than what is
transmitted over the public channel.

Model SW (Source-Type Model with Wiretapper): We are
given a DMMS with three component sources and generic
variables (X, Y, Z). Terminal X “sees” the source outputs
X", Terminal Y “sees” the source outputs Y™, and the
wiretapper “sees” the source outputs Z".

Model CW (Channel-Type Model with Wiretapper): We are
given a DMC {W: X — Y x Z}. Terminal X governs
the input, Terminal ) “sees” the Y -outputs, whereas the
wiretapper “sees” the Z-outputs.

In both cases a noiseless public channel of unlimited capac-
ity is also available for communication between Terminals X
and Y; communication over this channel is completely known
to the wiretapper.

The permissible strategies for Models SW and CW are the
same as for Models S and C in Section II, with two formal
modifications: For Model SW, in Step 0 we have to postulate
that My, My, (X", Y™, Z™) are mutually independent, and
in Model CW it has to be taken into account that every DMC
input X; generates a pair of outputs Y;, Z;; the formal way
of doing this is to replace (2.3) by

Pr{}’j =y, Zj =2z ] My =m, My :m" yi-t :yj‘l’
VARRES zj_l} = W(y’ z [ Xj(m, m,» yj_l))' (31)

Definition 2.1 and its relaxation stated before Proposition 1
apply also to Models SW and CW, with the single change that
(2.5) has to be replaced by

%I(CI)’”‘, Tk ZAK) < e (3.2)

In order to deal more systematically with the question of
whether simple strategies suffice in Models SW and CW to
achieve the key-capacity, we will consider some variants of
the concept of key-capacity, obtained by restricting the class
of permissible secret sharing strategies.

One possible restriction would be that no more than k
exchanges are permitted over the public channel; the analogue
of key-capacity under this restriction might be called k-key-
capacity. In this paper, only the case k = 1 will be considered,
moreover the restriction will be made that only a forward or
only a backward transmission is permitted (formally, all ¥;
and ®; in the description of a permissible strategy in Section
IT equal the empty word, except for one ¥; or @;); recall that
“forward” means the direction X — ) and “backward” the
direction Y — X. Thus, for both models SW and CW, we
define the forward key-capacity and backward key-capacity,
as well as their weak versions, analogously to the general

definition of key-capacity (weak key-capacity) but permitting

the use of the public channel for a single forward transmission
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or a single backward transmission only. For Model SW these
two notions are completely symmetric but for Model CW they
differ substantially.

By Proposition 1, for Models S and C both the forward and
backward key-capacities equal the key-capacity. We will see
that for Models SW and CW this is no longer true, in general. It
remains, however, open whether for either model key-capacity
can ever be larger than what by the previous paragraph would
be termed the 1-key-capacity.

Before stating our main results, let us briefly review pre-
vious literature related to our subject. The model “wiretap
channel” introduced by Wyner [10] and generalized by Csiszar
and Korner [4] (cf. also [5, p. 407]) can be described as
follows: Given W: X — ) x Z, the sender is required to
encode a random variable M, uniformly distributed over a
possibly large set, into a channel input X™ so that M be
decodable (with small probability of error) from the received
sequence Y™ whereas the other output sequence Z™ should
give negligibly small information about M. The supremum
of the rates 1/nH (M) subject to these conditions is called
the secrecy capacity. Since this coding problem depends on
W only through its marginal channels Wi: X — ) and
Wy: X — Z, it is often stated—as in [4], [S]—in terms of
these two channels rather than W: X — Y x Z. Wyner [10]
determined the secrecy capacity for the case when W, was a
degraded version of W7, and Csiszar and Korner [4] gave a
single-letter characterization of secrecy capacity in the general
case.

Clearly, any code in the definition of secrecy capacity repre-
sents a secret sharing strategy for our Model CW, that does not
use the public channel at all, but has the properties required in
Definition 2.1. Hence, both the forward and backward key-
capacity for Model CW must be at least as large as the
wiretap secrecy capacity. Not unexpectedly, we will see that
the forward key-capacity for Model CW is actually equal to
the corresponding wiretap channel secrecy capacity.

The general problem of secret sharing does not seem to
have been considered before in Shannon theory context, but
an important step in this direction was made by Maurer [8]. He
considered a wiretap channel whose marginal channels W; and
W5 were both binary symmetric, and had “independent noise”
which, in our terminology, means that

Wy, z | z) = Wily | 2)Wa(z | 2). (3-3)

For this case, Maurer proposed a scheme in which the sender
transmitted a 1/2—1/2 i.i.d. sequence, and it was the receiver
who sent back information, using a public channel, in such a
way that the original sender could decode this information but
the wiretapper remained in complete ignorance. This made a
key exchange at a positive rate possible even in those cases
when the wiretap channel secrecy capacity was equal to zero.
Clearly, in our terminology, the key rate achieved in this way
is a lower bound to backward key-capacity and hence also to
key-capacity. Our results will imply that the key rate achieved
by Maurer’s scheme is actually equal to the key-capacity of
his model, thus his scheme is optimal for that case.

At this point, a general observation about the relationship of
Models SW and CW suggests itself. Namely, if a channel-type
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model (with wiretapper) is determined by W: X — Y x Z,
an associated class of source-type models is determined by the
clags of DMMS’s with generic variables (X, Y, Z) such that
Py z)x = W. Given the channel-type model, Terminal X’ can
simulate either of the source-type models in the associated
class, simply by letting the input sequence X™ consist of
ii.d. random variables. It follows that the key-capacity for the
channel-type model is greater than or equal to the supremum
of the key-capacities for the associated source-type models.
Remarkably, in those cases when we could determine key-
capacity, here the equality holds; it remains open whether the
same is true in general.

Now we state the main results of this paper. Though not
stated explicitly, all assertions are true also for the weak
versions of the corresponding key-capacities. The theorems
stated in this section will be proved in Section IV.

Theorem 1: For Model SW, the forward key-capacity
equals the maximum of

ITAY |U)-I(TAZ|U), (3.4)

for all pairs of random variables T,U (taking values in
sufficiently large finite sets) that satisfy the Markov condition

U-o-T-o-X-o-YZ. (3.5

Further, the key-capacity is upper bounded by I(X AY | Z),
and this bound is tight if X, Y, Z form a Markov chain in
any order.

Corollary: 1f X—o-Y -o-Z then forward key-capacity and
key-capacity both equal (X AY) — I(X A Z).

Theorem 2: For Model CW, the forward key-capacity is
equal to the secrecy capacity of the corresponding wiretap
channel, namely to the maximum of I(T'AY) — I(T' A Z) for
all triples of random variables T, Y, Z such that for some X
with Py z)x = W the Markov condition T-0-X-0-Y Z holds.
Further, the key-capacity is upper bounded by the maximum
of I(X AY | Z) subject to Pyzx = W, and this bound
is tight if W has the property that Py z x = W implies that
X, Y, Z form a Markov chain in some order.

Corollary:

1) If W has the form

Wy, z|z) = Wiy | 2)V (2 | y) (3.6)

then forward key-capacity and key-capacity both equal

the maximum of I(X AY) — I(X A Z) subject to

Py z)x = W, and can be attained without any use of

the public channel.

If W is of form (3.3) then backward key-capacity and

key-capacity both equal the maximum of (X AY) —

I(Y A Z) subject to Py z)x = W, and this is in general

larger than forward key-capacity.

Remarks:

1) The sets of expressions whose maximum is claimed to
equal forward key-capacity for Models SW and CW,
respectively, remain unchanged if the ranges of the
auxiliary random variables T' and U are supposed to

2)
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be (sufficiently large but finite) fixed sets. This can be
seen in a standard way using the Support Lemma ({5, p.
310]), as was explicitly done in Csiszar and Korner [4].
It follows, in particular, that the maximums in question
are indeed attained.

The upper bounds in Theorems 1 and 2 on key-capacity
may sometimes be poor, e.g., they may be larger than
key-capacity in the absence of a wiretapper, determined
in Section II. For Model SW, the bound may be im-
proved by the simple observation that for any random
variable V satisfying the Markov condition XY -e-Z--V,
the key-capacity for the DMMS with generic variables
(X, Y, V) is at least as large as for that with (X, Y, Z).
Hence the result of Theorem 1 implies that the minimum
of I(X AY | V) subject to XY—o-Z—o-V is also an
upper bound to key-capacity in Model SW. The bound
for Model CW given in Theorem 2 could be improved
in a similar way. Still, we have no reason to believe that
even these improved bounds are tight.

Although the upper bounds on key-capacity for Models SW
and CW given in Theorems 1 and 2 are not tight, in general,
they always give the exact answer for a natural modification
of these models. This modification consists in the assumption
that Terminal X (or Terminal ') has access to the wiretapper’s
side information, i.e., the source resp. channel output sequence
Z™ is available to Terminal X' (or Terminal ).

In this modification of Model SW or CW, for which
we prefer not to introduce a new notation, the permissible
strategies will differ from those for Model SW or CW only
in the obvious way: the operations at that terminal where Z™
is available may depend also on Z™ or, in the channel-type
model, on that part Z7 of Z™ that is already available.

It appears safe to save space by omitting formal definitions,
so we just state the following theorem.

2)

Theorem 3: If Model SW or CW is modified by letting
either Terminal X’ or Terminal ) know the Z-outputs, the
key-capacity for the source-type model will always equal
I(X AY | Z) and for the channel-type model the maximum of
I(XAY | Z) subject to Py z)x = W. Further, this also equals
the backward or forward key-capacity, respectively, according
as Terminal X or Terminal ) is informed.

At first sight, the result of Theorem 3 appears counterintu-
itive, because it means that in some cases we can do better
with a known wiretapper than if there were no wiretapper at
all. The answer is, of course, that access to the wiretapper’s in-
formation does contribute to generating common randomness
(what secret sharing is all about) and this benefit can more
than balance out the negative effect that the wiretapper must
be kept ignorant of this common randomness.

It may be instructive to consider the following examples.

Example 1: Let the DMMS with generic variables (X,Y;,Z)
be as follows: let X and Y be independent 1/2 — 1/2 binary
random variables, and Z = X +Y mod 2. Then, [(XAY) =
0, (X AY | Z) = 1. Clearly, if the terminals X and ) have
access to X™ and Y™ only, no secret sharing between them is
possible. However, if Terminal X, say, knows also Z™ then
he can compute Y". Thus, with K = Y™, secret sharing with
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key rate equal to 1 has taken place; the wiretapper remains
completely ignorant because I(Z™ AY™) = 0.

Example 2: Let the DMMS with generic variables (X,Y,Z)
be as follows: X = (X', X"), Y = (Y,Y"), Z =
(Z', Z"), where X'-0-Y'-0-2Z', Y"-0-X"-0-Z", and the
triples (X', Y, Z') and (X", Y", Z") are independent. Ap-
plying the Corollary of Theorem 1 to the mutually inde-
pendent DMMS’s with generic variables (X', Y’, Z’') and
(X",Y", Z"), it follows that for the first DMMS

IX'AY'" | ZY=I(X'AY)-I(X'NZ" 3.7
is an achievable key rate, with a single forward transmission,
and for the second DMMS

IX"AY" | Z")Y=I(X"ANY")=I(Y"ANZ") (3.8)

is an achievable key rate, with a single backward transmission.
Hence, for the DMMS with generic variables (X, Y, Z),

IXAY | Z)=I(X'AY' | Z'Y+I(X" AY" | Z") (3.9)

is an achievable key rate, with one forward transmission and
one backward transmission. Thus, in this example, the key-
capacity equals the upper bound in Theorem 1, and it can be
attained by one exchange of messages over the public channel.
In particular, the sufficient condition for the tightness of the
bound to key-capacity in Theorem 1 is not necessary. This
example also shows that the key-capacity can strictly exceed
both the forward and backward key-capacities. To see this, let
the joint distribution of X"/, Y, Z" be such that

I(X"ANZ")>I(Y" A Z") (3.10)

(i.e., the data processing lemma for Y"—o0-X"~0-Z" holds
with the strict inequality) and that X"'—o—Y"—o0—-Z" for
some Y with Py win = Pxiyn, where—without restricting
generality—we assume that (X", Y, Z") is independent of
(X',Y’, Z"). By Theorem 1, forward key-capacity depends
on the joint distribution Pxyz through its marginals Pxy
and Pxz only. Hence, in the present case the forward key-
capacity remains unchanged if ¥ = (Y’,Y") is replaced
by Y = (Y',Y"), and therefore—using the Corollary of
Theorem 1—it equals

IXAY)-I(XAZ)=I(X AY)-I(X A Z)
=I(X'AY)+ I(X" AY")
—I(X'ANZY-I(X"ANZ").
On account of (3.7), (3.8), (3.10), the last expression is smaller
than I(X AY | Z) in (3.9). It follows similarly that the

backward key-capacity is also smaller than the key-capacity
(3.9), providing the joint distribution of X', Y’, Z' is suitable.

IV. PROOFS

Proof of Theorem 1: 'We send forward a general obser-
vation: if T—0~X—~0-Y Z then any Model-SW secret sharing
strategy for the DMMS with generic variables (T, 7Y, Z)
gives rise to one with identical secrecy performance for
the DMMS with generic variables (X, Y, Z). To see this,
let {T% ;}szex, 1<i<n be a collection of random variables,
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independent of each other and of (X", Y, Z™) (the outcomes
of the DMMS with generic variables (X, Y, Z)), and set

T, =T, if X; =z, (t=1,---,n).

Then (T, Y™, Z™) will represent outcomes of the DMMS
with generic variables (7Y, Z), and any secret sharing
strategy for the latter amounts to a secret sharing strategy for
the DMMS with generic variables (X, Y, Z), regarding the
collection {T, ;} as part of the random variable My generated
at Terminal X in Step 0.

To prove the direct part of Theorem 1 it suffices to show
that for any U with Ue-X-eY Z, (XAY |U)-I(XAZ | U)
is a forward-achievable key rate (i.e., achievable with a single
forward transmission). Indeed, applying this to the DMMS
with generic variables (T, Y, Z), it will follow that (3.4) is
a forward-achievable key rate for the DMMS whenever T'
and U satisfy the Markov condition (3.5). By the observation
sent forward, this implies that (3.4) is a forward-achievable
key rate also for the original DMMS, which means that the
forward key-capacity is at least as large as the maximum of
(3.4) subject to (3.5).

The proof that

H=IXAY |U)-I(XAZ|U)

is a forward-achievable key rate (if U—o—X~o~Y Z) will be
similar to the proof of the direct part of Proposition 1a), but
now X™ will be partitioned. into sets C; of a more complex
structure, namely wiretap-channel codes.

Formally, supposing H > 0, without any loss of generality,
we apply Lemma A in the Appendix to consecutively select
mutually disjoint sets C; C X™ such as A in that Lemma.
Then, if this process can not be continued after having selected
Cn, we necessarily have

N
P;;(Uci) >1-1.
=1

By definition, each C; consists of sequences of the same type
and is the codeword set of an (7, €)-code for the DMC {V},
where V represents the conditional distribution Py x . Further,
C; is the disjoint union of M = [exp {n(H — €)}] subsets
Ci, m of equal size, such that the following holds: If X™ is

(4.1)

~ uniformly distributed on C; and the conditional distribution

of Z™ on the condition X™ is Pgl x then, setting K=mif
X" € C;, m, we have

I(Z"AK) < n. (4.2)

Now, let Terminal X' transmit

i, if X™ e C",(,
0, if X™ ¢ J;—,Ci.

Further, define K as that index m for which X™ € C; .,
it X™ € Cy; if X™ ¢ Ui, Ci, let K be equal to a random
variable uniformly distributed on {1,---, M} and independent
of X™, Y™, Z™. Finally, let L = L(Y™, ®) be defined by
setting L = m if ® =, 1 <1 < N, and the decoding of the
(n, €)-code for the DMC {V} with codeword set C; results

<I>:<I)(X")={ 1<is W
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in a codeword that belongs to C; ,; if ® = 0 then L can
be arbitrary.

We claim that the secret sharing strategy defined by ®, K,
and L as above satisfies the conditions in Definition 2.1 for
the achievability of H, of course with (2.5) replaced by (3.2).
Actually, since there is only a single forward transmiission ®,
(3.2) reduces to

%I(d), Z"ANK) <. “4.3)

Clearly, the definition of K and L implies by (4.1) that
(2.4) is satisfied, with € + 7 in the role of e. Futther, since C;
consists of sequences of the same type and each C’i, m has the
same size, the conditional distribution of X on the condition
X" € C; is the uniform distribution on {1, --, M}; the same
holds, by definition, also on the condition X" ¢ Ufil Ci.
Thus, K is uniformly distributed on K = {1,---, M}, and it is
independent of ®. In particular, condition (2.7) holds trivially,
and on account of M = [exp {n(H — €)}] so does also (2.6).

It remains to check (4.3). Now,

18, 27 NK) L 12" A K | @)
. N
QY PRCI(Z"AK | X" €C) (a4)
=1 '
Here (i) follows by the independence of K and &, and (ii)
holds because

N
I(Z”/\KIX"QUC,-) =0

i=1

by the definition of K. Since C; consists of sequences of the
same type, the conditional distribution of X™ on the condition
X™ € C; is uniform on C;. It follows that the conditional joint
distribution of Z™ and K on the condition X™ € C is the same
as the joint distribution of Z™ and K in (4.2). Thus (4.2) and
(4.4) imply that (4.3) is satisfied with 7 in the role of e.
Turning to the converse part of Theorem 1, consider any
strategy with a single forward transmission @, i.e., let

&= &(My, X"), K =K(My, X"),

L=L(My,Y", ®). (4.5)

We will show that if (4.3) holds then there exist T' and U
satisfying the Markov condition (3.5) such that

%I(K/\L)SI(T/\Y|U)—-I(T/\Z|U)+6. 4.6)

The proof is similar to the wiretap channel converse proof
of Csiszar and Korner [4], and relies on the following

Lemma 4.1: For arbitrary random variables U, V' and se-
quences of random variables Y, Z™ we have

IUAY™ | V)= I(UAZ" | V)

=Y UUAY: | YT 2y - Z,V)
=1

—IUNANZ |\ Y"1 Zipy - Z,V)).
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Proof: This identity appears in [4]; still, for complete-
ness, we give a proof since it is quite simple.
The ith term of the sum equals
HU|Y Ziy - Z, V)= HU | Y Ziy1--- Z,V)
—~HU|Y"Zyy-- Z,V)
+H(U Y"1 ZiZipy - Z,V)
=HU|Y"Z;---Z,V)~HU | Y'Ziy1- Z,V).
Summing these, after cancellations the result is
HU|zZ"V)-HU |Y"V).
On the other hand,
HKUAY™ | V)=I({UAZ"|V)
=H{U|V)-HU|Y"V)
—-HU|V)+HU|zZ"V)
=H{U|Z"V)-HU|Y"V).

Continuing the proof of Theorem 1, we can write

G
I(KAL) < I(K A My, Y™, ®)
D rxAY, @)

iif)
< I(KAY", @) —I(K AZ"™, ®) + ne
=I(KAY™|®) - I(KAZ" | ®)+ ne

S AY | Y Ziyy - 2, D)
=1

—I(KANZi | Y Ziga -+ Zn®)] +me. (4.7)

Here (i) is by (4.5), (ii) because of the independence of
My from (K,Y™, ®), implied by (4.5) and the mutual
independence of My, My, (X™, Y™); (iii) is from (4.3), and
(iv) is by Lemma 4.1.

The last sum can be written, in the usual way, as

n[I(K AYy |U) - I(K A Z7 | U)),

where J is a random variable independent of all the previous
ones and uniformly distributed on {1,---,n}, and U =
YI'1Z;501-- Z,®J. Thus, (4.7) gives

%I(K/\L) <IHEANY | UY=I(KAZs |U)+e
= I(TAY; |U) = I(TAZs |U)+€,48)

where T' = (K, U).

It is clear from the definitions of J, U, and T—using also
(4.5)—that the Markov property U—o-T—o-X ;—o-Y;Z; holds
and the joint distribution of X ;, Yy, Z; is the same as that
of X, Y, Z. Hence, (4.8) establishes our claim (4.6), and this
proves that (weak) forward key-capacity can not be larger than
the maximum of all expressions of form (3.4), with the Markov
condition (3.5).

The upper bound on (weak) key-capacity stated in Theorem
1 follows by the simple argument in the proof of Proposition
1. Namely for any secret sharing strategy satisfying (3.2) we
have

CI(KAL)<I(KAL|®, TF 2" + en, 4.9)
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and to the exact analogy of the derivation of (2.13) we obtain
that

I(KAL|®, ¥k 2" < I(X"AY™ | Z™)
=nl(X AY | Z)

(a minor difference is that Lemma 2.2 has to be used in a
“conditional” version; but clearly that Lemma remains valid
if a conditioning random variable is added on both sides).
Substituting this into (4.9) shows that I(X AY | Z) is an
upper bound to weak key-capacity.

If X—o-Z—0-Y then I(X AY | Z) is equal to O and hence
gives a tight bound. Suppose next that X—o-Y-o—-Z. Then
I(XAY | Z) = I(XAY)-I(X AZ) is a forward-achievable
key rate by the first assertion of Theorem 1 (set T' = X,
U = const in (3.4)). As key-capacity could only be larger
than forward key-capacity, this shows that the upper bound
I(X AY | Z) is tight in this case. Finally, the third possible
Markovity Y-o-X-o-Z is not a new case, by symmetry.

The corollary has already been proved.

Proof of Theorem 2: Clearly, the forward key-capacity for
Model CW is at least as large as the secrecy capacity of
the corresponding wiretap channel. As shown by Csiszar and
Korner [4], the latter equals the maximum of

I(TAY)-I(TAZ), (4.10)

for random variables T' such that T-o-X—o-Y Z for some X
with Py zx = W. Presently, we use only the direct part of
this result, namely that the secrecy capacity is at least as large
as (4.10), for any T' as before; this is an easy consequence of
Lemma A in the Appendix, applied to T, Y, Z in the role
of X,Y, Z, with U = const. Now, the first assertion of
Theorem 2 will be proved if we show that the weak forward
key-capacity can not exceed the maximum of (4.10) for T' as
before. To this end, we use the method of Csiszar and Korner
[4] as in the proof of Theorem 1.

Consider any secret sharing strategy for Model CW that
enters the definition of weak forward key-capacity. Then, since
there are no backward transmissions, X™ has to be a function
of My alone, and so have also ® (the forward transmission
over the public channel) and K:

X" = X"(My), ®=3&My), K=K(My).

Unlike in the proof of Theorem 1, Y™ and Z™ are now the
channel outputs corresponding to input X", but (4.7) still holds
as there (for step (ii) of the derivation of (4.7) we need that My,
is independent of (K, Y™, ®); this is intuitively obvious, and
formally follows from (3.1) where now X;(m, m/, yi=1) =
X;(m)). Also the rewriting (4.8) works as there, and the
resulting random variables X ;Y7 Z; satisfy both Py 7, x, =
W and the Markov condition U-o-T-6-X j0-Y;Z ;. It follows
that the weak forward key-capacity can not be larger than the

maximum of
ITAY |U)-I(TAZ|U) (4.11)

subject to the condition Pyzx = W and the Markov
condition U-o-T—o0-X-0-Y Z. Finally, notice that (4.11)
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can be written as the average of I(T,, A Y,) — I(Ty A Zy,)
with respect to the distribution of [/, where T, Xy, Yu, Zu
denote random variables whose joint distribution equals the
conditional joint distribution of T', X, Y, Z on the condition
U = u; in particular, the Markov condition T\,—0-X,,—0-Y, 2,
holds and Py, z,)x, = Pyzx = W. Thus, (4.11) is upper
bounded by the maximum of (4.10) for T' as there, and this
establishes our claim.

Now we turn to the proof of the upper bound on (weak)
key-capacity for Model CW. This is more difficult than the
proof of the similar bound for Model SW in Theorem 1 or for
Model C in Proposition 1.

Consider any permissible strategy, as described in Section
I for Model C; in particular, K = K(My, ¥*), L =
L(My, Y™, &%), Since (4.9) holds also in the present case,
and by the last functional relationships

I(KAL|®% OF Z™) < I(Mx A My, Y™ | @F OF Z™),

4.12)
it suffices to bound the right-hand side of (4.12). We proceed
as follows:

I(Mx A My, Y™ | %, Tk Zm)
= I(Mx A MyY" Z"®" %) — I(Mx A Z"®FTF). (4.13)

Here, by the chain rule,

I(My A MyY ™ Z"&*TF)
=I(Mx A My® 71U 4 N(F + @), (4.14)
j=1
where
Fj = I(My AY;Z; | MyYi=1Zi=194 710471 (4.15)
Gi=IMxA®i 41 Py, 1Wiipr Ty o1 |
MyYiZigh— 10—l (4.16)
(recall the convention ipy1 = k + 1).
Similarly,
I(Mx A ZM®FUF) = I(My A B2 10T
+3 (Fj+Gj) (417)
=1
with
F/=I(Mx A Z; | Z771@% 7104 ) (4.18)
G; = I(MX A éij-‘rl e q)ij+1—1
Wyopr Wy o1 | 27057105 (419)
Substituting (4.14) and (4.17) into (4.13) gives
I(Mx A My, Y™ | &% wF, Z7)
= I(Mx A My | 710471
+ Y (F+ G- Fj—G)). (4.20)

7=1
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From (4.15) and (4.18),

F; — Fl = H(Y;Z; | MyY?~' Z7=1&% 10t 1)
— H(Y;Z; | MxMyYi=1Zi71@% - 1g4 1)
— H(Z; | 22714~ 1wht)

+ H(Z; | My ZP 7195~ 1gi 1), (4.21)

It follows from (3.1) that the conditional joint distribution of
Y;Z; on either of the conditions in the second and fourth
terms of (4.21) is the same as on the condition X
X;(My, U%~1). Hence, the second and fourth terms of
(4.21) equal H(Y;Z; | X;) and H(Z; | X;), respectively.
Substituting these, and upper bounding the first term by
dropping MyY?~! from the condition, (4.21) gives

F; - F < H(Y; | Z;Z7719%~'0%~Y) — H(Y; | X;Z;)
<HY;|Z;)-H(Y; | X;Z;) = I(X; \Y; | Z5). (4.22)

Next, we compare the terms G, and G. (4.16) can be
equivalently written as

Gj=I(Mx AMyY?®; 11 ®;
Wi g1 Wy, 1 | qu)ij—l\pij—l)
— I(Mx A MyY? | Z0@%1gii—1),
This and (4.19) give

Gj — Gy =I(My A MyY? | ZI@%+1~ 1kl
—I(Mxy A MyY? | Z3@H =141,

On account of Lemma 2.2 (conditional version), this shows
that

G; - G <o. (4.23)

By Lemma 2.2, we also have
I(My A My | 271091 < I(My A My) =0. (4.24)

By (4.22)(4.24) it follows from (4.20) that

I(Mx A MyY™ | @*0*Z™) < N I(X; A Y| Z5).

=1

Returning to (4.12) and (4.9), this completes the proof of our
upper bound on (weak) key-capacity for Model CW. O

If Pyzx = W implies X—o0-Z-o-Y then our upper
bound is 0, and hence automatically tight. Suppose next that
Pyzx = W implies X~o-Y~o~Z (which means that W is
of form (3.6)). Then, the first assertion of Theorem 2 implies
that (X AY | Z2) = (X AY) = I(X A Z) is a forward-
achievable key rate for every X,Y, Z with Pyzx = W
(actually, achievable without using the public channel at all).
Hence, in this case, our upper bound on key-capacity is tight,
and key-capacity can be attained without any use of the public
channel. Finally, if Py 7 x = W implies ¥—o-X-o0-Z (which
means that W is of form (3.3)), we refer to the observation
preceding Theorem 1. Since the key-capacity for Model SW
with generic variables satisfying Y-o-X-o-Z is (X AY | Z),
and it can be attained with a single backward transmission (by
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the Corollary of Theorem 1), it follows that the maximum of
I(X AY | Z) subject to Pyzx = W is an achievable key
rate, with a single backward transmission. Hence, our upper
bound to key-capacity is tight also in this case, and, in addition,
key-capacity equals backward key-capacity.

Proof of Theorem 3: The formal meaning of the assump-
tion -that the Z-outputs are known at Terminal A" is that in
the definition of a permissible secret sharing strategy, the
condition ®; = ®;(My, X", ¥~1) is replaced by ®; =
®;(My, X", Z™, ') for the source-type model, resp.
®; = ®;(Mx, Z%U*~1) for the channel-type model, and that
in the final step, cf. (2.1), K may depend also on Z™. If the
Z-outputs are known at Terminal Y/, it is the functions ¥; (and
L in (2.1)) which are modified in a similar way. The proofs by
which I(XAY | Z) and the maximum of I(X AY | Z) subject
to Py z)x = W were shown to be upper bounds to the (weak)
key-capacity for Models SW and CW, respectively, apply also
when the Z-outputs are known at Terminal X or at Terminal
V. Hence, Theorem 3 will be proved if we show that in the
latter cases our upper bounds are actually achievable key rates.

If the Z-outputs are known at Terminal )/, the Y -outputs
Y; can be replaced by the pairs Y;Z; without changing the
permissible strategies. These new Y-outputs trivially satisfy
the Markov condition Y-o-Y Z—0-Z, hence Theorems 1 and 2
imply that (X AYZ | Z) = I(X AY | Z) is an achievable
key rate for the source-type model and the corresponding
maximum is achievable for the channel-type model.

If the Z-outputs are known at Terminal &', for the source-
type model we are in the same situation as above. For the
channel-type model, we refer to the observation preceding
Theorem 1. Letting Terminal X transmit an i.i.d. sequence, a
source-type model is simulated, for which the assertion has
already been proved. It follows that I(X AY | Z) is an
achievable key rate whenever Py 7| x =W.

The proof is complete. O

V. CONCLUSION

We have considered various models of generating com-
mon randomness at two distant terminals X and ), with
the additional requirement that a third party, the wiretapper
Z, be kept ignorant of the generated common randomness.
Then the latter could be used as an encryption key to make
communication between X and ) secure from Z. For some
models of generating this common randomness or key, we
were able to determine the largest achievable key rate, called
the key-capacity. For other models we gave bounds on the
key-capacity.

The problems can be studied for all multiway channels and
multiterminal sources. One can conceive even of situations
with several wiretappers.

The mathematical tools used in this paper were those of mul-
tiuser information theory, in particular the single-letterization
technique developed by Csiszir and Korner [4] for the wiretap
channel and its generalization called broadcast channel with
confident messages. Still, it should be emphasized that there is
a conceptual difference between the wiretap channel problem
of transmitting messages from X' to ) without giving informa-
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tion about them to Z, and the problem of generating common
randomness shared by X’ and ), secret from Z. Notice that
this common randomness need not be generated at A and
communicated to ), it may as well be generated at ) and
communicated to X, or cooperatively generated by & and Y.
Following the suggestion of a reviewer, we now summarize
our main results and mention some of the open problems.
Our models were of two main types. In Model SW (source-
type model with wiretapper), a discrete memoryless muiti-
ple source with generic variables X, Y, Z was given, and
X, Y, Z “could see” the length-n outputs X, Y, Z”, re-
spectively. In Model CW (channel-type model with wiretap-
per), a discrete memoryless channel with one input and two
outputs was given, A governed the input, and the outputs
were seen by Y and Z, respectively. Both models involved the
availability of a noiseless public channel of unlimited capacity
for communication between A" and ). As to the permitted use
of the public channel, we focused mainly on the extreme cases.

1) A single transmission from & to Y or from Y to
A&; the corresponding key-capacities were called the
forward key-capacity and the backward key-capacity,
respectively.

2) As many exchanges between X and ) as desired; the
term “key-capacity,” without qualification, has been used
to refer to this case of unlimited conversation.

For Model SW, we gave a single-letter characterization of
forward key-capacity; by symmetry, this provided a character-
ization of backward key-capacity, too. The key-capacity with
unlimited conversation could not be determined in general, but
it was always upper bounded by (X AY | Z). If X, Y, Z
formed a Markov chain in some order, that bound was tight,
and key-capacity with unlimited, conversation was equal to
the forward or backward key-capacity. In general, two-way
communication over the public channel could increase the
key-capacity above both forward and backward key-capacity,
even if only one exchange of messages was permitted. In our
example demonstrating this, the key-capacity for one exchange
of messages was the same as for unlimited conversation. We
do not expect this to be always so, but our results do not rule
out that contingency.

For Model CW, it may be possible for A" and ) to share
common randomness secret from Z without using the public
channel: this is the wiretap channel situation when our key-
capacity reduces to the wiretap channel secrecy capacity.
Using the public channel from X to Y does not help: we have
shown that the forward key-capacity for Model CW equals the
wiretap channel secrecy capacity, determined in [4]. A single-
letter characterization of backward key-capacity, as well as
of key-capacity with unlimited conversation, remains elusive
for Model CW. Still, the maximum of (X AY | Z)—where
(Y, Z) is the pair of outputs for input X—was shown to be
an upper bound to key-capacity with unlimited conversation.
This bound is tight in two important special cases, viz. for
channels of form (3.6) or (3.3), and in those cases key-capacity
with unlimited conversation equals the forward or backward
key-capacity, respectively. In the cases, we could determine
key-capacity with unlimited conversation for Model CW, it
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could be achieved with A" producing i.i.d. channel inputs. It
remains open whether this is true in general.

Finally, if the information available to Z was made available
to A" and/or ), the key-capacity with unlimited conversation
for this modified model (of either type) was shown to always
equal the upper bound obtained before, and also to equal the
forward or backward key-capacity for the modified model.
This appears to be the first coding theorem that provides
a direct operational characterization of conditional mutual
information.

APPENDIX
Lemma A: Given U-o-X-o0-Y Z with

IXAY|U)-I(XAZ|U)=H >0,

and arbitrarily small 7 > 0, € > 0, 7 > 0, for sufficiently large
n every set A C X™ with P%(A) > n contains a subset A
with the following properties.

1) A consists of sequences of the same type, and it is
codeword set of an (n, €)-code for the DMC {V'}, where
V represents the conditiona) distribution Py |x.

2) A is the union of M = [exp {n(H — €)}] mutually
disjoint sets A(™) of size | A(™ |= [exp {n(I(X A Z |
U)-¢e}], m=1,---,M.

3) If X™ denotes a random variable uniformly distributed
on A and Z" denotes the corresponding output of
the DMC {W}, where W represents the conditional
distribution Pg|x, then for K defined by

K=mif X" e AM, 1<m<M,

we have'
I(KAZ") < Tn:

Proof: We will use Lemma 3.3.17 of [5], which is a basic
result for multiuser information theory, and has a simple and
intuitive proof. This Lemma says that if A C A'™ satisfies

Piiu(Alu) >, for some U — typical u, (A.1)
then A contains a subset A with the properties 1), 2), and and
the following.
37) Al™) is the codeword set of an (n, €)-code for the DMC
The standard properties of typical and generated sequences
(cf. [5, section 1.2]) will be used freely, without reference.
Since

PR(A) = ) _Pp(u)PYp(A | u),

and the set of U-typical sequences u has Prp;-probability
arbitrarily close to 1 (if n is sufficiently large), it follows that
any A C A™ with P%(A) > n satisfies (A.1), with 77/2 in the
role of 7 (say). Then the subset of A consisting of sequences
X | U-generated by u will also satisfy (A.1), now with 7/4,
say. Thus it follows that any A C X™ with P%(4) > ¢
contains a subset A with the properties 1), 2), 3') such that, in .
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addition, A consists of sequences X | U-generated by some U-

typical u. It suffices to show that any such A has property 3),

at least if e/ is sufficiently small. This is implicit in Csiszar

and Korner [4] but for completeness we give the proof.
Now, with the notation in 3),

I(KAZ™Y=H(Z") - H(Z" | K)
=H(Z") - H(Z" | X") - (X" A Z" | K);
(A2)
we bound these three terms separately.
Recalling that A consists of sequences X | U-generated by
a U-typical u, let D denote the set of those 2 € Z™ which are
Z | U-generated by u. Then, D contains every z € Z™ which,
forsome z € A, is Z | XU-generated by (z, u) (providing the
constants in the definition of generated sequences are suitably
chosen). Thus, using also the Markov property U—o-X-0-Z,
W*(D | z) = Pzx(D | )
=Phxy(D |z, u) > 1—¢, ifxecA
(A.3)
(for n sufficiently large). Defining a random variable S by
letting S = 1 if Z™ € D and § = 0 otherwise, we obtain
H(Z™)=H(S, Z")=H(S)+ H(Z" | S)
<1+4+Pr{S=1}log|D|+Pr{S=0}1og|Z"|
<14+ n(H(Z|U)+e€)+enlog| Z |; (A4

here the last inequality follows (for sufficiently large ) by the
standard bound on the number of sequences Z | U-generated
by a given U-typical u, and by (A.3).

Further, for every £ € A,

H(Z" | X" =z)=n)_ P(z)H(W(-|z)),
rzEX

(A5)

where P denotes the common type of the sequences £ € A.
Since A consists of sequences X | U-generated by a U-typical
u, this P is arbitrarily close to Px if n is sufficiently large,

thus (A.5) gives
H(Z" | X™) > n(H(Z | X) + ¢). (A.6)

Finally, since the sets Al™ are codeword sets of (n, €)-
codes for the DMC {W}, there exist (decoding) functions
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g™ : Zn — A(™ such that Pr{g(™(Z") # X" | K =
m} < ¢ 1 < m < M. Hence,

I(X"AZ" | K =m)
> 1(X A g™ (27) | K = m)
ZH(X" | K =m)—elog | A™ | -1
— (11— e)log | A™ |1,

where the second step is by Fano’s inequality. Substituting the
value of | A™ | from property 2), it follows that

IX"AZM | K)> (1-en(I(XAZ|U)—¢€) —1. (A7)

Returning to (A.2), it follows from (A.4), (A.6), and (A.7)
that property 3) holds, as claimed, providing €/7 is sufficiently
small.
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