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Abstract

We consider a problem mentioned in [1], which is in partitioning the n-cube in
as many sets as possible, such that two different sets always have distance one.

1 Introduction and approach

Assume that the vertices of the n-cube are partitioned in such a way that the Hamming
distance between each pair of the subsets in the partition is 1. What is the maximal
number of such subsets? Denoting this number by m(n), one can easily check the following
table:

n : 0 1 2 3 4
m(n) : 1 2 3 4 8

Only the case n = 4 may raise some difficulties. In this case the 4-cube must be
partitioned into 8 sets each of size 2, with the required properties. Below we present one
such partition {Ai : i = 1, ..., 8}, representing the vertices of the 4-cube as binary strings:

A1 A2 A3 A4 A5 A6 A7 A8

0000 1000 0100 0010 0001 0011 0110 0101
1111 0111 1010 1001 1100 1110 1101 1011

Proposition 1 m(n) ≤
√

n2n + 1.

Proof.
Since the n-cube has n2n−1 edges and each edge can only realize distance one between
two sets, it immediately follows that

(
m
2

)
≤ n2n−1.
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Proposition 2 m(n) ≤
⌊

2n

m(n)

⌋
n + 1.

Proof.
If one has a partition of the n-cube into m sets, then one of the sets has at most b2n/mc
elements and hence can have distance one to at most b2n/mcn other sets.

The reason for including this improved upper bound is that it gives the correct values
for n = 1, 2, ..., 4.

Now we give a simple lower bound, which later will be improved.

Proposition 3 m(n) ≥
√

2n.

Proof.
Consider the 2n−1 edges of the n-cube having a fixed direction, i.e., which connect vertices
having some (say the first) n− 1 entries equal. These edges are disjoint and partition the

vertices of the n-cube. Now if
(

m
2

)
≤ 2n−1 there are enough edges to create distance one

between all the m sets, because we can label the endpoints of the edges independently of
one another.

To be specific, we can consider any system of disjoint sets Bi ⊆ {0, 1}n−1 of cardinality
|Bi| = m− i (i = 1, ...,m− 1), label the vertices in Bi ×{0} (in anyway) with i + 1, ...,m
and in Bi × {1} with i. The remaining vertices in the n-cube can be labeled by any
number from 1 to m.

Remark 1 Instead of the partition above one can also partition the vertices of the n-cube
in squares (that is 2-cubes). Now take m/2 squares and label a pair of diagonal vertices
for all of them with 1 and 2. The other pairs of diagonal vertices of these squares we label
with (1, 2), (3, 4), ..., (m − 1, m). At this step we have that the sets given by labels 1 and
2 have distance 1 with all other sets. Further, take another (m − 2)/2 squares and label
one pair of diagonal vertices of them with 3 and 4, and label similarly to above the other
diagonal vertices with (3, 4), ..., (m− 1, m). Continuing in such a way one can get a lower
bound m(n) ≥

√
2n+1.

For the general case we try to imitate this process: we partition the n-cube in 2n−k

k-cubes and try to partition the k-cube in two parts. One part will contain a fixed set of
consecutive labels, starting with label l say, distributed in some way, and this will be so
for a certain number of k-cubes, and the other parts will contain all labels l, . . . , m if we
take these k-cubes all together. The trick is to find a way to partition the k-cube in such
a way that this works and essentially produces the only edge between any pair (i, j) of
subsets. As is easy to see for k = 3 this is not possible in general, but it can be done if k
is a power of 2. This leads us to the following bound:

Theorem 1 m(n) ≥
√

2
2

√
n2n.

2 The construction

Now we use the dual form of our problem. For a given number m of subsets we want to
find the minimal dimension n of the unit cube, in which the required partition is possible.
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Consider first the unit cube of dimension k = 2a. Partition this k-cube in two parts,
the words of even weight, and the words of odd weight. Let H be the (extended) Hamming
code of length 2k. So every word in H has even weight, H is a linear code of dimension
k − 1− a and minimum distance 4.

Now partition the set of words of even weight in cosets of H. It follows that every
word of odd weight has a unique neighbor in each even coset of H. Indeed, if some such
word α has at least two neighbors β, γ in some coset, then the Hamming distance between
β and γ is 2, but the minimum distance in the code and all its cosets is 4.

To make the description a little bit easier, we make our construction in two steps. At
the first step we produce for every pair (i, j) of subsets two edges connecting them. At
the second step we improve the construction by producing almost each pair (i, j) once.

Let m = 22a−1 and partition the set {1, ...,m} in 22a−a−1 groups of consecutive num-
bers. Therefore each group is of size 2a, which equals the number of even cosets of H.
Now for the l-th group we take a k-cube and label its points as follows. Every even coset
of H gets its own fixed number from the l-th group. The words of odd weight all get
different labels 1, ...,m. Since the number of such words is exactly m, this is precisely
possible. We now have realized connections between all pairs (i, j) of subsets with i in
the l-th group and j arbitrary. Next we do the same for each l (l = 1, 2, ..., 22a−a−1).

The total number of 2a-cubes we use in this process equals the number of groups,
i.e., 22a−a−1. So this produces a partition of the cube of dimension n = 2a+1 − a − 1 in
m = 22a−1 sets and for m/

√
n2n we get

22a−1√
(2a+1 − (a + 1))22a+1−(a+1)

,

and this tends to 1/2 as a →∞.
What is not so good in this construction is that we produce exactly two edges between

each pair of subsets, while if we like to reach the upper bound
√

n2n, almost each pair of
them should be linked by just one edge. To achieve that, choose m = b · 22a−1. Partition
again the set {1, ...,m} in b hypergroups of size 22a−1 of consecutive numbers. Further,
partition each hypergroup in 22a−a−1 groups of size 2a of consecutive numbers.

Consider the first hypergroup now. For the group with number l (l = 1, ..., 22a−a−1)
we take b subcubes of dimension 2a and label their points as follows. Every even coset of
H gets its own fixed number from the l-th group as above. The words of odd weight of
the p-th subcube (p = 1, ..., b) get different labels from the p-th hypergroup. Now we have
realized connections between pairs (i, j) of subsets with i in the first hypergroup and j
arbitrary.

In the next step we consider the second hypergroup, take for each group of it b − 1
subcubes of dimension 2a, and repeat the procedure in the last paragraph with the only
difference that we forget about the first hypergroup now. So that way we produce edges
of type (i, j) with i in the first hypergroup and j in the second only once.

In general we consider the hypergroup with number q (q = 1, ..., b), take for each group
of it exactly b−q+1 subcubes of dimension 2a and repeat with them the procedure above,
labeling the odd weight vertices of them with numbers from the hypergroup with numbers
q, q + 1, ..., b.

3



In such a way we get the only edge between subsets (i, j) (i < j) with i, j taken
from different hypergroups, and exactly two edges of type (i, j), if i, j belong to the same
hypergroup. Therefore, when the number of hypergroups is large enough, we realized the
only edge between almost all pairs of subsets.

The number of 2a-cubes we used now equals

22a−a−1 · (b + (b− 1) + · · ·+ 1) = b(b + 1)/2 · 22a−a−1.

Let b = 2c− 1, then b(b− 1)/2 < 22c−1. Therefore, we have a partition of the unit cube of
dimension 2a+1−a−1+2c−1 into (2c−1) ·221−a−1 sets, and the ratio m/

√
n2n converges

to
√

2/2 as c →∞, a →∞, c/a → 0.

3 Final remarks

The problem we considered above for the hypercube can be stated for graphs in general.
So for a graph G the problem is to determine m(G) = the maximal number of sets in
a partitioning of the vertex set of G with the property that between two different sets
there always is at least one edge. If e = e(G) is the number of edges of G, then as in
Proposition 1 we have (

m

2

)
≤ e

or roughly m <
√

2e. Now we have shown that for the hypercube this trivial upper bound
is the correct value up to a constant factor, but the question remains how special this
property is. Using standard probabilistic arguments it is not hard to see that

lim inf
m(G)√
2e(G)

= 0,

but it would still be interesting to have an explicit family of graphs Gi, i = 0, 1, 2, . . . with

lim
i→∞

m(Gi)/
√

2e(Gi) = 0. We conjecture that this is true for the Paley graphs.
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