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1. Introduction and results!

For a finite (or infinite) alphabet X, = {1,2,...,a} we consider the set of words of
length n

Xh={2" = (x1,29,...,2n) 12t € Xo for t=1,2,...,n} (1.1)

and also its subset W2 of words without repitition of letters, that is,

Wy ={a" = (z1,22,...,Tn) |zt € Xo and zs # x; for s #t} . (1.2)

We describe now an extremal problem, which was mentioned by Mullin at the meeting
Designs and Codes, Oberwolfach April 1990, and was said to be of interest to computer
scientists.

The words z™ and y™ are in “good relation”, if for some s #t¢ x5 =y, . For this
relation we write z™ N\, y" .

The set F' C X7 is good, if for all z",y" € F z" /N, y" .

Denoting the family of all good sets in W2 by F7} the quantity of interest is

7 = max{|F| : F € F"} . (1.3)

«

Generally speaking the determination of this number constitutes an extremal problem
in a (growing) class of similar problems whose prototype or historically first candidate
is the intersection problem of [1].

Clearly, it is certainly also meaningful to study G7 , the family of all good sets in X[ ,
and the quantity

gn =max{|E|: E€ gL} . (1.4)

The functions f7; and g]; arerather complex. We present here results for the first two
non—trivial configurations of the parameters « and n , namely the cases n =a — 1
and n = 3. Also, we have a limit theorem for « tending to infinity.

Specifically, we have the following results.

Theorem 1.
—1_1 -1 1
f&=35IWe= | = 3al.

Moreover, we determine all optimal configurations.

T After these results were obtained we received a preprint “Sets of properly separated permutations”
by R.C. Mullin, D.R. Stinson, and W.D. Wallis. The relation to our work is this:

Our Theorem 2 and their Theorem 2.2 are identical. Our Theorem 1 goes beyond their Theorem 1.1,
because we determine all optimal configurations. Otherwise the papers have no overlap. In particular,
our Theorems 3 and 4 are new.



Theorem 2. 2

B=fR=f2=12 for a>4.

Theorem 3.

93 =3a+7 for 3<a<oco.

Theorem 4.

limg 00 % = (5)(n—2)! or, equivalently, g% = a2 ((3)+o0(1)) as a— oo .

n—2

2. Proof of Theorem 13

We present first some elementary facts in Lemma 1 and a well known fact in Lemma
2. Then we introduce the candidates for optimal configurations and establish some
properties in Lemma 3. Then comes the proof of Theorem 1.

Lemma 1.
(i) fo<f" for n<n <a
(i) fr<fn<fn for a<d
(i) f§=[Wgl=dl
(iv) f2=3 for 3<a<+o00.
Proof: Since (i)—(iii) are obviously true, we have to verify only (iv). For F € F2 with

|E| > 3 necessarily for distinct letters a,b,c ab,bc € E . In good relation with these
two words is only the word ca .

Lemma 2. For 7,79 € %, , the group of permutations on {1,2,...,n} , there is
a sequence of tramspositions mwi,...,my with ™ = w0 ---0m o Ty . Moreover, if
TN =T}, 0---0omjoTg=mo0---0om o7y, then t=¢t mod2.

With every z®~! € W2 1 we associate next a partition {M(z>~1,0), M(z>~1,1)}
of W21 into two sets. They are both in F2~! and have the cardinalities f¢=!.
Moreover, we show that they are the only optimal configurations.

Definition of M (z®~',7) and some properties

It is convenient to introduce first

B(z"™) ={z : for some t z; = z}, (2.1)

2Since our proof is rather technical and since there is the duplication mentioned in footnote 1, we
omitted it here. However, it can be found in [3].

3 A significant simplification of this proof was provided by Gyula Katona and Vu Ha Van (Personal
Communication May 1992).
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the set of letters in z™ . For n=a—1 and z*' e W21 |B(z* !)]=a—1 and
apparently either

B(z*7') = B(y*™") or [B(z*") A B(y* )| =2 (2.2)
for all z*7 1 y2~1 € W21 . In the second case we denote by x> 1/y*~! the word
1 with B(z'*!) = B(y* 1), obtained by changing exactly one component of

xa—l

For the definition of M (z*~!,i) we need amap p: W2 ! x W21 — {0,1} defined
as follows:

If B(z®* ') = B(y®*!) and if there is a sequence of transpositions mq,...,m with

r* l=mo0---om(y® 1), then set

w1 y* )=t mod 2,

and if |B(z®* 1) A B(y*!)| = 2, then set

pe® Yy = p(* Yy Ty ) +1 mod 2.
Lemma 2 guarantees that p is well-defined.

Also, immediately from the definition we conclude that for all z*~ ! y*~1 € W1

’u(ma—ljya—l) — M(ya—l,xa—l) . (2_3)

Finally we define for 7! € W21 and i=0,1
M(z* 1) = {21 (@22 ) =i} . (2.4)

Lemma 3. For all x> ' e W21

(i) M(z* 00N M(z*11) =@

(i) M(z>',0)UM(z*1,1) = We!
(iii) The partition {M(z*=1,0), M(z®~',1)} is independent of x>~ .
(iv) |M(z*1,i)|=1a! for i=0,1.

Proof: The disjointness holds, because for 2*~! € Wo=1 p(z* 1 2271) is well-
defined, that is, takes one value. Since it takes a value from {0,1} also (ii) holds.

In order to verify (iii), we establish first the identity

p(z®™h 227 = p(hy* ) + p(y* 2% mod 2 (2:5)
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for all z® 1 y*~1 and 2"l e Wo 1.

In the light of (2.3) and since we add mod 2 the identity holding for z*~! yo-!
and z%~! in the order specified in (2.5) implies that it also holds in any other order.
We are therefore left with the 2 cases

B(z*~) = B(y*™!) = B(z""") and B*1), By # B(z")

In the first case just use the product of the two products of transpositions. In the
second case we have from the identity in the first case

M(:L_a—l/za—l’ Za—l) M(xa—l/za—l’ ya—l/za—l) + u(ya—l/za—17 Za—l) mod 2

and by adding a 1 on both sides
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p(zt 227ty 207 = (et o) (2.6)

and thus (2.5). Finally, if B(z*~!) # B(y*~') then B(z*™ ') = X,~{z}, B(y*™1) =
Xo~{y} and B(z*7') = X, {z}.

For letter 7 € X, let a; be its position in z*~ 1, let b; be its position in y*~ !,
let a; be its position in z*~1/z*~!  and let b be its position in y*~1/z*"1 . (It is
assumed that ¢ occurs in the respective words.)

Let now 7¢ lga—1l/ya—l =ya-1

This transformation changes the position of y in z®~! to that of z in ¥~ !. We
indicate this by a, — b; , and similarly a, — b, .
Now verify a, = ay,a; = a,, by, =b,,b, = b, .

Yy zZyVx

1

Furthermore, 7®~' causes on z®'/2*~' a; — b, and aj — b . We get

Ty O Ta—l wa—l/za—l — ya—l/za—l’ if Ty
exchanges x and y.

We have shown

(xa—l, ya—l) = ,u(ma_l/z"‘_l,ya_l) + 1
,u(a:a_l/za_l, y"‘_l/z"‘_l) +14+1 mod?2

=



and therefore again (2.6).

Since p(z®~1,2z*71) =0 and by (2.3) and (2.5) we have an equivalence relation

by A () =0. (2.7)

Since for y*~1, 2471 € M(2*71,0) y* ! ~ 2271 and also for y*~ 1,297t € M(2*11)
y*~ ! ~ 2®71 (iii) holds. Furthermore for all ' € W21 |M(z*71,0)| = |[M (2> 1,1)| =
$|IW2~t = la!, because changing the last component of z*~! € W2~ ! transforms

M (z*1i) into M(z* ', (i+1) mod 2).

We give now the complete technical formulation of the Theorem
Theorem 1. . .
fet= o we = ! (28)

For any z> ! e Wa~1

M(z>~1,0), M(z*"11) € Fol (2.9)

and for every F € F2~1 with |F|= fo~1
Fe{M(*"0),Mz*"1)} .

Proof: It is convenient to use the language of graphs. We define Wo=! = (W2=1¢),
where (221 y®~1) € £, that is, vertices z®~! and y*~! are connected, exactly if
zo@~1 M _y*~ !, that is, the vertices are not in good relation.

Now F € Fo~! iff F isan independent set of vertices in W21 . Therefore fo ! =
P»(W2™1) | the independence number of W2~! . We show first

fg_l < %a! :

For distinct positions s, € {1,2,...,a—1} we define a partition P(s,t) of W 1.
This definition can be understood from the example P(a — 2,0 — 1) = {P(z*73) :
23 e W3} with P(z*73) = {z°3yz:y,2 € Xo N\ B(z*73),y # 2} .

Since there are 6 words yz(y # z) with y,z from a 3 elements set, we have |P(z%3)| =
6 . Actually the subgraph of W™ ! induced on P(z®3) is a sexangle with the edges

{zy,zz}, {zz,y2}, {yz,yx}, {yz,zx}, {zx,zy}, {zy,zy} . It has independence
number 3 (see also Lemma 1(iv)).

Therefore for any independent set of vertices F', |FN P(z*3)| <3, and thus

1 1
F| = FNPz*3) < =[We Tl = Zal .
Fl= Y IFNPE9)| < 5 We™t| = sa

ro—3



&> Zal:

We actually show that M (z>"1,i) € F2~!. Since the equation p(z* 1, y>~1) =0
mod 2 defines an equivalence relation, it suffices to show that it implies >~ 1 "\,
ya—l .

(The converse implication is not true!)

If B(z®~') = B(y*~!) this is obvious and otherwise we have

p(z® gLy =1 mod 2. (2.10)

If now z¢ ! and y®~! don’t have a letter in different positions, then they agree in
all but one position, where they differ: z®=1 /< y@~! iff exists ¢ with

e #y; and zz =y, forall s#t. (2.11)
This contradicts (2.10).

Uniqueness:

We have just seen that the graph W21 is bipartite with vertex partition {M (z*~10),

M (z>1, 1)} . The graph is also connected as can be seen inductively in « by using
(2.11). If W2~ is connected, then there is a path between z®~2 and y*~2 and
also between az® 2 and ay®?.If we want to connect az® 2 and yy®* ? with
y ¢ B(y®~?), then connect ar®*2 with ay® ? and this in turn with yy*=2.

Let now F € F2~! be maximal. If we can show that

2t e Fzot Ayt R 2271 implies 227 € F (2.12)

then M(z*!,0) C F ,because by the structure of the graph the vertices in M (z>~1,0)
are connected with z®~1 by paths of even length and by (2.12) they are all in F . By
maximilaty of M (z®!,0) necessarily F = M(z*~1,0) . To see that (2.12) holds we
apply (2.11) to the hypotheses in (2.12). They say that for some 4,5 € {1,...,a—1},
t# 7, ;i #Yy; and xp =y forall kK #4; y; #2z; and y, = 2, forall £ # 5.
This means that !,y !, and 2! are in the same sexangle of the partition
P(i,7) and that (z* 1,9*71) and (y*1,2%71) are two of its neighbooring edges.
Since z®~! € F, only if also z2*~! € F F has a chance to contain 3 vertices of
P(i,j) , which it has to do in order to be maximal!

3. Proof of Theorem 3

Here and in the last section we use the following notation.

For aset F C F2 and A C X, we define for ¢t =1,2,3

Fly = {(z1,22,73) € F: 3, € A} (3.1)
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A
and the set F'} as the set of pairs obtained from the triples in F% by omitting the
t’th letter. We also use the abbreviation

B(Fi) = |J B, (3.2)
y2€F,§
that is, the set of all letters occuring.

Again we begin with some elementary facts.

Lemma 4.

(i) g™ <g™ for n<n'

(i) gr < gl <gb for a<of
(i) fo < gq

(v) g2 =3 for 3<a< oo and for G € G2 with |G| = 3 either G € F2 or
G ={(a,a),(a,b),(c,a)} for some a+#b,c.

(v) g5 =2"—-1
(vi) g3 =16

Proof: (i) — (iv) are trivial. Since {0,0,...,0) <\ (1,1,...,1) and since XJ \
{(1,1,...,1)} € GF, (v) follows.

For the verification of (vi) use that at most one word from each of the following sets
can be used in G € g§ :

{111, 222,333}, {112, 332}, {121, 323}, {211, 233}, {113, 223}, {131,232}, {211, 233} ,
{221,331}, {212, 313}, {122, 133}
and that f3=31=6.

We are left with all but the first case in Theorem 3.
We present first a set G(a) € G3 of cardinality 3« + 7 , namely,

{(1,2,3),(1,4,2),(1,3,4),(2,1,3),(3,1,4), (4,1,2),(2,3,1),(3,4,1), (4,2, 1),
(LL,D)}U{(1,1,z): z € Xo N {1}U{(1,2,1) : 2 € X N {1}}U{(2,1,1) =2 € Xo ~ {1}}.

It remains to be seen that there is no larger set in G2 |, that is, that
go<3a+7 4<a<oo (3.3)

Proof: We first partition X2 \ W2 into 2 parts, say Y> and Y3, such that

Y,={a®: |{t: 2y =2}/ = s for some z € B(z?)} . (3.4)

Consider now G € G2 for a >4 and define
8



Lo(G) = {B(z*): 2 € YanG} . (3.5)
This is an Erdos-Ko-Rado family ([1]) of sets with 2 elements.

Case 1: There is a common point, say 1, in all S € L3(G). Let F = GNW2 |
FOoOFR ={13cF:1€B(*},andlet Ff=F\ F; .

Moreover, let

U={(1,1,2):2e€ X,~{1}}U{(1,2,1) 1 v € Xo~{1}}U{(z,1,1) : z € Xo~{1}} C
53 ,kﬁ

Vi={l,z,2):2€ X, ~{1}}, Va={(z,1,2) : 2 € X, ~{1}}, V5={(z,2,1):
€ Xo~{1}},andlet V= _,V,CYs.

By these definitions

GNY,=(GNU)U(GNV). (3.6)
Clearly
3
IRu@nV) =[] Fiyu(inG) <9, (3.7)
t=1

because by (IV) in Lemma 4 \Ffl} U(V;NG)| < g2 =3.Forall 22 € W2 and
S Cc W2 define now

M@®) ={y* eU:y* ™}, M(S) = | M) . (3.8)

z3eS

Then M ((z1,72,73)) = {(1,1,2) : # € Xoq \ {L,z1,22}} U{(1,2,1) : z € X4 \
{1, 21,23} } U{(z,1,1) : z € Xo \ {1, 72, 73}

In particular for (z1,z2,z3) € Ff
(M ((z1,z2,23))| = 3(a — 3) . (3.9)
Since obviously |GNV;| <1, we also have

GNV|<3, (3.10)

and finally we state the inequality
GNYs| <1, (3.11)

which always holds.

We are now prepared to complete the proof in this case through 2 subcases.
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Subcase la: I =0 .

|G| = |FLU(GNY2)U(GNY3)| < |[FLU(GNV)|+|U|+|GNYs|, (by (3.6)) and since
Ul =3(a—1) by (3.7) and (3.11) |G| <9+ 3(a—1)+1=3a+7.

Subcase 1b: F{ # @ .

We start with

GNUCUNM(FY) cUN M(z®) for 2* € Ff . (3.12)

This, (3.6), (3.9), and (3.10) imply

IGN Y| < U] —3(a—3)+3=3a—1)—3(@-3)+3=9. (3.13)

We know from Theorem 2 that

GNW3| =|F|<12. (3.14)
Summarizing, we have from (3.11), (3.13), and (3.14) |G| = |GNY3|+|GNY3|+|GN
W§’| <14+9+412=22<3a+7 for a>5,and a =4 needs special consideration.

Here |Ff|=|{z® € F:B(z®) ={2,3,4}| <6 and |F{| =6 implies M(F{) =U .
Since |U|=3(4—-1)=9, we have

|FY| < M(FY) . (3.15)
Moreover, for a« =4 and 23 = (x1, 22, 73) € F{ we have
M(.’E3) = {(17 17373)7 (1a T2, 1)a ('7:17 17 1)} and for all '7;373:,3 € Fﬁlc |M("B3) ﬂM(SL‘I3)| <
1.
Therefore |M(FY)| > 3|Ff| — (|F2’f|) and again (3.15) holds for |Ff| < 5. Thus
|G| = |GNYs3|+ |[FU(GNV)|+|FE|+[GNU| <10+ |F7|+ |U| = [M(FT)| < 10+ U] =
19=3-4+7 (Using (3.6), (3.7), (3.11), (3.12), and (3.15)).

Case 2: There is no common point z € X, in all S € L5(G) . Then necessarily
|L3(G)| = 3 and w.lo.g. we can assume L(G) = {{1,2},{1,3},{2,3}} . Since at
most three vectors in each of the sets {(z,z,y):y € {1,2,3}\{z}}, {(z,y,2) 1y €
{1,2,3} \ {a:}} , and {(y,:v,:ﬁ) cy €{1,2,3} ~ {a:}} may be in G,

GNYy<9. (3.16)

Moreover, in this case we always have

GNYs=o2. (3.17)
Therefore (3.14), (3.16), and (3.17) yield
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G| <124+9=21<3a+7 for a>5. (3.18)

In the smallest case « =4 , as before, there is a little bit more work. If |GNY,y| <7,
the previous argument gives |G| <12+7 =19=3-44+7 and we are done. The cases

8<|GNYa| <9 (3.19)

remain to be analysed. Here at least two of the cardinalities |G N {(z,z,y):y # x}|,
IGNn{(z,y,z) : y # x}| and |GN{(y,z,z) : y # x}| must be 3. W.Lo.g. assume
that |G N {(y,z,z) : y # x}| = 3, i.e. there are z; € X,(: = 1,2,3) such that
(i,z;,2;) € G and z; #1i for i =1,2,3.

F{lz.} U{(z;s,z;)} € G% for i =1,2,3, therefore \F{lz}| <2 for 1=1,2,3.

Thus we have

4
Fl=|{] Fiy| <6+ Fiyl=9 (3.20)

=1
and by (3.19), (3.20), and (3.17) |G| <18 < 19.

This settles the case o =4 .

4. Proof of Theorem 4

The main idea in the forgoing arguments is to partition X[ according to frequency
patterns of letters in the words. Recall that a partition of integer n is a finite nonin-
creasing sequence of positive integers A1,..., A\, with Y7 ; A; = n . Denote by P(n)
the set of partitions of n . We partition now X7 according to P(n) as follows. For
A= (A,..,0) € P(n) set Y(A) = {2" € X :30,...,0, € X, such that 6;
occurs in z"™ = (z1,...,%,) exactly \; times} .

For example, if Ay = (1,...,1), then Y(Ag) = W2 . In another direction, we have
P3) = {(1,1,1),(2,1),(3)} and sets used in the proof of Theorem 3 are W3 =
Y((1,1,1)), Y2 = Y((2,1)), and Y5 =D((3)).

They suggested to consider the partition {y(A) A€ ’P(n)} . With their help we
derive first an upper bound for ¢ (Lemma 5) and then a lower bound (Lemma 6).
Finally we show how the gap between these bounds can be closed. The lower bound is
tight. To fix ideas we begin with a rough bound.
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Lemma 5.

Proof: We subdivide {Y(A) : A € P(A)} into 3 classes. The class 0 consists of
Y(Ao) , where Ag = (1,...,1), the class 1 consists of Y(A;) for Ay = (2,1,...,1)
and the remaining sets belong the class 2.

We are going to show that the major part of G' € G2 falls into class 1.

First of all, for all G € G by our definitions |G NY(Ag)| < f.

It is easy to see that f7 < (n!)?, a bound independent of « . In fact, a simple
induction argument works. Choose any (z1,...,2,) € F € FZ .

Forall y* € F B(y™)N{zr1,z2,...,2,} # @ and, on the other hand, for fixed j and
i |[Fn{y":y; =x;}| < f2°'. This implies f2 <n? f%! and clearly f7 < fo .
Therefore

GNY() < (1), (4.1)

Next we consider class 2.

For all z™,y™ € G, B(z")NB(y") # @,s0 {B(z") : 2" € GNY(A)} forms an
EKR-system with r—element sets, if A = (A1,...,A;) . For a Y(A) in the class 2 A
partitions n into r <mn —2 parts and for all 2" € Y(A)

{y": B(y") = Bz")} <" < (n—2)" . (4.2)

This leads to the estimate

Gn( U yw)<pml(27))m-2r. (4.9
A#(XosA1)
For the major part we have for all z™ € Y(A;)
s BO™) = B = () -1 (4.4

Now Lemma 5 follows from (4.1), (4.3), (4.4) and the EKR-Theorem, which accounts

for the factor (z:;) .

Lemma 6.

h—ma—wo (c.ygfl) > (Z) (n - 2) !
n—2

Proof: Define Gy = {z" € X" : |[B(z™)| =n—1 and 1 occurs exactly twice in z"} .
Obviously Go € G% , |Go| = (5)(n— 2)!(0‘_1) , and thus the claim follows.

n—2
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Proof of Theorem 4:

It suffices to show that for G € G

ma%o\(;my(/\m(z_ 1)_1 < (") (n—2)! (4.5)

-2 2

To do this, we have to refine our partition, more precisely, we partition Y(A;)NG into
a few subparts. First of all we can assume that the EKR-system {B(z"):z"™ € GN
Y(A1)} is not a 2-intersecting family, because otherwise |GNY(A1)| < (g:g) () (n—
1)! ~ a™3 by (4.4), which would imply (4.5).

This assumption means that there are a™,b” € GNY(A;) with |B(a™)NB(O")|=1.
W.lo.g. let B(a™)={1,2,...,n—1} and B(b") ={1,n,n+1,...,2n — 3} . Denote
by Z={z" € Y(A1)NG :1¢ B(z™)} the set of 2™ in which 1 does not appear.
Since for all 2" € Z2 B(z")N B(a") # @ and B(z")NB(b") # 2 [{B(a"):z" €
Z}| < 22(n=2) (a2md2)

Consequently, by (4.4)

12| < 2%(n—1) <Z> (n—1)! (O‘ _n2_"3+ 2) : (4.6)

Let now C; = {(c1,...,¢n) € Y(A1) 1 ¢i =1,¢j #1 for j#i} for i =1,2,...,n.
Then

YA)NG=(GNG)UZU(CiNG)U...U(C,NG) (4.7)

where (¢ is defined in the proof of Lemma 6.

Because {(c1,---,Ci_1,Cit1,---,¢n): (C1y--sCi1,1,Cix1,---,0n) € C; NG} € G
we have
IC;NG|=0("3) (as a — ) (4.8)
by Lemma 5.
Finally,
n a—1
< = - 2)! 4.
Gon 6l < 6ol = () n-22(07 ) (1.9

and (4.6) — (4.9) imply (4.5).
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