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Abstract

We present a conjecture concerning the optimal structure of a subset pair sat-

isfying two dual requirements in a lattice that can be derived as the product of k

finite length chains. The conjecture is proved for k = 2.
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1 Introduction

On an Oberwolfach conference in 1989 the second author presented the following conjec-
ture.

Conjecture: Let A = {Ai}
M1
i=1, B = {Bi}

M2
i=1 be two families of subsets of an n–set such

that the following two conditions hold:

(i) Aj ∪ Br = Ak ∪ Bs ⇒ j = k

(ii) Aj ∩ Br = Ak ∩ Bs ⇒ r = s.

Then M1M2 ≤ 2n.
¥

If true this upper bound is sharp as it is shown by the following simple construction. Fix
an arbitrary C ⊆ [n] and let A = {A : C ⊆ A ⊆ [n]} and B = {B : B ⊆ C}. Then clearly
for every A ∈ A, B ∈ B we have B ⊆ A, i.e., A∪B = A and A∩B = B that assures the
two conditions to be satisfied. On the other hand |A||B| = 2n−|C|2|C| = 2n.

(The problem originally arose from the investigation of codes for so–called write–unidirec-
tional memories. For a description of that model the interested reader is referred to [2].)

We will call (cf. the Definition below) a pair (A,B) satisfying conditions (i) and (ii) a
recovering pair because condition (i) means that from the union of an Ai and a Bi we can
always recover the Ai and condition (ii) is the dual statement meaning the recoverability
of Bi from the intersection.

The above conjecture is still not proved or disproved. After the aforementioned meeting
in Oberwolfach the first author asked what happens if we state the analogous question
in a more general setting, namely, instead of the Boolean lattice we deal with products
of chains. We are back to the original problem if all the chains have length two. In this
note we deal with the “other end” of the problem, namely, when we have two chains of
arbitrary finite length. We show that in this case a statement analogous to the above
conjecture is true.

Before making the above mentioned generalization precise, let us make two remarks on
the Boolean case.

Remark 1: The best upper bound for |A||B| we know about is given by the following
simple argument proposed by Gérard Cohen [1]. Let t = minA∈A |A|. Then by condition
(ii), a t–element subset A ∈ A of [n] intersects every B ∈ B in a different subset implying
|B| ≤ 2t. On the other hand |A| ≤

∑n
i=t

(

n
i

)

and thus |A||B| ≤
∑n

i=0

(

n
i

)

2i = 3n.

Note that this argument works for the relaxed problem when we have only one of the two
conditions. (Because of symmetry it does not matter if it is condition (i) or (ii). Above
we argued with condition (ii).)
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Remark 2: If we drop one of the two conditions, say condition (i), then we can construct
families A and B for which |A||B| > 2n as follows. Let C1, C2, . . . , Cn

2
be disjoint subsets

of [n], each consisting of two elements except possibly the last that has three elements if n

is odd. Now let A = {A : A ∩ Ci 6= ∅ i = 1, 2, . . . , ⌊n
2
⌋}, B = {B : B ∩ Ci = ∅ or Ci ⊆ B

i = 1, 2, . . . , ⌊n
2
⌋}. It is easy to check that B will always be recoverable from A ∩ B and

|A||B| =

{

6n/2 if n is even

6n−3/214 if n is odd
.

2 The Sandglass Conjecture

Now we state our more general conjecture, a special case of which we are going to prove.
We need two definitions.

Definition: Let us be given a lattice L. Two subsets A and B of L form a recovering
pair if for every a, a′, c, c′ ∈ A and b, b′, d, d′ ∈ B the following two conditions hold:

(i) max(a, b) = max(a′, b′) ⇒ a′ = a

(ii) min(c, d) = min(c′, d′) ⇒ d′ = d

Set A is called the upper set and B the lower set of the pair. We denote by r(L) the
maximum possible value of |A||B| for a recovering pair of L, i.e.,

r(L) = max
A,B⊆L

(A,B) is a recov. pair

|A||B|. ⊗

The next definition gives a name to a natural configuration of two subsets of a lattice.

Definition: A pair (A,B) of subsets of a lattice L is said to form a sandglass if there
exists an element c of L that satisfies c ≤ a for every a ∈ A and c ≥ b for every b ∈ B. A
sandglass is full if adding any new element to A or B the new pair will not be a sandglass
any more. ⊗

Note that in a lattice we could equivalently define a sandglass by the property that b ≤ a

holds for every a ∈ A and b ∈ B. (For general partially ordered sets these two possible
definitions would not coincide.)

It is clear that a sandglass always forms a recovering pair. Our conjecture is the following.

(Sandglass) Conjecture: Let L be a lattice that can be derived as the product of
k finite length chains. Then there exists a (full) sandglass (A,B), A,B ⊆ L for which
|A||B| = r(L).

¥

Remark 3: In fact, we do not have an example of any lattice where the analogous
statement is not true. Still, we dare not to conjecture it to be true in general.

The Sandglass Conjecture is trivial for k = 1. We show that it holds for k = 2, too.
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3 The case k = 2

Theorem: Let L be a lattice obtained as the product of two finite length chains. Then
r(L) can be achieved by a sandglass.

First we prove a few lemmas. Lemmas 1, 2 and 2’ are valid for any lattice L.

Lemma 1: If A and B form a recovering pair with lower set B and ∃a ∈ A, b ∈ B with
b ≥ a then there exists a sandglass (A′,B′) with |A′| ≥ |A|, |B′| ≥ |B|.

Proof: It is clear from (i) in the definition of recovering pairs that

|A| ≤ min
b∈B

|{h ∈ L; h ≥ b}|

and similarly from (ii)
|B| ≤ min

a∈A
|{h ∈ L; h ≤ a}|.

If ∃a ∈ A, b ∈ B with b ≥ a then consider the sandglass

A′ = {h ∈ L; h ≥ b}, B′ = {h ∈ L; h ≤ b}.

Since {h ∈ L; h ≤ a} ⊆ B′ by b ≥ a we have |A′| ≥ |A|, |B′| ≥ |B| by the above
inequalities. This proves the lemma.

¥

We call a recovering pair (A,B) canonical, if for no a ∈ A and b ∈ B b ≥ a holds. Those
pairs remain to be analysed.

For the next lemma we have to introduce some further concepts. Consider a recovering
pair (A,B) with lower set B. For each a ∈ A the territory of a is the set

τB(a) = {max(a, b) : b ∈ B}

and similarly the territory of b is

ωA(b) = {min(a, b) : a ∈ A}.

Notice that the two conditions in the definition of recovering pairs is equivalent to

(i’) τB(a) ∩ τB(a′) = ∅ if a, a′ ∈ A and a 6= a′.

(ii’) ωA(b) ∩ ωA(b′) = ∅ if b, b′ ∈ B and b 6= b′.

The peak of the territory of an a ∈ A and a b ∈ B is defined by

tB(a) = max
c∈τB(a)

c and wA(b) = min
d∈ωA(b)

d

respectively.
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Lemma 2: If A and B form a recovering pair (with lower set B) and ∃a0 ∈ A with
tB(a0) ∈ τB(a0) then the set

A+ = {A\a0} ∪ {tB(a0)}

also forms a recovering pair with B.

Proof: For a ∈ A, a 6= a0 the values min(a, b) and max(a, b) do not change if we substitute
a0 by tB(a0) in A (so obtaining A+).

By the definition of tB(a0), max(tB(a0), b) = tB(a0) for every b ∈ B. Since tB(a0) was an
element of τB(a0), it could not be contained in any other τB(a) with a 6= a0, and so (i’) is
satisfied for A+ and B.

Since tB(a0) ≥ b for any b ∈ B, min(tB(a0), b) = b for any b ∈ B. It is obvious that
b ∈ ωA(b′) with b′ 6= b is impossible unless there exists an a ∈ A with a ≥ b. But then
min(a, b) = b, too, i.e., b ∈ ωA(b) ∩ ωA(b′) contradicting (ii’). So if (ii’) was satisfied for
(A,B) then it is so for (A+,B). Thus (A+,B) is a recovering pair.

¥

A similar argument proves

Lemma 2’: If A and B form a recovering pair (with lower set B) and ∃b0 ∈ B with
wA(b0) ∈ ωA(b0) then A and B− = {B\b0} ∪ {wA(b0)} is also a recovering pair.

¥

The following lemma will make use of the special structure of L in the Theorem.

Lemma 3: If L is the product of two finite length chains then for any canonical recovering
pair (A,B) (with lower set B) containing an incomparable pair a, b, a ∈ A, b ∈ B, either
there exists an element a0 ∈ A with the properties a0 6= tB(a0), tB(a0) ∈ τB(a0) or there
exists a b0 ∈ B with the properties b0 6= wA(b0), wA(b0) ∈ ωA(b0).

Proof: Let the elements of L be denoted by (i, j) in the natural way, i.e., i is the
corresponding element of the first and j is that of the second chain defining L. Note that
if two elements, (i, j) and (k, l), are incomparable, then either i < k, j > l or i > k, j < l

holds.

Consider all those elements of A and B for which there are incomparable elements in the
other set, i.e., define the set

D = {a ∈ A : ∃b ∈ B, a and b are incomparable}∪
∪{b ∈ B : ∃a ∈ A, a and b are incomparable}.

Now choose an element (i, j) ∈ D for which the (possibly negative) value of (i − j) is
minimal within D. Denote it by (i0, j0). We claim that this element can take the role
of a0 or b0 depending on whether it is in A of B. Since (i0, j0) is in D, it is clearly not
equal to the peak of its territory, so all we have to prove is that the peak of its territory
is contained in its territory.
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Assume (i0, j0) ∈ A. Consider the elements of B that are incomparable with (i0, j0).
Let (k, l) be an arbitrary one of them. By the choice of (i0, j0) we know that i0 − j0 ≤
k − l. Since (i0, j0) and (k, l) are incomparable this implies k > i0 and l < j0, thus
max((i0, j0), (k, l)) = (k, j0). Since (A,B) is canonical this implies that every element of
τB((i0, j0)) has the form (., j0). This means that τB((i0, j0)) is an ordered subset of L.
Thus it contains its maximum tB((i0, j0)).

Similarly, if (i0, j0) ∈ B then ωA((i0, j0)) consists of elements of the form (i0, .) and so
is an ordered subset of L therefore containing its minimum, wA((i0, j0)). This completes
the proof of the Lemma.

¥

Proof of the Theorem: By Lemma 1 it suffices to consider a canonical recovering
pair (A,B). If it contains incomparable pairs (i.e., an a ∈ A and a b ∈ B that are
incomparable), then by Lemmas 2, 2’ and 3 we can modify these sets step by step in such
a way that the cardinalities do not change and the modified sets form canonical recovering
pairs while the number of incomparable pairs is strictly decreasing at each step. So this
procedure ends with a canonical recovering pair (A′,B′) where |A′| = |A|, |B′| = |B| and
every element of A′ is comparable to every element of B′. Then (A′,B′) is a sandglass
and so we are done.

¥

4 References

[1 ] Cohen, G.: Problem 1 in: Bulletin of the Institute of Mathematics Academia
Sinica, Vol. 16, No. 4, Dec. 1988, page 385.

[2 ] Simonyi, G.: On write–unidirectional memory codes, IEEE Trans. Inform. Theory,
Vol. IT–35 (1989), No. 3, pp. 663–669.

6


