
COMMUNICATION COMPLEXITY IN LATTICESRudolf Ahlswede, Ning Cai, and Ulrich TammDepartment of MathematicsUniversity of BielefeldP.O. Box 100131W-4800 BielefeldGermany1. INTRODUCTIONLet X denote a �nite lattice and let f̂ : X ! Z be a function mapping X into some set Z. Inthis note we determine the communication complexity of functions f : X � X ! Z de�ned byf(x; y) := f̂(x ^ y) for all x; y 2 X : (1)The communication complexity of a function f : X �Y ! Z (where X , Y, and Z are �nite sets),denoted as C(f), is the number of bits that two processors, P1 and P2 say, have to exchange inorder to compute the function value f(x; y), when initially P1 only knows x 2 X and P2 onlyknows y 2 Y.More speci�cally, let Q denote the set of protocols computing f such that �nally both processorsknow the result and let lP (x; y) be the number of bits transmitted for the input (x; y), when theprotocol P 2 Q is used. Then the (worst-case) communication complexity isC(f) := minP2Q max(x;y)2X�Y lP (x; y): (2)A protocol P is a pair of mappings �1 : X � f0; 1g� ! f0; 1g�, �2 : Y � f0; 1g� ! f0; 1g�. So oninput (x; y) the processors, starting with P1, say, alternatively send binary messages N1, N2, N3,etc., until they both know the result. Each message depends on the previous messages and on thecurrent processor's input, hence N1 = �1(x), N2 = �2(y; �1(x)), N3 = �1(x; �1(x)�2(y; �1(x))),etc. . It is required that the set of messages a processor is allowed to send at an arbitrarymoment in the course of the protocol is pre�x-free, i. e., no possible message is the beginning(pre�x) of another one. This property assures that the other processor immediately recognizesthe end of the message and can hence start the transmission of its next message without delay.An upper bound on C(f) for any function f : X � Y ! Z (w. l. o. g. jX j � jYj) is alwaysobtained from the following trivial protocol: P1 transmits all the bits of its input x 2 X . P2 nowis able to compute the function value and returns the result f(x; y) 2 Z. HenceC(f) � dlogjX je + dlogjZje: (3)Throughout this paper the logarithm is always taken to the base 2.The following lower bound is due to Mehlhorn and Schmidt [1]:C(f) � dlog(Xz2Z rank Mz(f))e; (4)where Mz(f) := (mxy)x;y2X is a Boolean matrix with mxy = 1 exactly if f(x; y) = z.2. THE MAIN RESULTSIn the following, we denote by � the underlying order of the lattice X and by � the associatedM�obius function. Further letXz := fx 2 X : there is some x̂ � x with f̂(x̂) = zg: (5)1



Main Theorem: The communication complexity of the function f de�ned as in (1) is boundedfrom above and below as follows:dlog(Xz2Z jfx 2 X : Xx̂�x;f̂(x̂)=z �(x̂; x) 6= 0gj)e � C(f) � dlog(Xz2Z jXzj)e+ 1: (6)If, additionally, Px̂�x;f̂(x̂)=z �(x̂; x) 6= 0 for all possible x 2 X and z 2 Z, i.e., for all x and z forwhich there exists some x̂ � x with f̂(x̂) = z, then upper and lower bound di�er by at most onebit, namely dlog(Xz2Z jXzj)e � C(f) � dlog(Xz2Z jXzj)e + 1: (7)The lower bounds are based on the following theorem, which was discovered by Wilf [2] (see alsoLindstr�om [3]) and �rst used in the study of communication complexity by Lovasz [4]. We shallpresent Wilf's short proof from which the succeeding corollary is immediate, since the incidencematrix of a poset is nonsingular.Theorem (Wilf): Let X be a �nite lattice with order � and M�obius function �. Further, letfax : x 2 Xg be a set of arbitrary numbers. Thendet (ax^y)x;y2X = det diag ( P̂x�x�(x̂; x) � ax̂)x2X = Qx2X( P̂x�x�(x̂; x) � ax̂).Proof: For arbitrary numbers fbx : x 2 Xg consider the matrix �T � diag(bx)x2X � �, where� := (�x̂x)x̂;x2X , with �x̂x = 1 exactly if x̂ � x (�x̂x = 0 else) is the incidence matrix of (X ;�).By the rules for matrix multiplication this is just the matrix ( Px̂�x^y bx̂)x;y2X .Now let ax := P̂x�x bx̂ for all x 2 X . By the M�obius inversion formula then bx = P̂x�x�(x̂; x) � ax̂for all x 2 X and the theorem follows.Corollary: Let X and fax : x 2 Xg be as in the preceding theorem. Thenrank (ax^y)x;y2X = rank diag (X̂x�x�(x̂; x) � ax̂)x2X : (8)Proof of the lower bounds in the Main Theorem:Observe that the function value matrices Mz(f) are just of the form (ax^y)x;y2X withax^y = 1 exactly if f̂(x ^ y) = z:With the above corollary for all z 2 Z it isrankMz(f) = jfx 2 X : Px̂�x;f̂(x̂)=z �(x̂; x) 6= 0gj .The lower bound in (6) follows by application of the Mehlhorn - Schmidt lower bound (4).Proof of the upper bound in the Main Theorem:The upper bound in the Main Theorem is obtained via a natural and useful improvement of thetrivial protocol, which was �rst introduced by Ahlswede and Cai [5]. As the trivial protocol,it consists of two rounds. In the �rst round the processor P1 encodes its input x 2 X . Theprocessor P2 then knows both values x and y and hence is able to compute the result f(x; y),which is returned to P1. However, now the set of possible function values is reduced toF̂ (x) := ff̂(x̂) : x̂ � xg; (9)since the second processor already knows x 2 X .Hence, only dlogjF̂ (x)je bits have to be reserved for the transmission of the result f(x; y) suchthat the �rst processor can assign longer messages (code words) to elements with few predecessors2



in the poset. So, in contrast to the trivial protocol, the messages f�1(x) : x 2 Xg are now ofvariable length. Since the pre�x property has to be guaranteed, Kraft's inequality for pre�xcodes yields a condition, from which the upper bound can be derived.Speci�cally, we require that to each x 2 X there corresponds a message �1(x) 2 f0; 1g� of(variable) length l(x), say, with the property that for all x 2 X the sum l(x)+ dlogjF̂ (x)je takesa �xed value, L say.Kraft's inequality then states that a pre�x code exists, if Px2X 2�l(x) � 1. This is equivalent toPx2X 2�(L�dlogjF̂ (x)je) � 1 and to Xx2X 2dlogjF̂ (x)je�1 � 2L�1: (10)Now, let us choose L := dlog(Xz2Z jXzj)e+ 1: (11)Then (10) holds, sincePx2X 2dlogjF̂ (x)je�1 � Px2X 2logjF̂ (x)j = Px2X jF̂ (x)j = Px2X jff̂(x̂) : x̂ � xgj= Pz2Z jfx 2 X : 9x̂ with f̂(x̂) = z and x̂ � xgj = Pz2Z jXzj � 2L�1by de�nition of Xz and L.Remark: Observe that in the proof of the Main Theorem we do not exploit the property thatX is a lattice. It su�ces to assume that (X ;�) is a poset in which the meet x^ y is well de�nedfor all x; y 2 X .The �rst function of this type studied in this context is the function f1 : X �X ! f0; 1g de�nedby f̂1(x) = 1, exactly if x = xmin, where xmin denotes the minimal element in the lattice X .Hence f1(x; y) = 1, exactly if x ^ y = xmin.Corollary 1: The communication complexity of the function f1 is bounded as follows:dlog(2 � jfx 2 X : �(xmin; x) 6= 0gj � 1)e � C(f1) � dlogjX je + 1: (12)If, additionally �(xmin; x) 6= 0 for all x 2 X , thenC(f1) = dlogjX je + 1: (13)Proof: Observe that Px̂�x;f̂(x̂)=1�(x̂; x) = �(xmin; x) for all x 2 X and that Px̂�x;f̂(x̂)=0�(x̂; x) =��(xmin; x) if x 6= xmin (0 if x = xmin). Hence, the lower bound in (12) holds.Further, X1 = X and X0 = X � fxming. With the additional fact in mind that dlog(2s � 1)e =dlog(2s)e for all positive integers s, it is also clear by (7) that C(f1) � dlogjX je + 1, whenever�(xmin; x) 6= 0 for all x 2 X . The upper bound C(f1) � dlogjX je + 1 follows from the trivialprotocol (3).The communication complexity of the function f1 was �rst determined by Hajnal, Maass, andTuran [6]. They considered a di�erent model, in which communication already stops, when oneprocessor knows the result. So, the bit for the transmission of f1(x; y) will not be sent in thiscase.Hajnal, Maass, and Turan [6] also introduced the M�obius function in the study of lower boundsfor the communication complexity. In this context, Lovasz [4] used the Theorem of Wilf [2]concerning the rank of matrices of the form (ax^y)x;y2X . Bj�orner, Karlander, and Lindstr�om [7]determined C(f1) for two special lattices. 3



Ahlswede and Cai [5] considered the function f2 : X � X ! X , de�ned by f2(x; y) = x ^ y andobtained the following result:Corollary 2: Let I(X ) := f(x̂; x) 2 X 2 : x̂ � xg; (14)then dlogjf(x̂; x) 2 X 2 : �(x̂; x) 6= 0gje � C(f2) � dlogjI(X )je + 1: (15)If, additionally, �(x̂; x) 6= 0 for all (x̂; x) 2 X 2 with x̂ � x, then upper and lower bound di�erby one bit only, namely dlogjI(X )je � C(f2) � dlogI(X )e + 1: (16)Proof: Observe that Px̂�x;f̂2(x̂)=z �(x̂; x) = �(z; x) if z � x. Further, hereXz = I(z) := fx 2 X : z � xg, and since I(X ) = Pz2X I(z), Corollary 2 is an immediateconsequence of the Main Theorem.Especially for the Boolean lattice, Ahlswede and Cai [5] demonstrated that upper and lowerbound coincide (see also the subsequent section).In our last example, we assume that the lattice X is equipped with a rank function r. Recallthat the Whitney numbers W (t) count the elements of rank t in X .We consider the function f3 where f3(x; y) = r(x ^ y) for all x; y 2 X . The following result isan immediate consequence of the Main Theorem.Corollary 3: Let X be a �nite lattice with rank function r and maximum rank n. Thendlogjfx 2 X : Xx̂�x;r(x̂)=t�(x̂; x) 6= 0gje � C(f3) � dlog nXt=0(t+ 1) �W (t)e+ 1: (17)If Px̂�x;r(x̂)=t�(x̂; x) 6= 0 for all x 2 X and t � r(x), thendlog nXt=0(t+ 1) �W (t)e � C(f3) � dlog nXt=0(t+ 1) �W (t)e+ 1: (18)3. COMMUNICATION COMPLEXITY IN GEOMETRIC LATTICESThe condition under which upper and lower bound di�er by at most one bit in the Main Theoremis usually hard to check. However, it is well known that in geometric lattices �(x̂; x) 6= 0 wheneverx̂ � x. This is just the condition required in Corollary 2. Especially, then �(xmin; x) 6= 0 for allx 2 X , which guarantees the coincidence of upper and lower bound in Corollary 1.Now, additionally, we require that in a geometric lattice the M�obius function is of the form�(x̂; x) = (�1)r(x)�r(x̂) � �(x̂; x); where �(x̂; x) > 0 if x̂ � x: (19)For instance, this holds in the Boolean lattice and in the vector space lattice. In this case,obviously Px̂�x;r(x̂)=t�(x̂; x) 6= 0 for all x 2 X and t � r(x), since all the summands have thesame sign. Hence, the condition of Corollary 3 is ful�lled. Let us summarize our �ndingsTheorem 4: In a geometric lattice X with maximum rank nC(f1) = dlogjX je + 1; (20)dlogjI(X )je � C(f2) � dlogjI(X )je + 1: (21)4



If, additionally (19) holds, thendlog nXt=0(t+ 1) �W (t)e � C(f3) � dlog nXt=0(t+ 1) �W (t)e+ 1: (22)Geometric lattices have a further useful property concerning the Whitney numbersW (0); : : : ;W (n), where n is the maximum rank in the lattice. This property was �rst discoveredby Dowling and Wilson [8] (see also [9]):W (0) +W (1) + : : :+W (i) �W (n� i) + : : :+W (n� 1) +W (n) for all i = 0; : : : ; n: (23)We shall use this inequality in the proof of the next theorem, which demonstrates that the lowerbound in (22) di�ers by at most two bits from the upper bound obtained by the trivial protocol.Theorem 5: In a geometric lattice X with maximum rank n, in which (22) holds, alwaysdlogjX j+ log(n+ 2)e � 1 � C(f3) � dlogjX je + dlog(n + 1)e: (24)If, additionally, X is modular, then, compared to the trivial protocol, one bit of transmissioncan be saved for the computation of f3, ifdlogjX j + log(n+ 2)e = dlogjX je + dlog(n+ 1)e � 1: (25)Proof: The upper bound in (24) is the one obtained from the trivial protocol (3). Concerningthe lower bound, observe that(n+ 1) � jX j = nPt=0W (t) � (t+ 1) + nPt=0W (t) � (n� t) = nPt=0W (t) � (t+ 1) + nPt=0 tPi=0W (i)� nPt=0W (t) � (t+ 1) + nPt=0 tPi=0W (n� i) (by (23))� nXt=0W (t) � (t+ 1) + nXt=0W (t) � t = 2 � nXt=0W (t) � (t+ 1)� jX j: (26)We know from (22) thatC(f3) � dlog nPt=0W (t) � (t+ 1)e � dlog (n+2)2 e (by (26)),from which the lower bound in (24) is immediate.Especially for modular lattices, like the Boolean lattice and the vector space lattice, we knowthat W (i) =W (n� i) for all i = 0; : : : ; n (see e. g. [9]) and hence equality holds in (26). So, inthis case, we can also compare the upper bound obtained from the trivial protocol (3) with theone obtained with the Ahlswede - Cai protocol. This proves (25).As an application we now shall study the Boolean lattice (set intersection) and the partitionlattice. For the Boolean lattice the following results have been obtained in [5] and [10] bydi�erent methods.Corollary 6: For the Boolean lattice with maximum rank nC(f2) = dn � log3e; (27)n+ dlog(n+ 1)e � 1 � C(f3) � n+ dlog(n + 1)e: (28)Here C(f3) = ( n+ dlog(n+ 1)e for n = 2m � 1n+ dlog(n+ 1)e � 1 for n = 2m;m � 2;where m is a positive integer. 5



Proof: In order to prove (27), observe that in (7) jXzj = jI(z)j = jfx 2 X : z � xgj = 2n�r(z) isa power of 2 for all z 2 X and hence Kraft's inequality in this case yields Pz2X 2�dn�log3e�logjI(z)j �1 such that upper and lower bound coincide for C(f2).Since jX j = 2n for the Boolean lattice, upper and lower bound in (24) here di�er by at most onebit and (28) is obvious. Further, upper and lower bound coincide for n = 2m � 1. From (25) weknow that for n = 2m;m � 2 the Ahlswede - Cai protocol uses one bit of transmission less thanthe trivial protocol.Corollary 7: For the partition lattice with maximum rank nC(f2) � dlog(Bn+1 �Bn)e+ 1; (29)where Bn denotes the n-th Bell number.Proof: The partition lattice is geometric, hence the M�obius function does not vanish on anyinterval in it. The same property then holds for the partition lattice 'turned upside down' (cf.Lovasz [4], p. 234). In this lattice the Whitney numbers are just the Stirling numbers of thesecond kind, Snt say. By the well known recursion Sn+1t = Snt�1 + t � Snt we then havenPt=0(t+ 1) �W (t) = nPt=0(t+ 1) � Snt+1 = n+1Pt=1 t � Snt = n+1Pt=1(Sn+1t � Snt�1) = Bn+1 �BnNow the right-hand side of (22) gives (29). Here we cannot obtain a lower bound via (22),because (19) does not hold in the partition lattice.REFERENCES1. K. Mehlhorn and E.M. Schmidt, Las Vegas is better than determinism in VLSI and dis-tributed computing, in Proceedings 14th ACM STOC, 330 - 337, 1982.2. H. S. Wilf, Hadamard determinants, M�obius functions, and thechromatic number of a graph,Bull. Am. Math. Soc. 74, 960 - 964, 1968.3. B. Lindstr�om, Determinants on semilattices, Proc. AMS 20, 207 - 208, 1969.4. L. Lovasz, Communication complexity: a survey, in Paths, Flows, and VLSI-Layout, eds.B. Korte, L. Lovasz, H. J. Pr�omel, and A. Schrijver, Springer, 235 - 266, 1990.5. R. Ahlswede and N. Cai, On communication complexity of vector-valued functions, Preprint91-041, SFB 343, Universit�at Bielefeld, submitted to IEEE Trans. Information Theory.6. A. Hajnal, W. Maass, and G. Turan, On the communication complexity of graph properties,in Proceedings 20th ACM STOC, 186 - 191, 19887. A. Bj�orner, J. Karlander, and B. Lindstr�om, Communication complexity of two decisionproblems, Discrete Applied Mathematics 39, 161 - 163, 1992.8. T. Dowling and R. Wilson, Whitney number inequalities for geometric lattices, Proc. AMS47, 504 - 512, 1975.9. M. Aigner, Combinatorial Theory , Springer, 1979.10. U. Tamm, Deterministic communication complexity of set intersection, Preprint 91-077,SFB 343, Universit�at Bielefeld, submitted to Discrete Applied Mathematics.
6


