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Abstract

In 1975 Ahlswede and Katona posed the following average distance problem ([1], page
10): For every cardinality a ∈ {1, . . . , 2n} determine subsets A of {0, 1}n with
#A = a , which have minimal average inner Hamming distance. Recently Althöfer
and Sillke gave an exact solution of this problem for the central value a = 2n−1 .

Here we present nearly optimal solutions for a = 2λn with 0 < λ < 1 : Asymptotically
it is not possible to do better than choosing

An =
{

(x1, . . . , xn) |

n
∑

t=1

xt = ⌊αn⌋
}

,

where λ = −α log α − (1 − α) log(1 − α) .

Next we investigate the following more general problem, which occurs for instance in
the construction of good “Write–Efficient–Memories [WEMs]”:

Given any finite set M with an arbitrary cost function d : M × M → R , the
corresponding sum type cost function dn : Mn×Mn → R is defined by dn

(

(x1, . . . , xn) ,

(y1, . . . , yn)
)

=
∑n

i=1 d(xt, yt) . The task is to find sets An of a given cardinality,

which minimize the average inner cost 1
(#An)2

∑

a∈An

∑

a′∈An

dn(a, a′) . We prove that

asymptotically optimal sets can be constructed by using “mixed typical sequences”
with at most two different local configurations. As a non–trivial example we look at
the Hamming distance for M = {1, . . . ,m} with m ≥ 3 .
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1. {0,1}n and the Hamming Distance

For two elements x = (x1, . . . , xn) and y = (y1, . . . , yn) in {0, 1}n the Hamming
distance is defined by

d(x, y) = #{t | xt 6= yt} .

For a set A ⊂ {0, 1}n the average inner distance is defined by

d(A) =
1

(#A)2

∑

x∈A

∑

y∈A

d(x, y) .

Let dn(a) = min
A⊂{0,1}n:

#A=a

d(A) for all a ∈ {0, 1, . . . , 2n} .1

We derive asymptotically tight bounds for dn(a) , when a ≈
(

n
αn

)

with a constant

α ∈ (0, 1
2 ) .

We show in this section

Theorem 1.1:

Let (an)∞n=1 be a sequence of natural numbers with 0 ≤ an ≤ 2n for all n and

lim
n→∞

inf
an

(

n
⌊αn⌋

) > 0 for some constant α ∈ (0, 1
2 ) . Then

lim
n→∞

inf
dn(an)

n
≥ 2α(1 − α) .

The optimality of this bound is readily demonstrated.

The weight of x ∈ {0, 1}n is defined by w(x) = #{t|xt = 1} . The level sets

An =
{

x ∈ {0, 1}n | w(x) = ⌊αn⌋
}

fulfill the cardinality conditions and yield average

distances as desired. Notice also that for a = 2n−1 the subcube — and not the sphere
— is the best configuration ([2]).

Proof of Theorem 1.1:

The key idea in the proof is to generalize the problem by studying probability distributions
on {0, 1}n with a given entropy instead of sets with a given cardinality.

Let P =
(

P (x)
)

x∈{0,1}n
be a probability distribution on {0, 1}n . The average inner

distance of P is defined by

1In this paper d, d, dn etc. are functions related to distances or cost functions. When the same

symbol is used for more than one function, their differences are made clear by the symbols used for

the arguments. As a benefit for this loose notation the reader is not burdened with too many symbols.
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d(P ) =
∑

x∈{0,1}n

∑

y∈{0,1}n

P (x)P (y)d(x, y) .

The entropy of P is given by

H(P ) =
∑

x∈{0,1}n

−P (x) log P (x) .

(In this note we take the logarithm with base 2.)

We have 0 ≤ H(P ) ≤ n for every distribution P on {0, 1}n .

Let

∧

dn(H) = min d(P ),

where the min is taken over all P with H(P ) ≥ H .

Lemma 1.2:

Let (Hn)∞n=1 be a sequence of real numbers with 0 ≤ Hn ≤ n for all n ∈ N and

lim
n→∞

inf
Hn

n
≥ λ for some constant λ ∈ (0, 1] .

Then

lim
n→∞

inf

∧

dn(Hn)

n
≥ 2α(1 − α),

where α ∈ (0, 1
2 ) with λ = h(α) := −α log α − (1 − α) log(1 − α) .

The theorem can be derived from this lemma in the following way.

A set A ⊂ {0, 1}n corresponds in a natural way to the probability distribution PA ,
given by

PA(x) =

{ 1
#A

, if x ∈ A

0, if x /∈ A.

We have
d(A) = d(PA)

and
H(PA) = log #A .

Theorem 1.1 follows from Lemma 1.2, as by Stirling’s formula
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lim
n→∞

inf
an

(

n
⌊αn⌋

) > 0

implies

lim
n→∞

inf
log an

n
≥ h(α) .

It remains to prove the lemma.

Proof of Lemma 1.2:

For a probability distribution P on {0, 1}n we define marginal 1–probabilities

pt =
∑

x∈{0,1}n:
xt=1

P (x) for t = 1, . . . , n .

From the properties of the entropy function [3] it follows that

H(P ) ≤
n

∑

t=1

h(pt) =
n

∑

t=1

−pt log pt − (1 − pt) log(1 − pt), (1.1)

where equality holds iff P is the product of n distributions (1 − pt, pt) on {0, 1} .

For the average inner distance of P we have

d(P ) =
n

∑

t=1

2pt(1 − pt), (1.2)

hence it is completely determined by the pt .

The problem of minimizing d(P ) for a fixed entropy level H(P ) is equivalent to
maximizing H(P ) for a fixed distance level d(P ) . Thus by (1.1) and (1.2) it is
sufficient to solve the following analytical problem. For f(p1, p2, . . . , pn) =

∑n

t=1 h(pt)
find

max
0≤pt≤1 for t=1,...,n

f(p1, . . . , pn)

under the constraint

n
∑

t=1

2pt(1 − pt) = 2α(1 − α)n .















(1.3)

By the symmetry of h(p) and p(1 − p) in p and (1 − p) we may assume without
loss of generality that 0 ≤ pt ≤

1
2 for all t .

The statement of the lemma suggests that the solution of (1.3) is to choose pt = α
for all t . This will be proved below by a simple exchange argument between only two
coordinates:
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Find max
0≤p1,p2≤

1
2

f(p1, p2)

under the constraint g(p1, p2) = 2p1(1 − p1) + 2p2(1 − p2) = c for some constant c ∈ [0, 1] .
(1.4)

Claim: For every constant c ∈ [0, 1] , (1.4) is solved by choosing p1 = p2 .

Proof of the Claim:

A necessary condition for an inner point (p1, p2) ∈ (0, 1
2 )2 to be at least a local

(maximum or minimum) solution of (1.4) is that

kκ(pt) := log(1 − pt) − log pt − κ(1 − 2pt) = 0 for t = 1, 2 ,

where κ ∈ R is a Lagrange multiplier.

For κ ≤ 2 kκ(.) is strictly positive for all p ∈ (0, 1
2 ) . For every κ > 2 there exists

some p∗(κ) ∈ (0, 1
2 ) such that

kκ(p)











< 0, if p∗(κ) < p < 1
2 ,

= 0, if p∗(κ) = p,

> 0, if 0 ≤ p < p∗(κ).

Hence the only candidates for local solutions of (1.4) are inner points (p1, p2) with
p1 = p2 or boundary points which are of the form (0, p) for c ≤ 1

2 , or (p, 1
2 ) for

c ≥ 1
2 .

h′ := dh
dp

is continuous in p in the interval (0, 1
2 ] . As h′(0) = +∞ and h′(p) < +∞

for all p ∈ (0, 1
2 ] , (1.4) has a local minimum at (0, p) . Hence for c ≤ 1

2 (1.4) is solved
by the point (p1, p2) with p1 = p2 .

For c ∈ [ 12 , 1] let pc, qc ∈ [0, 1
2 ] be the real numbers satisfying g(pc, pc) = c =

g(qc,
1
2 ) .

We define

∼

f (c) = f(pc, pc) − f(qc,
1

2
) .

As (pc, pc) and (qc,
1
2 ) are the only candidates for a solution of (1.4), we are done if

∼

f (c) is non–negative for all c ∈ [ 12 , 1] .

∼

f ( 1
2 ) > 0 ,

∼

f (1) = 0 , and
∼

f is continuous in c . If there were some c ∈ ( 1
2 , 1) with

∼

f (c) < 0 , there would have to be another parameter c∗ ∈ ( 1
2 , c) with

∼

f (c∗) = 0 .
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But it can not be that (pc∗ , pc∗) and (qc∗ ,
1
2 ) , ( 1

2 , qc∗) are the only candidates for

min or max solutions of (1.4), if f(pc∗ , pc∗) = f(qc∗ ,
1
2 ) .

This completes the proof of both the claim and the lemma.

¥

Next we extend the analytical method and generalize Theorem 1.1.

2. Arbitrary Sets M and Sum Type Cost Functions

In Section 1 we have investigated the problem of minimizing the average inner distance
of subsets of {0, 1}n of a given cardinality. This is only a special case of the following
more general problem:

Let M = {1, . . . ,m} be a finite set, and d : M × M → R an arbitrary real–
valued cost function. For every n ∈ N the corresponding sum type cost function
dn : Mn × Mn → R is defined by

dn(x, y) =
n

∑

t=1

d(xt, yt)

for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Mn .

For a set A ⊂ Mn the average inner cost are defined by

dn(A) =
1

(#A)2

∑

x∈A

∑

y∈A

dn(x, y),

and for every a ∈ {1, . . . ,mn} we define

dn(a) = min
A⊂Mn:
#A=a

dn(A) .

We are interested in good bounds for the function dn .

These average inner cost play an important role for instance in the design of good
WEM–codes [4].

For the presentation of the general result on asymptotically optimal configurations of
cardinality ≈ 2λn , 0 < λ < log m , we need a notation of typical sequences. Let
P = (P (1), . . . , P (m)) be a probability distribution on M . A tuple (x1, . . . , xn) ∈
Mn is of type P , if #{t | xt = i} = P (i)n for all i ∈ {1, . . . ,m} . Let Tn(P ) =
{x ∈ Mn | x has type P} . #Tn(P ) ≈ 2H(P )n , if Tn(P ) 6= ∅ .
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See for instance the book [3] for a more detailed introduction and discussion of typical
sequences.

Consider a constant ν , 0 ≤ ν ≤ 1 , and two probability distributions P and P ′ on
M . (x1, . . . , xn) ∈ Mn is said to be of the mixed type (νP, (1 − ν)P ′) , if

(x1, . . . , x⌊νn⌋) is of type P

and

(x⌊νn⌋+1, . . . , xn) is of type P ′ .

Let Tn(ν, P, P ′) =
{

x ∈ Mn | x is of the mixed type (νP, (1−ν)P ′)
}

. #Tn(ν, P, P ′) ≈

2H(P )νn+H(P ′)(1−ν)n .

Theorem 2.1:

Fix some finite set M and a cost function d : M × M → R . For every λ , 0 < λ ≤
log m , there exists a mixed type (ν, P, P ′) with νH(P ) + (1 − ν)H(P ′) = λ , such
that

lim sup
n→∞

[

dn(Tn(ν, P, P ′)) − dn(2λn)
]

< +∞ .

In case of limn→∞ dn(2λn) ∈ {±∞} this means

lim
n→∞

dn(Tn(ν, P, P ′))

dn(2λn)
= 1 .

In other words, the sets Tn(ν, P, P ′) have asymptotically minimal average inner cost.

Proof:

As in the proofs of Section 1 we start by generalizing the problem to probability
distributions Q on Mn , defining average inner cost d(Q) and substituting the
cardinality condition by a lower bound on the entropy H(Q) . Given qt(k) =

∑

x:xt=k Q(x)
for all t ∈ {1, . . . , n} , k ∈ M , we have

d(Q) =

n
∑

t=1

[

m
∑

k=1

m
∑

ℓ=1

qt(k)qt(ℓ) d(k, ℓ)

]

and

H(Q) ≤

n
∑

t=1

H(qt(1), . . . , qt(m)) .
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In the last line equality holds iff Q is the product of its n 1–dimensional marginal
distributions. For a fixed λ ∈ [0, log m] , we want to solve the following analytical
optimization problem: Find

min d(Q)

under the constraint
n

∑

t=1

H(qt(1), . . . , qt(m)) ≥ λn,











(2.1)

where each tuple (qt(1), . . . , qt(m)) is a probability distribution on M .

Our goal is to show that (2.1) is solved approximately by a combination of at most two
different distributions P and P ′ on M , taking P for the first ⌊νn⌋ coordinates
and P ′ for the other n−⌊νn⌋ coordinates. Of course P, P ′ , and ν will depend on
λ .

We start with

Lemma 2.2:

Consider real numbers x1, . . . , xn , y1, . . . , yn , and a probability distribution (λ1, . . . , λn)
on N = {1, . . . , n} . Then there exist two elements j, k ∈ {1, . . . , n} and some
µ ∈ [0, 1] , such that

µxj + (1 − µ)xk ≤ x :=

n
∑

t=1

λtxt (2.2)

and

µyj + (1 − µ)yk ≥ y :=
n

∑

t=1

λtyt .

Proof of Lemma 2.2:

We proceed by induction in n . For n = 1 or 2 nothing has to be shown. Now
assume n ≥ 3 and λt > 0 for all t ∈ N .

If there is some t with xt ≤ x and yt ≥ y , we are done by setting j = t and
µ = 1 . If there is some m with xm ≥ x and ym ≤ y , we restrict ourselves to
the reduced set N − {m} (with normalized probabilities λt

1−λm

instead of λt and
∑

t6=m
λt

1−λm

xt ≤ x ,
∑

t6=m
λt

1−λm

yt ≥ y ) and apply induction hypothesis.

It remains to solve the case where for each t either xt ≤ x , yt ≤ y or xt ≥ x ,
yt ≥ y . Let
Nlow =

{

t | xt ≤ x, yt ≤ y
}

, Nhigh =
{

t | xt ≥ x, yt ≥ y
}

,

and assume without loss of generality #Nlow ≤ #Nhigh . This means #Nhigh ≥ 2 , as
n ≥ 3 . Let an arbitrary element m ∈ Nhigh be selected. Now we reduce the problem
to the basic case n = 3 by defining
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∼

λ1 =
∑

t∈Nlow

λt,
∼

λ2 = λm,
∼

λ3 =
∑

t∈Nhigh,
t6=m

λt,

∼
x1 =

∑

t∈Nlow

λt
∼

λ1

xt,
∼
x2 = xm,

∼
x3 =

∑

t∈Nhigh,
t6=m

λt
∼

λ3

xt,

and
∼
y1 =

∑

t∈Nlow

λt
∼

λ1

yt,
∼
yt = ym,

∼
y3 =

∑

t∈Nhigh,
t6=m

λt
∼

λ3

yt .

Obviously

3
∑

t=1

∼

λt
∼
x1 = x,

3
∑

t=1

∼

λt
∼
y1 = y,

and
∼
x1 ≤ x,

∼
y1 ≤ y,

∼
x2 ≥ x,

∼
y2 ≥ y,

∼
x3 ≥ x,

∼
y3 ≥ y .

There is some λ∗ ∈ [0,
∼

λ1] such that

λ∗∼y1 +
∼

λ2
∼
y2 = (λ∗ +

∼

λ2)y

and

(
∼

λ1 − λ∗)
∼
y1 +

∼

λ3
∼
y3 = (

∼

λ1 − λ∗ +
∼

λ3)y .

By the equality on the right side of (2.2) at least one of the following inequalities holds:

λ∗∼x1 +
∼

λ2
∼
x2 ≤ (λ∗ +

∼

λ2)x,

(
∼

λ1 − λ∗)
∼
x1 +

∼

λ3
∼
x3 ≤ (

∼

λ1 − λ∗ +
∼

λ3)x .

So either j = 1, k = 2 , µ = λ∗

λ∗+
∼

λ2

or j = 1, k = 3, µ =
∼

λ1−λ∗

∼

λ1−λ∗+
∼

λ3

is an appropriate

choice.

If originally n ≥ 4 , then we have just reduced the problem to one of the cases with
sets Nlow∪{m} or N −{m} instead of N . For these we apply induction hypothesis.
This completes the proof of Lemma 2.2 .

¥

For the next step consider a compact set K ⊂ R
m , continuous functions f, g : K →

R , and for all n ∈ N the optimization problem
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min
(z1,...,zn)∈Kn

n
∑

t=1

f(zt)

under the constraint

n
∑

t=1

g(zt) ≥ cn,



























(2.3)

where c ∈ R is some fixed constant.
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Lemma 2.3:

There exist
∼
z1,

∼
z2 ∈ K and ν ∈ [0, 1] , all depending on c , such that

⌊νn⌋g(
∼
z1) + (n − ⌊νn⌋)g(

∼
z2) ≥ cn

and

⌊νn⌋f(
∼
z1) + (n − ⌊νn⌋)f(

∼
z2) −

n
∑

t=1

f(z∗t,n) ≤| f(
∼
z1) − f(

∼
z2) |

for all n ∈ N , where (z∗1,n, . . . , z∗n,n) is an optimal solution of (2.3).

Proof:

The optimization problem

min
(z1,z2)∈K2,ν∈[0,1]

[

νf(z1) + (1 − ν)f(z2)
]

under the constraint νg(z1) + (1 − ν)g(z2) ≥ c







(2.4)

has a solution, say (
∼
z1,

∼
z2, ν) .

(2.5)

For the existence of this solution the continuity of f and g is needed. Without loss
of generality assume g(z1) ≤ g(z2) .

Now fix n ∈ N .

Putting xt = f(z∗t,n), yt = g(z∗t,n) , and λt = 1
n

for t = 1, . . . , n , we can apply
Lemma 2.2 and see that there are j, k ∈ {1, . . . , n} and µ ∈ [0, 1] , such that

µn f(z∗j,n) + (1 − µ)n f(z∗k,n) ≤

n
∑

t=1

f(z∗t,n)

and

µn g(z∗j,n) + (1 − µ)n g(z∗k,n) ≥ cn .

Thus by (2.4) and (2.5) we also have

νn f(
∼
z1) + (1 − ν)n f(

∼
z2) ≤

n
∑

t=1

f(z∗t,n)
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and

νn g(
∼
z1) + (1 − ν)n g(

∼
z2) ≥ cn .

This completes the proof of Lemma 2.3 .

¥

Let
∧

dn(H) = min d(Q) , where the min is taken over all probability distributions Q
on Mn with H(Q) ≥ nH .

For a mixed type (ν, P, P ′) we define the corresponding product distribution Qn on
Mn by the marginal probabilities

qt(k) =

{

P (k), if 1 ≤ t ≤ ⌊νn⌋,

P ′(k), if ⌊νn⌋ < t ≤ n,

for all k ∈ M .

Lemma 2.4:

For every λ ∈ [0, log m] there exists a mixed type (ν, P, P ′) , such that

lim sup
n→∞

[

d(Qn) −
∧

dn(λ)
]

≤ max
j,k∈M

d(j, k) − min
j,k∈M

d(j, k) < ∞

and

⌊νn⌋H(P ) + (n − ⌊νn⌋)H(P ′) ≥ λn .

Proof of Lemma 2.4:

For probability distributions P on M we define two functions

f(P ) =

m
∑

j=1

m
∑

k=1

P (j)P (k)d(j, k)

and

g(P ) = H(P ) .

and apply Lemma 2.3 .

Obviously | f(P ) − f(P ′) |≤ max d(j, k) − min d(j, k) for all P, P ′ .

This completes the proof of Lemma 2.4 .
13



¥

Theorem 2.1 follows immediately, as

−c ≤ dn(Tn(ν, P, P ′))− d(Qn) ≤ c for all n ∈ N , where the finite bound c depends
only on m and d : M × M → R .

¥

Theorem 1.1 shows that the special case of a degenerated optimal mixed type (ν, P, P ′)
with ν = 1 occasionally occurs.

Let us now apply Theorem 2.1 to a non–trivial example.

Choose M = {1, 2, 3} and

d(x, y) =

{

0, if x = y,

1, if x 6= y.

Hence dn is the Hamming distance again, but now for alphabet size 3 instead of 2.

The results mentioned below have been found by computer runs. We omit the theoretical
proofs. In the first step we have to understand the case n = 1 .

Fact 2.5:

Fix some λ ∈ [0, log 3] . Among all distributions P on M with H(P ) = λ the
distribution with minimal average inner cost is of the form (q, 1−q

2 , 1−q
2 ) with q ≥

1−q
2 .

Minimizing dn for a given cardinality 2λn is equivalent to maximizing the cardinality
under the condition dn ≤ cn .

The computer results give

Fact 2.6:

Among all subsets of {1, 2, 3}n with average inner cost ≤ cn the following ones have
asymptotically maximal cardinality:

(i) Tn(P ) , where P = (q, 1−q
2 , 1−q

2 ) with q ≥ 1−q
2 and d(P ) = c ,

if 0 ≤ c ≤ 1
2 .

(ii) Tn(ν, P, P ′) , where P = ( 2
3 , 1

6 , 1
6 ) , P ′ = ( 1

3 , 1
3 , 1

3 ) , and νd(P )+(1−ν)d(P ′) =

c, if 1
2 ≤ c ≤ 2

3 .

In the more general case with M = {1, . . . ,m} , m ≥ 3 , and

d(x, y) =

{

0, if x = y

1, if x 6= y,
14



our computer results indicate that the optimal solutions have the following structure.

Observation 2.7:

Fix some λ ∈ [0, log m] .

Among all distributions P on M with H(P ) = λ the one with minimal average
inner cost is of the form (q, 1−q

m−1 , . . . , 1−q
m−1 ) with q ≥ 1−q

m−1 .

Observation 2.8:

For every m ≥ 3 there is some threshold c∗m ∈ (0, m−1
m

) such that among all subsets
of Mn with average inner cost ≤ cn the following ones have asymptotically maximal
cardinality:

(i) Tn(P ) , where P = (q, 1−q
m−1 , . . . , 1−q

m−1 ) with q ≥ 1−q
m−1 and d(P ) = c ,

if 0 ≤ c ≤ c∗m .

(ii) Tn(ν, P, P ′) , where P = (q∗m,
1−q∗

m

m−1 , . . . ,
1−q∗

m

m−1 ) with d(P ) = c∗m , P ′ = ( 1
m

, . . . , 1
m

) ,

and νd(P ) + (1 − ν)d(P ′) = c ,
if c∗m ≤ c ≤ m−1

m
.

Observation 2.9:

m 3 4 5 6 7 10

c∗m 0.5 0.4166.. 0.35 0.3 0.26191.. 2
11 = 0.18
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