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The identity discovered in [1] can be viewed as a sharpening of the LYM inequality ([3],
[4], [8]). It was extended in [2] so that it covers also Bollobds’ inequality [6]. Here we present
a further generalization and demonstrate that it shares with its predecessors the usefullness for
uniqueness proofs in extremal set theory.

1. Introduction

A few years ago Ahlswede and Zhang [1] found the following identity.
Theorem AZ;. For every family 4 C 2 of non-empty subsets of Q= {1,2,... ,n}

M:l, where Wy(X)=| [ A4

xcQ \X‘(lgfl) XDAed

We associate with every & C 2 the upset U(8) = {U € Q : U >
E for some E € &} and the downset D(6) = {D C Q: D C E forsome E €
When . is an antichain in the poset (2,2), then the identity becomes

1 W (X)
(1) "y T _‘—A—ﬁ_ =1
XZeA (1)) Xell(d)\d X1(x))

The LYM inequality is obtained by omission of the second summand, which

WAX)  \We call this

by definition of Wy can also be written in the form . X[T
1X|

X¢D(d)
the deficiency of the inequality.
More generally, in [2] the Bollobds inequality was lifted to an identity.
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Theorem AZy. For two familiesd ={A1,..., Ay} and B={B1,...,By} of subsets
of Q) with the properties
(a) A;CB; fori=1,2,...,N
(b) A;¢ Bj fori#j
N

1 Wa(X)
(2) —= ot Iy <L
2 ATy 2 TR

In [1] it was explained that Theorem AZ; gives immediately, what LYM does
not, namely the uniqueness part in Sperner’s Theorem. In [2] the uniqueness of
an optimal configuration of unrelated chains of subsets due to Griggs, Stahl and
Trotter [7] was proved with the help of Theorem AZ,.

Recently, Kérner and Simonyi [10] observed the LYM-type inequality:
For 4 ={Ay1,...,An},B={B,...,By} C 2 with
AiNB;=0,A; ¢ A;UB;,B; ¢ AjUB; for i#j

N -1 -1 -1
n—lAi|) (n_|Bz’|> ( n )
3 ( " - <1
@ 2 im A A4 + 1B
and they asked (Problem 2) “Is this inequality ever tight?”.

This rather modest question was a challenging test of the power of the 1dent1t1es
in [1], [2] or, more precisely, of the procedure to produce new identities described
in [1].

The outcome is an Ahlswede-Zhang type identity (Theorem 1) which goes
considerably beyond Theorem AZ;. From a special case of this identity we derive a
full characterization of the cases with equality (Theorem 2) even for a generalized
version of (3). In other words we characterize the cases with deficiency zero.

2. The identity

Theorem 1. Suppose that for a family 8 = {B1,...,Bx} of subsets of {1 and a
family 4* = {d3,..., 4} of subsets of 22, where 4; = {At:teT;} for a finite index
set T;, we have the properties

(a) AtCB; for teT; and i=1,2,...,N

(b) AngBj for teT; and i#].

Then with 4 =N, 4;

N T3 ty 1 .
_ n —|B; — Uses A4l Wy(X)
(1) (—1)k ( Py D)y
;1; scT,z,|:S|=k | Ures 4l X¢D(B) |X1(|X|)

The specialisation |T3| =1 for i=1,..., N gives Theorem AZ. The proof goes
again by counting chains. A key tool in [2] was
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Lemma 1. For two sets A,B C () with AC B exactly ZT—_ITTL?!T/T) maximal chains in
|4l
(2%,C) meet {X:ACXCB}. ~ |
4

Using the principle of inclusion—exclusion this generalizes to

Lemma 2. For BC$ and € C 22 with C C B for all C € € exactly
i

-1
Y (-Ft S (n —}lf \ Ucagfcl)
k=1 €CE 8 =k Ced’
maximal chains in (2%,C) meet {X:CcX CB for some C€8}. ]

Proof of Theorem 1. The number of maximal chains leaving U () at U is
(n = [UNW(U)(IU] - 1)!

Since the sets X; ={X : AL C X C B; for some teT;} (i=1,2,...,N) are disjoint
we have

. N
Yo (= IXDWX(X -+ Y (= [ XDIW(X)(X] ~ 1)! = n!

i=1 XeZ; Xel(d)—uX;
By the definition of Wy the last summand can be written in the form

!
—w and by Lemma 2

X¢D(B) lX’(l)nfl)

|Ti| -1
- n—|B; \ UAY
S (= XWX (X[~ D =t 3 (-1F1 3 AN
XeZ,; . k=1 SCTi,IS[=k< |Ut€S Az] )

3. On zero deficiency

We characterize here a case of zero deficiency, that is, the property
Wa(X) _

(5) 7

Theorem 2. Under the assumptions of Theorem 1 and the additional conditions
(c) Al ﬂAfl =0 for all i and t,t’ € T; with t £t
(d) |T;]>2 and N>2
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we have, that the identity

N T3 £\ —1
n—|B; — Utes 4]
©  Yyevtt ¥ A<
i=1 k=1 SCT; \S|=k [ Ures Al

holds exactly if
(i) |Af|=1 for all t € T; and all i.

(ii) Bl \Uter, AL = By \ Ugemy A = ... = By \ UeTy Aly = B, say.
(iif) 2 T3] =n—|B|.

In words the B; have a common part B and each B; has a rest of singletons
Ag The B;’s exhaust Q.

In the proof we use a well-known identity, which follows by iterative application
of Pascal’s identity.

Lemma 3. g (—1)k‘1(mA/_[k) = (%:11) !
k=1

Proof of Theorem 2. From (i) and (ii) we derive in terms of 3=|B]|

N T o1
_q)k-1 n —|B; \ Ues Af]
2;1( SCT;[S‘:)C( | Ures Af] )
N Ty
_ (=1)k-1 |T:] (B+IT]) + &
=33 () ()
N sz
k-1 |Tili(n = (B+|T:))!
=2 2V TG G m

p Tl

Tili(n - (B4 |T;
Z[ l(nn(ﬁ)!l ! Z( 1)k~ 1(IT| )

Z!Tl‘ (8 + |Ta))! (n-g-1
(n - B)! (T3l = Din — (B + [T

by Lemma 3, and now by (iif)

N .
o -5 Bl

We assume now that (6) holds and derive (i), (ii), and (iii). By Theorem 1 we
have deficiency zero, that is,

(8) Wy(X) =0 forall X ¢ D(B).
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For the quantity
(9) m=min{|A}|: 1<i< N, teT;}

we show first that it equals 1, then we establish (i) and (ii), and finally (iii).

Step 1. W.lo.g. we can assume |A}|=m. For any y € 2\ B; consider Alu{y}.
Thus clearly A} U{y} ¢ B and by condition (b) also 41 U{y} ¢ Bj for j # 1.
Therefore Al U {y} ¢ D(B) and by (8) Wy(Al U{y}) = 0. By the minimality of

1 in o and the definition of Wy every m-subset of A1 U {y} must be in «. In
partlcular for any a € A} the set (41\ {a})U{y} isin .24 Since it is not in .sdl it
must be in some 4; w1th j#1L

W.l.o.g. we can assume it to be A1 Furthermore, since A1 76 A1 we can require
the a choosen above to be from A} \ A2 Also, since by (b) A% ¢ By there is z €
A% \ B3,z #a. As previously we conclude that A% U{z} ¢ D(F) and that the m-set

(A3U{zH\ (v} = (A1 \ {ah) U {z} e <.

However, we also have (A} — {a})U{z} €4 and by (c) AIN((Al - {a})U{z})=0.
This implies A} = {a} and m=1.

Step 2. After relabelling we can assume now Al ={1} and By ={1,2,...,4}. By
the arguments in Step 1 we get {1,k} ¢ D(B) and {Lk}o{k}ed whenever & > £.
By (b)for all t € T; and i >2 A! has an element, say e, with e > . However, since
{e} €A by (a), (b) and (c) actually A® must equal {e}. We thus know that A is a
singleton for all i >2 and ¢t € T;. Now we can let any ¢ > 2 take the role of 1 in the
previous argument and get that all AY are also singletons. We have proved (i).

Also we have arrived at the following configuration: B; D A; = Uger, A and
B;NA; =0 for i # j. We claim now that B; = A, UC, where C = Q\UN A To
see th1s suppose that c€ C and c¢ B;. Then for any a € 4; {a,c} ¢ @(%’ and thus
Wq({a, ¢})=0. This, however, contradicts Wy({a,c})=|{a}|=1.

We have established (ii) with B=C. (6), together with the equations leading
to (7), give now also (iii). ]

Finally we present a consequence of Theorem 2, which in particular gives a
positive answer to the question of Kérner and Simonyi mentioned in the Introduc-
tion.

Corollary. If we are given fort=1,2 andi=1,2,...,N sets Af C Q with AilﬁAi2 =
0 and A} ¢ A} UA§ fort=1,2 and i #j then

1o Z( " 1,>~1+ (" ngﬁI)_l‘ <|A%|Z|A;f’|>_1=1

exactly if
(") !Af| =1fort=1,2andi=1,2,...,N
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(ii’) n is even and N=73.

There is a direct proof of this Corollary which is shorter than the one via
Theorem 2.
Proof. With the choice B; = e, At formula (6) takes the form

Ll n- 3 (4l
Syt » (s ) =
i=1 k=1 ScToISl=k © X |4l

tes

and if T; = {1,2} for all ¢ this becomes (10). (i) specializes to (i’), (ii) is true by
definition of B; with B=0. (iii) specializes to N -2=n and thus (ii’). 1

4. On general cloud antichains

A family 4* = {dy,...,dn} of subsets of 2 is a cloud-antichain, if
(1 A; ¢ Aj for A; e d;, A € 4 with i # j.

They have been analyzed in [2] for N =2. In particular, in the case | ;| =M
fori=1,...,N we are interested in the maximal length N (n, M) of these antichains.

Clearly, for = U,f\_r__l.ﬁl
(12) Wy(X) = Wy, (X) for X € 4;
and therefore by Theorem AZ;

(13) Z Z ) WalX) _

i=1 Xed; (IXI) Xel(A)\d 1X1(1)

Notice that n! Y WHX)
meeting a member of 3.

We can derive from (13) a bound on N(n, M), if we have a bound or even exact
result for the following seemingly basic quantity:

(14) s(M,n) = min{c(B) : B c 2°,|B| = M}.

counts the number, say (&), of saturated chains
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