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1. INTRODUCTION

Consider (V,€), where V is a finite set and & is a system of subsets of V. For the
cartesian products V" = [[}V and " =[] € let m(n) denote the minimal size of a
partition of V" into sets which are elements of £ , if a partition exists at all, otherwise
m(n) is not defined. This is obviously exactly the case if it is so for n =1.

Whereas the packing number p(n) , that is the maximal size of a system of disjoint sets
from £" , and the covering number ¢(n) , that is the minimal number of sets from &"
to cover V" , have been studied in the literature, this seems to be not the case for the
partition number m(n) .

Obviously, ¢(n) < w(n) < p(n), if c¢(n) and w(n) are well-defined. The quantity
lim,, o + logp(n) is Shannon’s zero error capacity ([4]). Whereas it is known only in
very few cases (see [5]), for lim, .o +logc(n) a nice formula exists (see [6], [7]).

The difficulties in analyzing m(n) are similar to those for p(n) . For the case of graphs
with edge set &€ including all loops we prove that 7w(n) = 7(1)" (Theorem 3). This
result is derived from the corresponding result for complete graphs (Theorem 2) with the
help of Gallai’s Lemma in matching theory [9]. More general results concern products of
hypergraphs with non—identical factors. Another interesting quantity is u(n) , the maximal
size of a partition of V" into sets who are elements of £ (Again only hypergraphs (V,€)
with a partition are considered). We call p also the maximal partition number. It behaves
more like the packing number (see example 5). Clearly m(n) < p(n) < p(n) . It seems to
us that an understanding of these partition problems would be a significant contribution to
an understanding of the basic and seemingly simple notion of Cartesian products. Another
partition problem was formulated in [1]. Among the contributions to this problem we refer
to [1], [2], and [3].

2. PRODUCTS OF COMPLETE GRAPHS: FIRST RESULTS
For a complete graph C = {V,€} let & =&U{{v}:v €V} and define the hypergraph
C" ={v",&"}, where V" =T}V and " =[] E*.

We study the partition number 7(n) first for C™ and in later sections extend our results
to hypergraphs, which are products of arbitrary graphs including all loops, however, again.

First we introduce now the map o : ™ — {0,1}™ , where

s" = o(E") = (log | Eul, .., log | En]). (2.1)

As weight of E™ | in short w(E™) , we choose the Hamming weight wg(s™) = > 7 | s .
Notice that the cardinality |E"| equals 2w(F")



Instead of partitions we consider more generally a packing P of C" . We set

P~ {E" € P w(E") = i}, P, = [P 22)

and call {P;}" , the weight distribution of P .
With P we associate the set of shadows Q C Z" , defined by

Q={E"€&":E" CF" forsome F" € P}, (2.3)

and its level sets

Q;={E"€ Q:w(E™) =i},0<i<n. (2.4)

It is convenient to write Q; = |Q;| .

{Qi}", is the weight distribution of Q = shad(P) .
We establish first simple connections between these weight distributions.

Lemma 1. For a packing P of C™
Y ok (;) P = Q. (2.5)
i=k

Proof. Consider any edge E™ with weight w(E™) =i > k . There are exactly 2¢~F (,Z)
edges in &£™ contained in it, which have weight k . Therefore we have always

anzi—’f (2) P; > Q. (2.6)
i=k

Lemma 2. For a packing P of C"

n

Pl=> P=> (-1)fQx. (2.7)
i=0

k=0

Proof. Anedge E™ € P; contributesto > ;_,(—1)¥Q) the amount 22:0(—1)’“21_]“(;)
2-1)7=1.



Lemma 3. For a packing P of C"

n

Py=> (-1)*2*Qy (2.8)

k=0
and if in addition P is a partition and S = |V| is odd, then

n

> (-DF2FQ —1>0. (2.9)

k=0

Proof. Anedge E™ € P; contributes to > . _,(—1)¥2%Q the amount
22:0(—1)’“2]‘321'*’“(;) =2%(1 —1)", which equals 1,if i =0, and equals 0, otherwise.
Therefore (2.8) holds.

Furthermore, if S is odd, then so is S™ and there must be an edge in the partition of
odd size, that is, Py > 1 or, equivalently, by (2.8), (2.9) must hold.

Remark 1: The last two Lemmas can be derived more systematically from Lemma 1 by
Mobius Inversion. Here this machinery can be avoided, but we need it for the more abstract
setting of [11].

3. PRODUCTS OF COMPLETE GRAPHS: THE MAIN RESULTS

We shall exploit now Lemma 3 by applying it to classes of subhypergraphs, which we now
define. For any I C {1,2,...,n} and any specification (v;);cre , where v; € V; , we set

C™(I, (vj)jere) = (HL{@, H]—") ", Fr), (3.1)

where

U {V’i 4 F {EZ- for 1 €1 (3.2)
i = a i = ’
{vi} " {v;} for ielI°.

Clearly, for a partition P of C"™ and Q = shadP the set Q(I, (Uj)je[c) =QNJF" is
a downset and the map

n_>H5“¢<HE>:HEZ. (3.3)

i€l i€l
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is a bijection.

Write Q = ¢(QNF") and let Q; count the members of Q of weight 7. Since Q is
a downset in [[,.;& and its maximal elements form a partition of [],.; Vi, we know

that éo = §™ . This fact and Lemma 3 yield
S+ 3 (~1)F2F Q) ~ 1> 0. (3.4)
k=1

This is the key in the proof of the following important result.

Theorem 1. For a partition P of C* = (V",E™) with V" =1, Vi, Vil =S for
i=1,2,...,n the weight distribution (Qx)i_, of Q = shadP satisfies for 1 <m <n

(:z) S"+ g:l(—l)k (Z:Z) 2" Q) — (Z) S > Q. (3.5)

Proof. Themap v preserves inclusions and weights. The total number of pairs (1, (v;);ere)
with [I| =m equals (")S™ ™ . Finally, each E™ € Q with w(E™) =k is contained in

n
m
n—k

exactly (m_k) sets of the form Q(I, (Uj)je[c) and thus for the sets of weight &

<n_k> Q= > |19k (1, (v))jer)

m —k
(1,(v))5ere ) | T1=m

(3.6)

We have one equation of the form (3.4) for each pair (I, (v;);cz,) . Summation of their
left hand sides gives therefore

n n—m m . kok n—k n n—m
(m)s .S +;(—1)2 (m_k>Qk—(m>S >0

and hence (3.5).
Now comes the harvest.

Theorem 2. For a partition P of C"

Pl > [gr



Proof. Since |E™| < 2", obviously |P|> 2. and for S = 2a even, the result obviously
holds. Let now S =2a+1.

Summing the left hand side expressions in (3.5) for m =1,2,...,n results in
Sn -1 k 2k . n—m
S (m)sm e 3w (n )2 3 ()5 =0
m=1 m=1 k=1 m=1
or in

n n - kok - n—k n n
(2" -1)S8 —I—Z(—l) 2°Qx Z (m—k) — [(S—l—l) - S ] > 0.
k=1 m=k
This is equivalent to
2" [S™+ ) (—1)FQi] — (S+1)" > 0.
k=1
Since Qg = S™ we conclude with Lemma 2

PE(S—I—I)"-Q_”:[g-‘ , if S is odd.

4. NON-IDENTICAL FACTORS: A GENERALIZATION

We consider now hypergraphs C" with vertex sets V" = [['_; V; and edge sets &" =
[1;_, & , where the V,’s are finite sets of not necessarily equal cardinalities S; . The
factors & are such that (V;, &) is a complete graph with all loops included. We shall
write with positive integers ay

Vil = 20 + &1, &¢ € {0,1}. (4.1)
Inspection shows that the sizes of factors do not affect the proofs of Lemmas 1 and 2. Also
(2.8) in Lemma 2 holds and since Py >1,if ¢, =1 for t =1,2,...,n we can generalize
(2.9) to

n

S (—1)k2kQp — [ e > 0. (4.2)

k=0 k=1

Theorem 1 in Section 3 generalizes to



Theorem 1°’. For a partition P of Cc'n

(:D 135 " ki(‘”k@__fg)zk@k - > Il=1IIsizo (4.3)

=1 I:|I|=mi€l jelc

Sketch of proof. Replace in the proof of Theorem 1 S™ by [],.;S:; and inequality

(3.4) by

i€l

IIs:+ i(—l)’%’fék —[J==>o0. (4.4)
k=1

icl il
Theorem 2’. For a partition P of Cc'n
PI=1] [ﬂ : (4.5)
i=1

Proof. Summing the left hand side expressions in (4.3) for m =1,2,...,n results in

ogi(g)ﬁm fj(ij’jﬁ)(—lm’m—fj RICIE

m=1 =1 m=1 k=1 m=1TI:|I|l=mi€l jel°
n n n n — k
SR | EED SIS S EE W I EN I
i=1 k=1 m=k oATicl  jele

Pl=27> T]e [] S (4.6)

I i€l jelc

We evaluate the right hand side expression by introducing J={¢:1</¢<n, g =1}
and [* =J 1. Then

IS IETIE
I el jeI© ICJ jerx jeJ*C

n

— H(Sj +1)- H S; = H(Sj +¢;) and (4.5) follows.

jeJ jeJe j=1



Corollary.

The partition number W(C/") equals H?:1 [%-‘ .

Proof. The partition number of (V;,&;) is [%—‘ . Take a product of optimal partitions

for the factors. This construction gives the lower bound in Theorem 2’.

5. PRODUCTS OF GENERAL GRAPHS
We assume now that the factors G = (V, &) (t=1,2,...,n) are arbitrary finite graphs
with all loops included.

Obviously, we have for the partition number

7(G0) = Vil - v(G), (5.1
where v(G;) is the matching number of G; .

Theorem 3. For the hypergraph product H™ =Gy X -+ X G,
n

m(H") =[] =(G). (5.2)

t=1

Here only the inequality

m(H") > [[ (G (5.3)

is non—trivial. We make use of a well-known result from matching theory.

Gallai’s Lemma. (/9] or [10], page 89)

If a graph G = (V,E) is connected and for all v € V v(G —wv) = v(G), then G is
factor—critical, that is, for all ve€Y G —wv has a perfect matching.



Proof of (5.3).

For every t e {1,2,...,n} we modify G; as follows: we remove any vertex v € V; with
v(G —v) < v(G;) and reiterate this until we obtain a graph G; with v(G; —v) = v(G;)
for all v e V.

Notice that (5.1) insures that

m(Gr) = 7(G7)- (5.4)

Denote the set of connected components of G by {G; @) }j ¢, - Clearly,

m(G5) = m(G"). (5.5)

JjEJt

Moreover, by Gallai’s Lemma each component G, @) has a vertex set vV, () of odd size
and

V(Q:(j)) = (|V:(j)| — 1)2_1 = Oz‘z, say.

Thus,

™(G;)

> (af +1). (5.6)

J
Now realize that for H*" =[]} G;

m(H") = n(H™), (5.7)

because the modifications described above transform a partition of H" into a partition
of H*™ with not more parts.

Finally, we have for the product C" of complete graphs with vertex sets V; @ by
Theorem 2’ that

7 (GrU x o x UMY > (€)= (o + 1) (adr +1). (5.8)
Therefore,
J1€J1,. s Jn€Jn
> Y e+ (o) =]]D (ol +1)
(jl 77777 jn) t=1 jeJt
= HW( ;)= Hw(gt)
t=1 t=1



This and (5.7) imply (5.3).

6. EXAMPLES FOR DEVIATION FROM MULTIPLICATIVE BEHAVIOUR

We give now first two examples of product hypergraphs H x H’ for which the partition
number 7 is not multiplicative in the factors. They are due to K.U. Koschnick.

Example 1.

Vi ={0,1,2,...,6}, & = {E C V : |E| € {1,4}} . Clearly, m(H;) = 4 and the
partition

{{i} x{0,1,2,3} : i =0,1,2} U {{i} x {3,4,5,6} : i = 4,5,6}

U{{0,1,2,3} x {j}: j =4,5,6} U{{3,4,5,6} x {j}: j ={0,1,2}}
U {{3} x {3}} has 13 members. Therefore

7(Hy x i) < 13 < w(Hy)w (M) = 16. (6.1)

Whereas this example seems to be the smallest possible, one can also do better with non—
identical factors:

Hi xH) , where V] ={0,1,2,3,4} and & = {E CVi:|E|€ {1,3}} . Here by a similar
construction 7(H; x H}) < 11, whereas ©(Hy) -w(H)) =4-3=12.

Example 2.

Since m is multiplicative for graphs one may wonder whether it is multiplicative if one
factor is a graph.

Consider G = (V,€) with V={0,1,...,4} and €= {{i,i+1 mod 5} :i=0,1,...,4}U
{i: 0 <i <4}, that is, the pentagon with all loops.

Define ‘H' = (V',€&’) with V' ={1,2,...,14} and & ={ECV':|E| € {1,9}}.

Notice that 7(G) = 3, w(H') = 7 and that the following construction insures 7(G x
H)<20<21=7(G) -n(H'):

{{i} x {j+k mod 14:0 <k <8}:(i,5) € {(0,0),(1,3),(2,6),(3,9), (4,12)} }
U{{1,2} x {j}:5=0,1,2} U{{2,3} x {j} : j =2,3,5}
U{{3,4} x {4} :7=6,7,8} U{{4,0} x {4} : 5 =9,10,11}

U{{0,1} x {5} : j = 12,13,14}
10



isaset of 5+5-3 =20 edges partitioning ¥V x )V’ .

For the orientation of the reader we add three examples, which demonstrate that also the
covering number c , the packing number p and the maximal partition number u are
not multiplicative in the factors.

Example 3. V;={0,1,2}, & ={ECV:|E| =2}

We have

= C(Hg X Hg) 7é C(Hg) . C(Hg) = 4, (62)

because C{{0,1} x {0,1},{0,2} x {0,2},{1,2} x {1,2}} covers V3 x V3 and there is no
covering with 2 edges.

This is the smallest example in terms of the number of vertices.

Remark 2. Quite generally, even in case of non—identical factors H; = (V;, &), t € N,
with max; |£| < oo the asymptotic behaviour of ¢(n) is known ([7]):

n—oo N qEProb(&;) veEE:

-1
1
lim — [ loge(n Zlo ( max min Z 1g(v ) = 0, where Prob(&;) is

the set of all probablhty distributions on 5 , qE is the probability of E under ¢ and
1g is the indicator function of the set E .

Example 4.
Vy=10,1,2,3,4}, & = {{a:,x +1 mod 5} :x € V4} . Here we have

5 =p(Hs x Hy) # p(Ha)p(Ha) = 4. (6.3)

It was shown in [4] that this is the smallest example in the previous sense. Notice that it
is bigger than the previous one.

Example 5. In order to avoid heavy notation we write Hs = (V5,E&5) simply without an
index as H = (V,€) . It is constituted by the 5 vertex sets

Wi ={x;;:5=12,....m},3<m(i=0,1,2,...,4)

and the 6 edge sets

Gi = {(%ij, Ti+1 mods,;) i =1,2,...,m}(i=0,1,2,...,4)

and the 5 edges W;(i =1,2,...,4) . Thus

11



4 4
V= Jw,e=W,... wiu(lG).

A look at the pentagon with vertex set {zo1,x11,%21,%31,241} shows that a partition
of H must contain at least one of the edges W, as a member. On the other hand the
vertices V . W, have a maximal partition of size 2m . Therefore we have shown that
u(H) = 2m +1 . We shall next consider p(H x H) . For this we introduce the superedges

gz* :WféUWi—l—l modS(iZOalv"'74)

in ‘H and the superedges G/ x G (i,i' = 0,1,...,4) in H x H . Whereas G can be
partitioned into m edges, they can be partitioned into m? edges.

Now first of all we divide V x V into 25 parts {W; x Wy :i,i’ =0,1,...,4} . Then we
pack 5 superedges (as in Shannon’s construction) into V x V. They cover 20 parts and
the remaining 5 parts are packed with 5 edges of type W,; x W,/ . Finally we partition the
5 superedges into the edges of H x H . Thus we obtain a desired partition with 5+ 5m?
edges. Notice that u(H x H) >5+5m? > (2m +1)? = u(H)? for m > 3. The smallest
example in this class has 15 vertices.

Remark 3. The construction is based on the pentagon. Its vertices are replaced by sets
of vertices WW; with a numbering. The vertices with the same number in the W,;’s form
a pentagon. Thus we obtained m = [W;| many pentagons. Then we added the W, as
further edges. Finally we used the superedges to mimic the original small edges. We can
make this construction starting with any hypergraph H = (V,€) . If it has the property
p(H)? < p(H x H), then for m large enough our construction gives an associated
hypergraph for which g is not multiplicative.

12
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