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AN APOLOGY TO ALL FRIENDS OF J.L. M.

Among the many discoveries Jim has made until now one observation (Taschkent 1984)
is that R.A. seldom does what most people expect him to do. Here we have made an
attempt to give a contribution which has no relation to anything J.L. M. ever did.

However, it relates to him. It is in the spirit of the following question: “Which travel
time to Ziirich can an absentminded mathematician guarantee, if at any station he
chooses any train in any available direction without going to the same city twice?”

1. INTRODUCTION

Broadcasting refers to the process of message dissemination in a communication net-
work whereby a message, originated by one of the members, is transmitted to all
members of the network.

A communication network is a connected graph G = (V,E), where V is a set of
vertices (members) and F is a set of edges. Transmission of the message from the
originator to all members is said to be broadcasting, if the following conditions hold:

1) Any transmission of information requires a unit of time.

2) During one unit of time every informed vertex (member) can transmit information
to one of its neighboring vertices (members).

The classical model.

For a u € V' we define the broadcast time ¢(u) of vertex u as the minimum number

of time units required to complete broadcasting starting from vertex u . We denote

by t(G) = maéct(u) the broadcast time of graph G . It is easy to see that for any
ue

connected graph G t(G) > [logyn] , where n = |V], since during each time unit
the number of informed vertices can at most be doubled.

A minimal broadcast graph (MBG) is a graph with n vertices, in which a message
can be broadcasted in [log,n]| time units.

The broadcast function [ assigns to n as value ((n) the minimum number of
edges in a MBG on n vertices. Presently exact values of ((n) are known only for
two infinite sets of parameters of MBG’s, namely, for {n =2":m =1,2,3,...} ([1])
and {n =2"™—-2:m =2,3,...} ([2] and independently [3]). Known are also the
exact values of ((n) for some n <63 ([1], [4-7]). We recommend [8] as a survey of
results on classical broadcasting and related problems.

New models.

In this paper we consider three new models of broadcasting, which we call “Messy
broadcasting”. We refer to them as M; , My, and Ms; .

In the classical broadcast model it is tacitly assumed that every node (member) of
the scheme produces the broadcasting in the most clever way. For this it is assumed
either, that there is a leader, who coordinates the actions of all members during the
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whole broadcasting process (which seems to be practivally not realistic) or the members
must have a coordinated set of protocols with respect to any originator, enough storage
space, timing, and they must know the originator and its starting time.

Now we assume that there is no leader, that the state of the whole scheme is secret
for the members, the members do not know the starting time and the originator, and
their protocols are not coordinated.

Moreover, even if the starting time and originator are known, and the scheme is public,
it is possible that the nodes of the scheme are primitive. They have only a simple
memory, which is not sufficient to keep the set of coordinated protocols. Technically it
is much easier to build such a network. It is very rebust and reliable.

In all models M; , M5, and M3 in any unit of time every vertex can receive infor-
mation from several of its neighbors simultaneously, but can transmit only to one of
its neighbors.

Model M1 .

In this model in any unit of time every vertex knows the states of its meighbors, i.e.
which are informed and which are not. We require that in any unit of time every
informed vertex must transmit information to one of its noninformed neighbors.

Model M, .

In this model we require that in any unit of time every informed vertex w must trans-
mit the information to one of those of its neighbors that did not send the information
to u and did not receive it from u before.

Model M3 .

In this model we require that in any unit of time every informed vertex wu must
transmit the information to one of those neighbors that did not receive the information
from u before.

For an originator u € G the sequence of calls o(u) is said to be a strategy for the
model M;(i=1,2,3) if

a) every call in o(u) is not forbidden in model M;(i =1,2,3)

b) after these calls every member of the system got the information.

In broadcast model M; for a vertex u € V' we define Q;(u) to be the set of all
broadcast strategies which start from originator w . For any vertex u € V of the
graph G = (V, E) let t{(u) be the broadcast time of w using strategy o € Qq(u) ,
i.e. tJ(u) is the first moment at which every vertex of the scheme got the information

by strategy o . We set t1(u) = Irslzm(( )t({ (u) .
ocll(u

Actually ¢1(u) is the broadcast time from vertex u in the worst broadcast strategy.
Let t1(G) be the broadcast time of graph G , that is ¢1(G) = maactl(u) . Similarly
u€

for models My, Ms: Qu(u), ta(u), t2(G), Qs(u), ts(u), and t3(G) can be
defined. From these definitions it follows that



Q1 (u) € Qa(u) C Q3(u). (1.1)

For i =1,2,3 we define 7;(n) = min ¢;(G).
G=(V,E)
|V]=n
From (1.1) it follows that ¢1(G) < t3(G) < t3(G) for every connected graph G , and
hence 71(n) < 72(n) < 73(n) for every positive integer n .

In Section 5 we establish upper bounds on 72(n) and 73(n) . Optimal graphs in model
M, are described in Section 6 and a lower bound for 73(n) is derived in Section 7.
For trees we establish even exact results (Section 3 with preparations in Section 2).
Here we can algorithmically determine the broadcast times (Section 4).

2. AUXILIARY RESULTS CONCERNING OPTIMAL TREES

In addition to the notions presented in the Introduction we need the following concepts.

For model M;(i=1,2,3) we define t;(u,v) = nglzazc)tf(u, v) , where t7(u,v) is the
oecll;(u

broadcast time when broadcasting according to strategy o starts from originator u

and the information comes to vertex v .

We denote by p(v) the local degree of vertex v . Suppose now that we are given a
connected tree H . At first we notice that for every vertex u of any tree H the sets
of strategies Q;(u) and Qy(u) (but not Qs3(u) ) are the same. Hence t;(u) = ta(u)
and t1(H) =ty(H) for every tree H . In this part we use the abbreviation #(u) for
t1(u) and for to(u) .

First we consider the following problem. For given broadcast time ¢ construct a tree
with root » having maximal number of vertices ¢(t) , for which ¢(u) =t . This tree
is called an optimal tree with root u and broadcast time ¢ or in short (OTR,u,t) .

Let for fixed broadcast time ¢(u) = t an optimal tree T with root u be con-
structed and let oy be a strategy for which #(u) = t?°(u) = maxt°(u) . Denote by
(o)

uy, Uz, - - ., U the neighbors of root u . By the tree structure we can assume that under
the strategy oo in the unit of time ¢ (¢ =1,...,k) the vertex u sends information
to vertex wu; . After removing (in our minds) from the optimal tree all edges (u,u;)
for i =1,...,k we get trees T; (i =1,...,k). It is clear that max t(u;) = t(ug)

(where for ¢ = 1,...,k t(u;) is the broadcast time from w; in tree T; ), because
otherwise, if lrél'zzxkt(ui) = t(u;) > t(ux) for some 1 < j < k, then by changing
(2

the steps 7 and k in the broadcast strategy oo we would get a strategy of for
which $90 (u) > #°° (1) = max ¢ (u) . This is a contradiction. It is also clear that for
g

all 1=1,2,...,k the trees T; are (OTR,ui,t(ui)).

On the other hand, since the tree T is assumed to be optimal, necessarily

t(ur) =t(ug) =---=t(ug) =t — k. (2.1)



Indeed, if otherwise for some j € {1,...,k} t(u;) < t(ug), then by taking subtree
T} instead of subtree T; we will get a tree T' with ¢(T') = ¢(T') and number of
vertices |T'| > |T| , which is a contradiction. Hence

g(t) = mlgxkg(t —k)+1. (2.2)

The first values of the function g are

It can be shown that for ¢t > 8

g(t)=3-g(t—3)+1. (2.4)
Therefore, using the initial values in (2.3), we have

Lemma 1. (Models My and M> )
For given broadcast time t > 7 the optimal tree with root u , for which t(u) =t , has

g(t) wvertices, where
=3
1133 “1 for t=0 mod 3
g(t) = 747'3%_1 for t=1 mod 3 (2.5)
28375 1 for t=2 mod 3.
Lemma 2.

For any vertices v,a € V. of the tree T = (V,E) t(a,v) <t(v) —p(v)+1.
Moreover, for any v €V there exists an ag € V. with t(ap,v) =1t(v) — p(v) + 1.

Proof: For any v,a € V we consider the unique path v - wy - wy — ... > ws = a
between v and a .

It is clear that t(v,a) = p(v -l—Zp w;)—s, tla,v) = p(a +Zp w;)—s , and hence

=1
t(a,v) = t(v,a) — p(v) + p(a). (2.6)
From the definition of t(v) it follows that
t(v) > t(v,a) + p(a) — 1. (2.7)

Therefore t(a,v) < t(v) —p(v)+1, as claimed. Moreover, since t(v) is the broadcast
time of v , there exist a ug € V and a strategy o such that

t(v) = maxt(v u) = t(v,up) . Obviously p(ug) =1 . Taking a =wup in (2.6) we get
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t(uo,v) = t(v, uo) — p(v) + p(uo) = t(v) — p(v) + 1.

3. CONSTRUCTION OF OPTIMAL TREES

a) Models M; and M, .

Again we use the abbreviation ¢(u) for ¢i(u) and ta(u) .

For given t, we consider the set 7 (ty9) of all connected trees having broadcast time

to . We define f(ty) = Tm7z_1(x : |T|, where |T'| is number of vertices in tree T . We
€T (to

call the tree T to—optimal, if #(T) =ty and |T| = f(to) , and present now our
main tool for determining the quantity f(to) -

Lemma 3. For every ty > 2 there exists an tog—optimal tree T having a center of
symmetry, that is, there is a vertexr vy in T such that after removal of vy the tree T
is decomposed into trees Hq, ..., Hs with equal cardinalities |H,| = |Hs|=--- = |Hy|
and t(wy) = t(we) = --- = t(ws) . Here w; (i=1,...,8) are neighbors of vy and
t(w;) s the broadcast time of H; , when broadcasting starts from root w; . Moreover,
if t, > 5, then every optimal tree has a center of symmetry.

Proof: Suppose T is tg—optimal , that is ¢(T) = to and |T| = f(to) - Let v be
any vertex of T with p(v) > 2.

Let wv1,v2,...,v, be the neighbors of v . If we remove (in mind) the vertex v , then
the tree T decomposes into trees Ty = (Vi,E1), Ty = (Vo, Es),...,Tx = (Vi, Ex)
with roots wv1,...,v, . Let the labelling be such that ¢(v1) < t(vg) < --- < t(vg),
where t¢(v;) is the broadcast time of T; when broadcasting starts from vertex wv; .

Now let us estimate the quantity ¢(a,b) for a € T; and beT; (i# j). We see by
Lemma 2 that

t(a,b) < t(v;) +k +t(v;)

and there exist o' € T; , b’ € T; for which t(a’,0’) =t(v;) + k + t(v;) .
Since t(v1) < t(ve) < --- < t(vg) we obtain

t(T) = max {t(vk_l) + k + t(vg); max t(a, b)} .

a,beETy,

Now we show that
t(’Ul) = t(’U2) == t(’l)k_l) and that |T1| = |T2| == |Tk_1| = |T0| s

where T is the tree with root vg_1 and #(Tp) = t(vk_1) , having a maximal number

of vertices. According to Lemma 1 |Tp| = g(¢(vk—1)) - Indeed, if it is not the case we

can change every tree T;(i =1,...,k—1) to Ty and get the tree 77 with |T7| > |T| .
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But it is easy to verify that ¢(7') = ¢(T') , which contradicts the optimality of tree
T.

Now if t¢(vg) = t(vg—1), then |Tx| < |Tp| and we can change also Tj to Tj
to get tree T" , for which |T| > |T|, ¢(T") = t(T), and v is the center of
symmetry of T . Suppose that ¢(vy) > t(vg—1) and consider the neighbors of
vertex vk : Uy,Ug,...,Ur_1,0 . If we remove (in mind) the vertex wvg , then the
tree T is decomposed into trees Li,...,L._1,L(v) with roots wuy,...,u,—1,v . Let
t(ur) <t(ug) <--- <t(up—1),where t(u;) (i=1,...,7r—1) isthe broadcast time of
L; when broadcasting starts from vertex wu; . Clearly t(v) =k — 1+ t(vg_1) , where
t(v) is the broadcast time of L(v) , when broadcasting starts from vertex wv .

We have to consider two cases: (i) t(v) < t(up—1) and (i) t(v) > t(up—1) .

If we are in case (i), then it can be shown as above that t(u;) = t(uz) = --- =
Hutr2) = £(0) , [L1] = [La] = -+ = [Ly_s| = |L(0)| , and if t(ur_1) = t(u) = -+ =
t(ur—g2) = t(v), then wvg is the center of the tree T . Otherwise we will continue
our procedure by considering the neighbors of w,_; . Hence the principle case is (ii):
t(v) =k —1+t(vg_1) > t(u,_1) .

In this case we have already shown that #(u1) = t(uz) = -+ = t(up—1); |[L1] =
++ = |Ly—1| = |Lo| where Ly is the tree with root w,_q1, t(Lo,ur—1) = t(tr_1),
and having maximal number of vertices equal to g(¢(uy—1)) (see Lemma 1). Hence
t(vg) =7 —1+t(ur—1) and by our assumption 7 — 1+ t(up—1) > t(vg—1) -

It is easy to verify that in this case (ii) we have ¢(T) = t(vg—1) +k+r—1+t(up—1) .

Let us prove that t(vg—1) = t(ur—1) or equivalently that |Ty| = |Lg| . Suppose that
t(vg—1) > t(ur—1) (or equivalently that |Tp| > |Lo| ). Then in tree T we remove the
edge (vg,u;) with the rooted subtree (Lg,u;) and add the new edge (v,v’) with
the rooted subtree (Tp,v’)

Using the restriction 7 — 1 + #(uy—1) > t(vg—1) it is easy to verify that for the
obtained tree T’ we have t(T") = t(T') . However this contradicts the optimality of
T ,since |T'| > |T|. Similarly it can be proved that ¢(vg_1) < t(u,—1) is impossible.
Hence t(vg—1) = t(up—1) = t1, |To| = |Lo| and ¢(T) =2t +k+r—-1, |T| =
(k+r—2)-|Ty| +2.

Now we can transform our tree T into the new one T* as follows: we remove vertex
v with edges (vg,v), (vg,u;) for ¢ =1,...;,7— 1, we add edges (v,u;) for i =
1,...,7—1 and add a new vertex v’ with rooted subtree (7p,v’) and edge (v,v’) .

We verify that ¢(T*) =t(T)=2t; +k+r—1 and

T*| = (k+7r—1)|To| +1>|T|. (3.1)
However, since T is optimal, we should have equality in (3.1), which occurs only when
|To| =1 (or equivalently when t; =0 ), i.e. all vertices v;,u; (i=1,...,k—1;j=
1,...,7—1) are terminal vertices in T . Hence, if |To| =1, we have |T| =k+r and

to=t(T)=k+r—1=|T|—1. However, it is very easy to construct for every to > 5
a tree (not necessary optimal) having more than ¢y + 1 vertices.

Therefore, if ¢y > 5, the assumption (ii) #(v) > t(u,—1) is impossible and hence for
to > 5 every optimal tree has a center of symmetry.
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We verify that for to =3 |T| =4, that for tc =4 |T| =05, and that all connected
trees on 4 or 5 vertices are optimal. Among these optimal trees there are stars (which
have center of symmetry) on 4 or 5 vertices, and this fact completes the proof.

Now let v be the center of symmetry of an ty—optimal tree T, ty > 2. That
is, removing vertex v from 7T the tree T will be decomposed into s subtrees
Ty,...,Ts with roots wvy,...,vs; t(Ty1,v1) = t(Ta,v3) = -+ = t(Ts,vs) = t; and
|Ty| = |T2| = --- = |Ts| = g(t1) , where wv;,...,vs are the neighbors of v and g(¢;)
is described in Lemma, 1.

We verify that ¢(T) =ty =2t; + s and
|T| =3S- g(tl) +1= (t() — 2t1)g(t1) + 1. (32)

Therefore, by optimality of T t; maximizes the quantity

max (to — 2z)g(z) = (to — 2t1)g(t1).
0<z< 2

Using (2.3) and (2.5) it is not difficult to find (details are omitted) an appropriate t;
(and hence value s ) for every fixed broadcast time ty > 2 we have

Theorem 1. (Models M, and M> )
Let T be an optimal tree for which t(T) =1ty and to > 2. Then

(3 for to=2
4 for to =3
fto) =[T|= 5 for to=4
7 for to=5
L9 for to=6

and for to > 7

f(to) = |T| {5 g(t02_5)+17 if to=1 mod 2
0) — B 69(t02—6)—|—1, th050m0d2

Using Theorem 1 and (2.5) the following result can be proved (details are omitted).

Corollary 1. For large t,

to

= -1 T| 4+ 0(1) ~ 3.7851 T|.
log, 3 0g2| |+ () 0g2| |



b) Model M3 .

Since the optimal trees in models Ms and Mj are similar (but not the same!) we
represent only the results.

We have to calculate now the quantity g¢'(to) , which as in case of model M, is
defined to be the cardinality of optimal tree H with root w , that is t3(u, H) = tg
and for any tree H' with t3(u,H') = to it follows that |H| > |H’|. The initial
values of g¢'(to) are ¢'(1) =2, ¢'(2) =3, ¢'3) =4, ¢'(4) =5, ¢(5) =7,
9'(6) = 10, ¢'(7) = 13, ¢'(8) = 17, ¢'(9) = 22, ¢'(10) = 31, g'(11) = 41,
g'(12) =53, ¢g'(13) =69, ¢'(14) =94, ¢'(15) =125, ¢'(16) = 165, ¢'(17) = 213,
g'(18) = 283 .

Lemma 1°. (Model M3 ) For ty > 18 we have

r tg—10
M4 > =1 if to=0 mod5
M
4 5 =1 if ty=1 mod 5
, tg—2
g(to) = § W41 4f 4,=2 mod 5
tg—18
8504 5 =1 if ty=3 mod5
tg—14
\ 283'4%_1, if to=4 mod?5 .

Lemma 3’. (Model M3 ) For every ty > 2 every optimal tree has a center of sym-
metry.

Remark: The difference between Lemma 3 and 3’ is the following: in the model M,
for to =3 and ty =4 there are trees which are optimal but do not have a center of
symmetry, in model M3 there are no such exceptions.

Lemma 2 can be repeated for the model Mj .

Theorem 1°. (Model M3 ) Let H be a tyo—optimal tree and to > 18 . Then

| {8-g'(%)+1, if to=1 mod 2
B 7-g’(%)+1, if to=0 mod 2,

where g’ is the quantity described in Lemma 1’.
Corollary 1°. (Model M3 ) For large to to~5-logy |H| .

At the end of this paragraph we discuss the structures of optimal trees in models M5
and M3 .

Let T and H be optimal trees in models M2 and M3 , respectively, and let t5(T') =
ts(H) =tp and let tp be large. From Lemmas 3 and 3’ it follows:



In T and H there are centers of symmetry v € T and uw € H . Now for g =1
mod 2 we have p(v) =5, p(u) =8 and for tp = 0 mod 2 we have p(v) = 6,

p(u) =7 . The distance from v to every terminal point in the tree T is of order £
and the distance from u to every terminal point in the tree H is of order % .

It can be shown, that every vertex v’ € T with d(v,v') < 2 —3 (d(v,v') means

distance between v and v’ ), has local degree p(v') =4 , and for every u' € H with
d(u,v') <8 —6, pu)=5.

4. AN ALGORITHM FOR DETERMINING THE BROADCAST TIME OF A TREE

In this section we present an algorithm for determination of the broadcast time of any
given tree.

a) Models M; and M, .

Let us have to find the broadcast time ¢(u) of vertex u intree T = (V, E) . Suppose
vertex u has neighbors wq,...,ur , which have the broadcast times t(uy),...,#t(ug)
in trees T; = (V;, E;) with roots u;(i =1,...,k) , respectively.

It is clear that the broadcast time of vertex w is t(u) = lrggzxkt(ui) +k.
_7’_
Our algorithm is based on this fact.

The algorithm:

Step 1: Label the terminal vertices of tree T with 0, that is, if p(v) = 1, then
L(v)=0.

Step 2: For all vertices v (v has no label), if p(v) =k and all £ — 1 neighbors

v1,...,0k_1 of v except vy are labeled, then we label the vertex v with £(v) =
max f(v;) +k—1.
1<i<k—1

Step 3: If all neighbors wvy,...,v; of the vertex v are labeled ( v has no label), then
we label vertex v with £(v) = max L(v;)) + k.

Step 4: The broadcast time of vertex v (which got the label in step 3) equals its
label: t(v) = £(v) .

Step 5: If every v € T has £(v) go to step 7. If v is neighbor of v and the
broadcast time t(v) of vertex v is known, but ¢(v') is not known, then cancel the
labels £(v) =t(v) and £(v') .

Step 6: If p(v) =k and v has neighbors wvy,vs,...,v5_1,v" , then we label vertex
v with £(v) = max £(v;) +k—1.Go to step 3.

1<i<k—1
Step 7: Stop.

It can be verified (details are omitted) that this algorithm assigns to every vertex its
broadcast time.
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b) Model M3 .

A similar algorithm can be designed and we leave it to the reader.

5. AN UPPER BOUND FOR T73(n) AND T73(n)

Lemma 4. For any connected graph G = (V, E) with diameter d and p(G) < k
we have

(a) t2(G) <d(k—1)+1 (b) t3(G) < dk .

Proof:
(a) We have to prove that in model My t(v,u) <d(k—1)+1 for any v,ue V.

Let v - wy — wy — ... = ws_1 — u be the shortest path from v to w . Since
p(v) <k, plw;)) <k for i=1,...,5—1, after at most k units of time the vertex
wy will be informed, after at most 2k —1 units of time the information comes to ws
etc. and after at most s(k— 1)+ 1 units of time the information comes to vertex w .

Since the graph G has diameter d we have s < d . Therefore t(v,u) <d(k—1)+1
for any v,ueV

(b) The proof is similar.

We need the following result due to Bollobas and de la Vega [9].

Theorem [9]. Suppose € >0 and k > 3 are fired. Then if d is sufficiently large
there exists a graph G = (V, E) with diameter d and p(G) <k for which

S 1-—e¢

~ 2kdlog,(k — 1)

Vi=n - (k—1)%1L,

Actually for every k>3 and large d we have
logon > (d — 1) logy(k — 1) — 0(log d).

Using (a) of Lemma 4 and Theorem [9] we conclude that for any fixed & > 3 and
sufficiently large d there exists a graph G = (V,E), p(G) < k , with diameter d ,
|V| =n , and broadcast time

t2(G) < k1

- - .] .
= logy(k—1) 2"

We verify that min 3~ 1.89 and that the minimum is assumed for

|
k>3 log, (k—1) log, 3
k=4.

Similarly, using Lemma 4 (b) and again Theorem [9] we have that t3(G) < bgﬂ% logyn

min ﬁ = 2,5, and that the minimum is assumed for k=15 .
We summarize our findings.
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Theorem 2. For sufficiently large n

(a) T2(n) < 1.89log,n (b) 73(n) <2,5-log,n .

6. SOME OPTIMAL GRAPHS (MODEL M )

In this Section we present for broadcast model M; some graphs on n vertices, where
n < 10 and n = 14 , with minimum possible broadcast time, that is, for these graphs

n(n) = t:1(G), G = (V,E), |V| =n.

For 4 < n <8 the optimal graphs are cycles C),, .

Denote their vertex set by V* = {0,1,...,n — 1} and their edge set by E; . For
n =10 71(10) = 4 and the optimal graph is the well-known Peterson graph G =
({0,1,...,4}u{0,1,..., 4}, E} UE,U{{i,7'} : 1 =0,1,...,4}}) , where E} =
{{0’,2’},{2’,4’},{4’,1’},{1’,3’},{3’,0'}} .

For n =9 m7(9) =4 and the optimal graph is obtained from Peterson’s graph by
removing one vertex with its edges.

For n =14 7(14) =5 and the optimal graph is
G= (V1*47 ET4 U {{Oa 5}7 {13 10}7 {23 7}7 {37 12}a {47 9}3 {67 11}a {8a 13}})

It is necessary to note that these graphs — except for the graphs on 9 and 10 vertices
— are optimal even for broadcast model M, .

7. A LOWER BOUND FOR T73(n)

Let G = (V,E) be a connected graph for which t3(G) =ty , that is to = t3(G) =

max max t3(u). We take an arbitrary originator v € V' and consider the following
u€V o€Qs(u)

strategy oo € Q(v) .

In any unit of time ¢', ¢’ € {1,2,...,tg — 1} let N(¥') = Ny(¥') U Na(t') be the set
of informed vertices after ¢’ units of time, where N, is the set of “new” informed
vertices, that is Ny is the set of those vertices of N which were not informed after
t" — 1 units of time. It means that every vertex u; € No (i = 1,...,|Ng|) in the
t'~th moment received the information from some subsets V; C Ny (i=1,...,|Na|),
ViNV; = @ . Then the strategy oo is the following: in the (¢ + 1)-th unit of time
every u; € Ny, (i =1,...,|Na|) sends the information back to anyone vertex from
subset V;, (i=1,...,|Nay|).

Hence, using the strategy og , after ¢’ + 1 units of time the cardinality of the set of
informed vertices could increase at most by |Nj|. So, if we denote by n(k) (k =

12



2,...,t) the cardinality of the set of informed vertices in the k-th unit of time, then
we have
V| <n(k) <n(k—1)+n(k—2).

From here for ¢; we have

1++5
2

to
1
< <c- > ~ 1. .
[V <n(ty) <c ( ) or tg> o, 1_|_2\/g log, |V| ~ 1.441og |V|

Theorem 3. (Model M3 ) 713(n) > 1.44-logyn .
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