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On Multiuser Write-Efficient Memories

Rudolf Ahlswede and Zhen Zhang

Abstract—Continuing our earlier work on write-efficient mem-
ories (WEM), we introduce new models, where several persons
use the same storage device. At any time instant, exactly one of a
prescribed set of users has access to the memory, but there is no
protocol which determines the moving order. Among the con-
straints we analyze, the most interesting one is a complete
privacy protection. While a user stores new data, he has to
guarantee that those of the others do not get distorted. This
leads to fascinating new coding problems. We provide several
code constructions, as well as abstract performance bounds.

Index Terms—Multiuser memories, WEM, WUM, privacy con-
straints, code constructions, identification.

I. INTRODUCTION: MULTIUSER MEMORIES WITH
CONSTRAINTS ON Privacy, HIERARCHY,
AND TECHNOLOGY

RITE-EFFICIENT memories (WEM) were intro-

duced in 2] as a model for storing and updating
information on a rewritable medium. There is a cost
o: X% — R, assigned to changes of letters. A collec-
tion of subsets & = {C;:1 < i < M} of 2", called clouds,
is an (n, M, D) WEM code, if C; N Ci=Qforalli+j
and if

n
max max min Y, ¢(x,,y,) <D. (1.1

1<i,jsM x"e€C; y"eC; /=

Dina =

D,,., is called the maximal correction cost with respect to
the given cost function. The performance of a code # can
also be measured by two parameters, namely, the maximal
cost per letter dy = n~'D,,. and the rate of the size
re = n"!log M. The rate achievable with a maximal per
letter cost d is thus

R(d) = sup rg. (1.2)

F:dg<d

This is the most basic quantity (the storage capacity) of a
WEM (27, ") _ ;.

For a WEM code %, the average correction cost D,
can be defined as

1 1 n
ave W Z T Z min E @(x,, y,) (13)

D
1<i,j<M ICil xnec, V'€C =1

Manuscript received October 29, 1992; revised July 8, 1993. This paper
was presented in part at the IEEE International Workshop on Informa-
tion Theory, Ithaca, NY, June 1989.

R. Ahlswede is with the Fakultit fiir Mathematik, Universitét Biele-
feld, Postfach 100131, 33501 Bielefeld, Germany.

Z. Zhang is with the Communication Sciences Institute, University of
Southern California, Los Angeles, CA 90089.

IEEE Log Number 9402027.

and the average cost per letter can be defined as

Jg; = n“lDave. (1-4)
The rate achievable with an average per-letter cost d is

thus

R(d) = sup rg. (1.5)
g Jgﬁd
The main result of [2] is
R(d) =R(d) = sup H(Y|X) (1.6)
Pyye?,

where %, is a set of bivariate distributions

Py = {Pyy €P(EXZ): Py = Py, E(X,Y) <d},
%))

Pyy is the distribution of a pair of random variables
(X,Y) with values in 27X 2, Py (resp., Py) is the distri-
bution of X (resp., Y), H(Y|X) is the conditional entropy
of Y given X, and E denotes the expected value.

An essential ingredient of this result is a combinatorial
result. We say that the hypergraph (Q, &) carries M
colors if there is a vertex coloring with M colors such that
all of these colors occur in every edge. Let M(Q, &) be

_ the maximal number of colors carried by (2, &).

Coloring Lemma: The hypergraph (Q, &) carries M
colors if M < (In Q)™ ming .z |El and M > 2.

Since, in typical applications, the quantities || and | E]
grow exponentially in the block length n, we have
M(Q,&) ~ ming .. |El. We remark that determining
M(Q, &) for any hypergraph (Q, &) induces problems of
the Ramsey type.

More generally, one can consider more general cost
functions

" 2" X2 > R, neN, (1.8)

and, even more generally, one can combine this WEM
model with the stochastic model of [12]. _

However, for the sake of simplicity, in this paper we
stick to our original definition of a WEM. Genuine exam-
ples are the Hamming WEM, specified by 2°= {0, 1}, and
the cost function ¢ = dj, the Hamming distance, and the
(symmetric alternating)WUM (see [3]-[5], [9], [10], [12D
specified by

0, if (x,y) = (1,1), x,y € {0,1}

e(xy) = {oo, if Cx, y) = (1,1).

1.9
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The connection of this definition to the original definition
—which comes directly from the coding problem—is clar-
ified in the passage before Theorem K in Section IV.

Here, we follow the natural idea of letting several
users operate with the same memory, that is, the space
£". Several constraints on the mode of these operations
are considered and lead, perhaps surprisingly, to some
seemingly original problems. One assumption is basic
and will always be made:

The users, say U, U,, -+, U,, follow no protocol, which
determines in which order they store messages. At any
time instant, exactly one user has access to the memory.
We address questions, which are meaningful, if the user
at any time instant is any member of the prescribed set
of users.

We speak of a multiuser WEM and discuss possible
constraints.

Constraints on Technology: It was laser technology which '

led to the WUM model and thus to a specific cost func-
tion in the WEM model. It is reasonable to assume that
different users have different cost functions and different
thresholds for the total costs.

Common Messages: All users are supposed to write and
read the same messages at any time instant.

Separate Messages Without Protection: All users always
have their own messages to store. However, a user can
only read what he wrote formerly, if this was not distorted
by another user in the meantime. If storage is a very rare
event, this still may be practical to a certain extent.

Separate Messages with Protection—Privacy: Suppose
that there are two users, U; and U,. At any time, where
one user updates his memory with a new message, he has
to guarantee that the message stored by the other user
does not get distorted. In this sense, users respect each
other’s privacy.

Separate Messages with One-Sided Protection— Hierarchy:
Here, user U, has to respect the privacy of user U, but
not vice versa.

The Hierarchy Graph: It is conceivable that any two
users, say U; and U, do not mutually respect their privacy,
that they both respect the privacy of the other, and finally,
that U; respects the privacy of U, but not vice versa. This
can be symbolized by an undirected edge, an edge with
two arrows, and a directed edge, respectively, in a graph
with vertex set {U,, +-, U}. Thus, the three foregoing cases
all become special cases of this general model.

Side Information: The issue of side information has
played an important role in multiuser source and channel
coding. We use the notation E, (resp., D), if the
encoder (resp., decoder) has side information, and the
notation E_ (resp., D_), if the encoder (resp., decoder)
does not have side information. For memory cells, the
side information refers to the knowledge of the contents
of the memory before a new action (encoding or decod-
ing) is taken. The results for WEM codes stated above
concern the case (E,, D_), which seems to be the most
natural. Of course, all kinds of other situations with side
information can be imagined—for instance, those where
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the encoder knows time, that is, he knows how many
updatings have been made.

Identification: We address here for the first time stor-
age for the purpose of identification. The theory of identi-
fication via channels [18] is paralleled by a theory of
identifications via memories. It should be mentioned that
there are also multitape problems. Some are formulated
in Section IX. Finally, we mention that the area of combi-
natorial extremal problems already has received a signifi-
cant impetus from the theory of memories (cf. [6]-[8],
[17D. In Section II, further questions are asked which are
linked to multiuser memories.

The paper is organized as follows.

In Section II, we present a capacity formula for the
WEM with several users having common messages. It is in
the spirit of the coding theorem for compound channels.

Next, we present in Section III a multiuser rate region
for separate messages without protection. The hard work
starts in Section IV with the analysis of a WEM used by
two persons, who respect each other’s privacy. In particu- -
lar, we derive bounds on the rate regions for cost func-
tions satisfying the triangle inequality. We also take a
closer look at the WUM. By the probabilistic method, we
achieve rate pairs beyond the time-sharing bound. In
another direction, we show that the sum of the rates can
be made to approach the maximal possible rate log |27 as
the number of users increases. Originally, we conjectured
this for the WUM, and there it was proved by Koschnick
[11]. Serious work remains to be done. Some combinato-
rial problems are extracted in Section IX.

In Section V, we discuss the issue of hierarchy, and in
Section VI, we focus on side information. Whereas all
results indicated so far are for the case (E,, D_), we
discuss other cases in Section VI. We present several
coding theorems. Some of them in the case (E_, D_) are
just consequences of the Diametric Theorem of [16].
Previously for the single-user WUM, this was an outstand-
ing problem (see [9], [12]).

In section VII, we go in a new direction. We take the
first steps in a theory of identification and memories. As
previously done in [18] and [19], we again establish sec-
ond-order coding theorems.

In Section VIII, we provide constructions of multiuser
WUM codes under the complete privacy constraint. Sev-
eral open problems are stated in Section IX. Finally, we
include in an Appendix two old but unpublished construc-
tions of the second author for single-user WUM codes.

II. CoMMON MESSAGES

User U, (k = 1,2,--+, K) has his cost function ¢,:2"X
Z — R,. Furthermore, he has his own cost constraint. A
common (n, M, (D,)¥_;) WEM code is now a collection
of subsets # = {C;: 1 <i < M} of 2", called clouds, with
C;N C; =D for all i #jand with

n
max max min Y, ¢(x,,y) <D, (2.1)
1<i,j<M x"eC; y"eC

it=1
for k =1,2,--- K.

Dk,max =
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As in Section I, ry, = n~! log M is the rate of this code
and dg = n"" (D pax>'* Di max) IS the vector of maxi-
mal costs per letter. The rate achievable with a maximal
per-letter cost vector d = (d;, -+, dg) is thus

R(d) = (2.2)

sup re.
?: d}sd_'

As in (1.7), we now define for every k a set of bivariate
distributions

(2.3)

Furthermore, we set

K

gd = kolydk’k. (2.4)

Here is our first result.
Theorem 1: The optimal rate for a common code is

R(d) = sup H(Y|X).

Pyy<eP;

Proof: Replacing in [2, sect. 4—6] S, (x") = {y" €
o(x", ") < nd} in [2, eq. (4.1)] by

fork=1,--, K}
(2.5)

Syr(x") ={y" € Q: ¢, (x",y") <nd,

where @ = UX,C;, the proofs in conjunction with a
standard argument of simultaneity also settle the present
case. We skip the details because they are routine.

We have to keep in mind that we have just considered
the case in which the encoder knows the previous state of
the memory and the decoder does not, that is, the case
(E,,D_).

Neither the encoder nor the decoder has any knowl-
edge about the user. The code concept allows the users to
write on the memory and to read its content in an
arbitrary moving order. If, now, the encoder and the
decoder know the user at each move, they can achieve as
a “one-shot” rate

min  sup H(Y|X) > R(d).

Pyy€Py, «

We come across the following question.

Problem 1: What is the optimal rate in this situation
for any number of moves?

We also would like to see the next question answered.

Problem 2: The users want to store their own messages
without protection. They cannot operate beyond
(R(d)), -, R (d}) if R(d,) is the optimal rate for a
single user U, at threshold d;. These optima are achieved
at different letter frequencies for the words used. What
now is the achievable rate region?

III. SEPARATE MESSAGES WITH PROTECTION:
Privacy

This is perhaps the most basic of our new models. Most
of our results concern the case of two users. Since the
extensions of our definitions to any number of users are
straightforward and so are some of the results, we give the
definitions now for two users in order not to be burdened
with a heavy formalism. When needed, the reader will be
able to add the necessary indexes. A family & = {C;;:
1<i<M,1<j< M} of disjoint subsets of 2" is an
(n,M,M,,d,,d,) privacy code for the users U; and U,
with cost functions ¢, and ¢, if, for all pairs (i, j) and
(¥, j) [resp., (i, j)] for every x" € C;;, a y" € C;; (resp.,
G ]-,) exists with

j?

1 1 .
;qof‘(x",y") <d, (reSp., ;(pg(x”,y”) <d,|. (3.1)

The pair (R, R,) of nonnegative numbers is called an
achievable pair of rates if, for every n > 0, there are
privacy codes of rates r, = (1/n)log M, > R, — n(i = 1,2)
for all large n. # =%(d,,d,) =%#(d,, d,, ¢,, ¢,) is the
set of all achievable pairs of rates.

Clearly, this code can be used by any one of the users to
store a new message without distorting the message stored
by the other user. In the sequel, we assume that

PLEP=Ee (3.2)

and we let M(n,d) stand for the maximal length of an
(n, d) WEM code with cost function .

We formulate our first observation.

Lemma 1: When the cost function ¢ satisfies the trian-
gle inequality, then for any (n, M,, M,,d,,d,) privacy
code,

MM, < M(n,d, +d,). (3.3)

Thus, #(d,,d,) C{(R,R,): 0<R,, Ry + R, <R(d, +
d,)}.

Proof: The privacy code for two users also can be
viewed as a one-user code with M; M, messages. For any
pairs (i, ) and (7, j'), we can make the transitions from
(i,j) to (¢, j) and then to (7', j'), for instance. Therefore,
by the triangle inequality, for any x" € C;;, a y" € Cy;
and a z" € C;; can be found with

p(x",z") < p(x",y") + o(y", z™).
The per-letter cost is at most d; + d,.

Remark: The cost function of the symmetric WUM
does not satisfy the triangle inequality. Of course, the
Hamming distance does.

Now, vice versa, we can also view an (n, M, -M,,d)
one-user code as an (n, M|, M,,d,d) privacy code by
choosing {1,--, M;} X {1,---, M,} as the index set of the
clouds, We express this in terms of rates:

#(d,d) > {(R,R,):0<R,R, + R, <R(d)}. (35)
A third simple fact is that, by space sharing, a single-user
(n,, M;, 7)) code {C;} and a single-user (n,, M,, 7,) code
{D.} can be combined to an (n; + n,, M|, M,, ny7,/(n; +
nzinz'rz/(n1 + n,)) privacy code {C; X D;}. We rewrite

(3.4)
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this in terms of rates by using the substitutions A; =
n;/(n; + n,) and d, = A;7;.

Lemma 2: 9(d,,d,) o (R, R,): 0 < R, < \,R(d,/)),
0< A fori=1,2and %) = 1}.

Since R(d) is increasing in d, (3.5) is implied by Lemma
2, which shows that we can do better with privacy codes
than by simply changing the purpose of a single-user code.
Instead of the rate pairs (3R(d), 2R(d)), we can actually
achieve the rate pair (3R(2d), 3R(2d)). However by
Lemma 1, this is even an optimal rate pair if ¢ satisfies
the triangle inequality! Obviously, the same phenomenon
can be found and stated in obvious notation for any
number of users.

Theorem 2: In case K users have the same cost func-
tion ¢ and agree to have all the same rates and per-letter
costs d, then we have for the optimal rate R'(d)

 R(Kd)
R(@) > =

(3.6)
Moreover, if ¢ satisfies the triangle inequality, then
equality holds here.

There is an interesting consequence for cost functions
¢ which take only finite values.

Corollary: For ¢: X% — Rand d > 0

Igim KR'(d) = log 1.

Proof: If Kd > maxx)yeg,l(p(x,y)l, then R(Kd) =

log |2, and by (3.6), KR'(d) > log |27. On the other hand,

the clouds C;.; in a privacy code are disjoint, and

therefore T1X M, <|21". In particular, we also have
KR'(d) < log |, and (3.7) is established.

Problem 3: Find the region of all achievable rates
(“capacity region”) %#(d,,d,,**,d). This is a formidable
task already for K = 2 and the Hamming distance as a
cost function! How good is the bound of Lemma 2?

(3.7

IV. Privacy oN THE WUM

Since for the WUM the optimal rate is the same for any
finite threshold d of the per-letter cost, Lemma 2 gives, in
this case, achievability of the simple rate-sharing region

Ay ={(R,R,):0<R,, R, + R, = Ryyul, 4.1
and as an analogue to (3.6), the simple inequality

KR > Ryyum- 4.2)
Theorem 3 below establishes a region bigger than .
This was the basis for our conjecture that (3.7) also holds
for the WUM, which has a cost function excluded in the
corollary because it takes the value infinity. The conjec-
ture was proved by Koschnick with a pretty idea [11]. We
describe his construction at the end of this section be-
cause it is so brief.

Let us first notice that condition (1.9) allows us to
define alternating symmetric WUM codes without any
reference to ¢ in an appealing form.
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It is a collection {C;: 1 <i < M} of disjoint subsets of
Z" = {0,1}* with the following properties.
For all i and j, for any x" € C;, a y" € C; exists with

x, Ay, =(0,--,0). (4.3)

(We remind the reader again about the passage before
Theorem K in Section IV.)

From here, the definition of a privacy code (n, M, N)
for the WUM reads as follows:

X" Ay =(x; Ay,

It is a collection {C;;: 1 <i <M, 1 <j < N} of
disjoint subsets of 27, called clouds, with the
properties that for all (i, j) and (¢, j) [resp.,
(i,7)], for every x" € C;;,a y" € Cy; (resp., C;;)
exsists so that (4.3) holds.

4.4)

We denote the set of achievable pairs of rates for these

" codes by FEuum-

Throughout this paper, we use the “sequence” and
“subset” notation interchangeably. In “subset” notation,
the C;’s are disjoint families of subsets of {1,2,---, n}.

Theorem 3: Rum O (R, R):0 <R, < 1fori=1,2
R, + R, < h(2) = 0.813 ---).

Remark: Since Ryyy = 0.694---, the new region ex-
ceeds g not everywhere.

Of course, the convex hull of the union of both regions
is again achievable.

Proof: 1t may be helpful for grasping the idea of the
following proof to first take a look at the code construc-
tion in Section VIII. We describe our random selection of
the clouds. They will have two elements. It suffices to
consider even n. Set n = 2k and # = {1,2,::-, n}. Choose
independently according to the uniform distribution on

‘Z/ M + N sets. Call the first M sets S,,---, Sy, and the

last N sets Ty,---, 7). Define, now, for any set 4 C.#,
A'=A and A°=A° 4.5

where “c” denotes complementation in .#. With this con-
vention, we introduce the sets

DgF=S2NTP fora,pe{0,1). (46)
Clearly, |D]}'| = |IDY|, IDJ'| = ID}|.
If, now, |D}| > 3n, then define
DP =D}' and DP =DY. 4.7
Otherwise, we have |D?| > n, and we define
D =D}’ and D$ =D (4.8)
For C C.#, in > |C| > 3n, define
L(C) = {(i, ) € [1,-+, M] X {1,-+, N}:
DP=C or DY = C}. 4.9

Clearly, by this definition, for all (i,j) € {1,~-, M} X
{17".’ N}’

(i,j) € L(D{’) n L(DP). (4.10)



678
If, now,
L(D) = L(DP) = (G ),
then define
C, = {D}, D%} (4.11)

Let us pause a moment and realize that, by our defini-
tions, in case (4.11) holds for all (i,j) € {1,---, M} X
{1,---, N}, then these C;;’s define a privacy WUM code as
introduced in (4.4). However, this need not be the case or,
in other words, for some C, we may have |L(C)| > 1. For
some C, called regular, we can remove this ambiguity, and
for other C, called irregular, we cannot. If irregular C are
there, then the chosen collection {S,, -, S,,; Ty, Ty} is
just bad.

We now describe the regular C’s. For them, we can
remove ambiguity by using suitable neighbors. Define

Z(C)={C:|ICAC'|=1,C'cC,AC" +C
with |C" AC' € {0,1},C" > C’ and L(C") # &}.
(4.12)

If, now, |L(C)| < |.Z(C) U {C}l =A(C)| + 1, then choose
any injective map ¥ : L(C) - (C) U {C}. Notice that
the members of #(C) have the following properties:

(a) they are contained in C, but are different from C
by one element exactly,

(b) the do not equal any D}’ or DY,

(c) the supersets different from C, which differ by
exactly one element from it, also do not equal any D}’ or
D@

Since C occurs |L(C)| times, we can resolve this conflict
by using it once and replacing it otherwise by the mem-
bers of Z(C). If both D}’ and D{} are regular, then we
can therefore define

Cyj = {¥opi, 1), Yo i, )}

The privacy WUM code is thus well defined if there are
no irregular C’s. We now estimate Prob (there are no
irregular C C.#) from below. A key role in this analysis is
played by the condition

(4.13)

1 1 - C l
max | M2, N2~ pmN2-2| [ C 2] < g-en,
En—ICI |C|

()

Claim 1: Prob (JL(C)| = en) < 27%"3/2 for some con-
stant & > 0 if (%) holds. We first verify this.

Let us write L(C) = {(i,, j,),*:-, ({;, j)}, and let us con-
sider the bipartite graph ({1,2,---, M}, {1, 2,::-, N}, L(C)).
Recall Konig’s Theorem, which says that the maximal
number 7 of independent edges in a bipartite graph
equals the minimum number u + » of points covering all
edges, that is,

n=u+ v. 4.14)
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The total number of edges is [. If, now, n < VI, then by
4.14),

> /I,

mt+rv< VIoor
: bt
Hence, either there is a vertex in {1,2,---, M} covering at
least VI edges, or there are VI independent edges, or
there is a vertex in {1,---, N} covering at least VI edges.
If, now, ! > en, then choose

s =[Venl.

Consequently, either we have event E;: for some i and
i ... 09
PARCRY

(4.15)

{(,j):1<t<s} CLC)

or we have event E,: there are sets of indexes I =
(i, i®Y, T = {(jO,-- jO) with {(GO, jO):. 1 <t <s}
L(C), or we have event E;: for some j and i, i®)

{9, )):1 <t <s} cL(C).

Therefore, we have

3
Prob (|L(C)| = en) < Y Prob(E,). (4.16)

i=1

One readily calculates that

MY N\|y-r+0q 31
Prob (E g( )( )2 +0og )
T 1) 1 s ICl

e
w
-

1

Prob (E,) < (1;") (1:1) (2—n+0(|0g ,,)( Iiéll

~—
©
-

MN —2n+0(logn) n—|C|
Prob(Ez)s( e )(2 +0(log (%n——lCl

all

Prob (|L(C)| = en) < 3-2-cns+s0ogm) o 9—8n3

Claim 2: Prob (|AC)| < en) < 27%"4/2 for some
constant .8’ > 0 if (*) holds.

If |AC) < en, then there are at least in — en
> in C* with [C* AC| < 2 and L(C*) # . Choose, now,
s=1Iyn/51

Considering U(C) = {C*: |C*AC| < 2,|L(C*)| > 1}, we
can distinguish again three events.

Event F,: For some i and j&,---, j©

(i, j) e L(C?), C® e (C)

This, together with (), implies

forl <t <s.
Event F,: For some j and i®,---,i®
("), j e L(C®), C® e U(C)

Event F;: There are sets of indexes [ = {iV,:-- i},
J = {jD,-+-, j®} such that

(l-(t),j(t)) c L(C(f)), cO e ue)

forl <t <s.

forl <t <s.
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We have, therefore,

3
Prob(|#(C)| < en) < Y Prob(F). (4.17)
i=1

One calculates that, under (),

0(n?) N
Prob(F) < | [7 (1‘14) n
5 5
1|\
A o-n+0og ). 5” < 2-8'n3/2),
ICl+2

Similarly, Prob (F,) < 2-%"%/2, and finally,

0(n?) | { MN
Prob (F;) < ‘/? \/? 2 ~2n+0(og )
5 5
n—|Cl+2 1 V75
1 5n < 2-8'nG/D)
2" E2 71 e

and thus Claim 2.

The two claims imply EfC: |L(C) = en}l + E{C:
|Z(C) < en}| < 27-2787G/D 4 27.2-876G/2) gand there-
fore the expected values tend to 0 as n tends to infinity. In
particular, it becomes smaller than 1, and thus for large n
with positive probability for all C |#(C)| > en > |L(C)|
and all C must be regular. Hence, a privacy code exists if
(*) holds. Now, for (R,, R,) with R, < 1 — € and R, +

n—ICl\(3n
R, <2 — e~ (1/n)logmax ¢ . q /4n (%n - |C|)(2

IC]
(%) is valid.
Observe next that

n—ICI\(1in n|[in
max =
clz3 | z0ICl [\ |C| o lan ) gn

in
in
proof is complete.

Originally, WUM codes dealt with a situation arising in
laser technology, where during one updating, only 0’s or
only 1’s can be printed into the cells of the memory. In
particular, this has led to the concept of an alternating
WUM code:

A family & = {C,,"**, C,,} of disjoint subsets of {0, 1}" is
an alternating WUM code if

G C,=TyUT, forl<i<M,

(i) for all (i, j) and any x" € T, (resp., T;) there is a
y" € T, (resp., Tjy) with y” > x" (resp., y" < x").

3

n
and that lim,_, (1/n)log

ENTEENTE

) =2 — h(}). The
n
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An alternating WUM code is called symmetric if, for
i=1,M,

Ty =Ty = (%" x" € T,p}.

Here, X" is obtained from x” by exchanging 0’s and 1’s.

Obviously, a symmetric code is specified solely by the
collection of subsets {T}y}. T}y’s are used when we write 1’s
and T;’s are used when we write 0’s. We can always use
one additional bit of information to indicate which letter
we are writing. In this sense, it does not matter whether
T, and T}, intersect or not. We need only the disjointness
among Ty’s and the disjointness among 7;,’s. Now, for
x" €T, and y" € T, with x" <y”, we have y" € T,
and x" A " = (0,0,---,0). Therefore, we can use the al-
ternative definition for an alternating symmetric WUM
code given in (1.9) or (4.3). Since it is often easier to
handle, we use in this paper the definition (1.9), bearing in
mind that we can always easily construct a code in the
sense of the former definition from a code in our new
sense.

IfCn ¢ = & for all { and j, which is the case for the
codes of Willems, Vinck, and Simonyi, we do not even
need the additional bit of information.

We now present the positive answer to our conjecture
that (3.7) also holds for WUM.

Theorem K [11]: We can achieve with a 1K user privacy

WUM code the rate vector ( %
1

1K 1), and thus

total rate

Proof: We describe in the language of our codes
Koschnick’s construction [11] of an (n, M|, *+, M) code
with

n=(K+1s+2-[log, (K+ D!] (4.18)

and
M, =2° fori=1,2,, K. (4.19)

Divide the memory of size n into K + 1 parts A,,",
Ak, 1, each of size s, and one part B of size 2 - [log, (K +
D!, At any time, the messages of the K users are repre-
sented by K of the K + 1 parts A, of the memory. The
remaining A4 block contains no information; it has only
cells with 0 entries. In the B block, with a single-user
WUM it is stored, which A4 block is free and which A4
block contains the message of which user (note that
2llog,(K + D! bits are sufficient for this).

Updatings are performed as follows. If user U, wants to
update his message stored by the memory, he first reads
the content of block B and finds which A4 block contains
his currently stored message—say, this is block 4,—and
which one is free. After storing his new s bits in the free
block and printing 0’s only in the block A,, he stores in
block B again which A block relates to which user. The
updating is complete.

Finally, by (4.18) and (4.19) for fixed K,

1
lim — log M; =

n—oo N

K+1°
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V. A HierarcHy CoDE FOR THE WEM

We now come to two users, U; and U,, who both store
messages in the memory, but only U; enjoys protection of
his messages by U,. To simplify matters, we assume that
both users have the same cost function ¢.

An (n,M,,M,,d,,d,) hierarchy code is a collection
{Cj: 1<i<M,, 1<j<M,) of disjoint subsets of 2"
with the following properties:

(a) the collection {C;: 1 <i < M}, where C; =
U ¥2,C,, is an (n, M,,d,) WEM code for the single-user

1>

(b) for every i, 1 <i < M, the collection {C,-j: 1<j<
M,} is an (n, M,, d,) WEM code for the user U,.

At any time instant, any one of the users can operate
on the memory. User U, updates his messages via his
code. The message stored by U, is of no concern for him.
On the other hand, user U, has to protect the message,
say i, of user 1. This means he can only make changes
within C;, where he stores his new message by the rules of
the local code {C;;: 1 <j < M,}. Let us denote the rate
region by %#*(d,, d,). Obviously, #*(d,, d,) >%d,,d,),
and we derive the following from Lemma 2.

Lemma 2*: If ¢ is not degenerate, that is, p(x, x) = 0
for x €2, #*(d,,d,) D{(R,R,): 0 <R, < \,R(d, /),
0< A fori=1,2and £7_,A' = 1}.

However, perhaps surprisingly, the upper bound of
Lemma 1 also extends.

Lemma I*: When the cost function ¢ satisfies the
triangle inequality, then for any (n, M,, M,, d,, d,) hierar-
chy code

MM, < M(n,d, +d,).

Thus, #*(d,,d,) c {(R;, R,): 0 <R,, R, < R(d, + d,)}.

Proof: The hierarchy code also can be viewed as a
one-user code with M; M, messages. The verification dif-
fers slightly from the one for the privacy code. For any
pairs (i, j) and (i',j'), we can make a transition from
C,;cC; to C; and thus to C;;» for some j” (possibly
different from j). But now, we still can make the transi-
tion via the local code to C;;.

The argument can be applied to any number of users
with a linear hierarchy structure, that is, messages of users
with a lower number are to be protected by users with
higher numbers.

Theorem 2*: In case K users have a linear hierarchy
structure and the same cost function satisfying the trian-
gle inequality, then the optimal common rate for per-letter
cost d equals (1/K)R(Kd).

VI. No SIDE INFORMATION AT THE ENCODER AND
THE DECODER, BuT THE ENCODER CAN USE SPACE
BARrs

We consider now the case (E_, D_) described in the
Introduction. All users have the same cost function ¢. We
denote by R_(d) [resp., R (d)] the optimal rate for a
single user and threshold d, in case the maximal (resp.,
average) costs are considered. Here, C = {c¢;: 1 <i < M}
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with ¢; € 2™ is an (n, M, d) WEM code if

M M _
Dave(C) = W E Z gD(Ci,Cj) < nd, (6.1)
i=1j=1

and it is an (n, M, d) code if

fori,j=1,2,,M. (62)

In recent work [16] and as a result of an entirely different
direction of research, R_(d) was characterized for all cost
functions ¢: 22X 2 — R as follows.

Consider a constant », 0 < » <1 and two probability
distributions P and P’ on Z. (x,, x,,'**, x,) € 2™ is said
to be of the mixed type (¢#P,(1 — »)P) if (x;,-+, x,,,) is
of type P and (x,,,,1,""» X,) is of type P’ (that is, has
relative frequencies specified by P’). The sets

T,(v,P,P)
= {x" e Z": x" is of mixed type (¢+P,(1 — »)P')}
have a rate
R(y,P,P')=vH(P) + (1 — »)H(P")
and an average cost

o(c;, ¢;) <nd

Dave(Tn(V’ P,P)= n( v Y, P(x)P(y)e(x,y)
X, UeZ
+a-» ¥ P’(x)P’(y)qo(x,y)) + o(n).
x,yeZ

Theorem AA: R_(d) = max{R(», P, P'): (v, P, P') with
L, elPXIP(Y) + (1 — )P (X)P'(y) - o(x,y) < d}.

Remarks: We stated in [2, eq. (9.1)] a simpler formula
for R(d). It holds for special cost functions such as the
Hamming distance in the binary case, but not in general.

R_(4) is known in some metric cases [7], for instance in
the binary Hamming case.

Recently, a solution of the diametric problem in the
average has also been found for several distance and
cross-distance constraints [20], that is, a multiuser model.

Inspection of Lemmas 1, 2 and Lemmas 1*,2* shows
that they can be extended much further. One observation
is that, for them to hold, no formula for the underlying
single user rate function is needed, and another observation
is that space sharing must be possible. In case E ., this is
obviously always possible because the encoder writes in
one part, say B;, of the memory, and leaves the imprints
in the other part, say B,, invariant. He can do the latter at
no cost if ¢ is not degenerate. In case E_, however, he
does not know the imprints, especially not in B,. There-
fore, he does not know what to write in order to leave
them invariant. If we allow the encoder to use space bars,
then this simply means that we allow him to print nothing in
certain cells such that their content, unknown to him, does
not change. We symbolize this option by E_. Clearly, in
this case, space sharing is possible. The single-user rate
functions are denoted by R(d) and R (d).

In case E_, there is no way in which the users keep
their privacy. The hierarchy constraint can be met if the
“slave” is in case E . (The boss cannot read, but the slave
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has to be able to read in order to respect the wishes of the
boss.) This leads to a funny code concept.

We concentrate now on the side information (E, D_).
In case of privacy, we denote the rate regions by
H,(d,,d,) and F(d,,d,). We add a star if we have
hierarchy. It saves notation if we introduce the region

F(R) = {(R,,R,):0 <R, R, +R, <R}. (6.3)

Lemma 3: Tf ¢ satisfies the triangle inequality, then

(@) #,(d,,d,) CIHARL(d| + d,))

(b) #Z,(d,,d,) cIH(R,(d, + d,))

(© @ndydy) C TRy + dy)

(d) #4(d, dy) cIR,(d; + d2)).

_ Proof: Since % (d,,d,) c #4,(d, d,) and
R (dy, dy) c#:(d,,d,), it suffices to establish the last
two inclusions.

(c) From the point of view of the decoder, there is a
collection {C;;: 1 <i <M,, 1 <j <M,} of disjoint sub-
sets of 2. Elements of C,; store message i for U, and
message j for U,. The elements of C,= U¥ j21Cy; store
message § for U;. If the code has parameters
(n, M, M,,d,, d,), then we can build a single-user code
with parameters (n, M, - M,,d; + d,). To see this, let us
suppose that c;; is the imprint not known to the users. We
want to store (l ,J'). First, let U1 store i’ according to the
rules of the code. This results in some imprint c; . Now,
let U, store j'. This results in some imprint c; ;. Further-
more,

(p( ”, lj) < (P(C”, ”n) + (P(Clr]w, ”) < nd1 + nd2
(6.4)

(d) If the average per-letter costs are d, and d,, then
M, M, M,

M,
Z Z E Z‘P(Cu? 1])<nd1+nd2

(MlM) i=1j=1i=1j=1

Let E, be any side information induding E, that is, the
side information which makes space sharing possible, and
let us indicate this information with a circle in the nota-
tions for regions.

Lemma 4: If ¢ is not degenerate, then

d.
RZ,(d,,d,) D {(Rl,Rz): 0<R, < A,.Ro(-/\—'),

0<A<1,3N

d;
R:(dy, dy) O {(Rl, R,):0 <R, <A, RO(T),

0<A <1, S\

1},
1}.
The same relations hold for average costs.
Proof: As usual, by time sharing.
It is now clear how to produce from these two lemmas
results like Theorems 2, 2*. We address one striking case
here.

Theorem 4: For K users with complete privacy con-
straints and a cost function, which is a metric, we have in
case (E, D_) as the optimal common rate for per-letter
cost d

. .
ERD(Kd)(éiinmRD(Kd) ~ log |21).

Problem 4: Consider coding problems for common mes-
sages (see Section II) in case (E_, D ) and average costs
constraint.

Problem 5: How does R(d) relate to R (d)? Are
there ¢ for which these quantities are different?

Problem 6: Suppose in case (E_,D_) the user is in-
formed whether an intended writing is possible, given the
cost constraint and the imprint (unknown to him). Are
there meaningful results?

VII. IDENTIFICATION ON THE WEM

We assume here familiarity with the notions and results
of [18].

The memory is now not used for the storage of mes-
sages, but for the identification of any one of M objects.

Now, just observe that in the case of the maximal
per-letter cost criterion, all storage problems (single- and
multiuser, privacy, hierarchy, common messages, various
kinds of side information) can all be viewed as error-free
transmission problems over a noiseless channel with
senders U,, -+, Uy and the decoder as receiver.

Let us assume that the respective codes are specified.
To fix ideas, let us address the single-user case now. Let
its message set be .# = {1,---, M}. Then there are N =
2MOM subsets {P: 1 <j < N} of cardinality M/2 with
symmetric difference of cardinality at least eM. Let & =
{(D;,0): 1 <j <N}, where Q; is the uniform distribu-
tlon on D, be the random encodmgs for the objects
1,2,--, N. We know from [18] that this gives a “good”
randomlzed identification code for the noiseless channel
with second-order rate 1/nloglog2*<™ ~ 1/nlog M =
R(d) + o(n). We also know by the converse result of [18]
that this is the best possible. With every updating, these
randomized encodings are employed.

The same can be done with several users in any case
E,. Thus, the regions %,(d,, d,) are achievable as regions
for second-order rate pairs. Also, Lemma 3 (a), (b) and
Lemma 4 extend to second-order regions. We summarize
this.

Theorem 5: If ¢ is a metric, then the second-order
identification regions satisfy

)o</\ <1,3r=1

(3

d,
{(Rl,R) o <R, < \R ()t

c#?(d,,d,) cR(dy,d,) CI R, (d; + d,)).

In particular, for A, = 1, d, = d, = d(3R,(2d), ;R ;2 d))
is an optimal identification pair.
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VIIIL. ConsTRUCTIONS OF MULTIUSER WUM CODES
UNDER PrIvACcYy CONSTRAINTS

We now consider symmetric alternating WUM codes as
defined in Section IV. For the history of this concept, the
reader is also advised to consult the Appendix. Since
throughout this section all users keep their privacy, we
simply speak of WUM codes.

We begin with (n, M, N), that is, two user WUM codes
of blocklength n and message sets of sizes M and N.

We use both the subset and the sequence notation. It
may be helpful to start with a simple example.

(6, 3, 4) Two-User WUM Code: The entries in the follow-
ing table are the sets C;; (1 <i<4,1<j <3).

i\i 1 2 3 4
1 {1,2,3} {1,2} {1,3} 2,3}
{4,5,6) {4, 5} {4, 6} {5, 6}

2 (3} {1,2, 6} {3,5) {1,6)
{6} {2,4,5} {2,6} {3,4}

3 {5} {1} {1,3,5} (1,5}
{2} {4} {2,4,6}  {2,4}

The total rate is £ log3+4 = 0,5975---.

The idea used to construct this code is also useful for
the construction of the two two-user codes below, as well
as for the proof of a random coding theorem for two-user
WUM in Section IV. This basic idea can be described for
the (6, 3,4) code as follows. Suppose that the first user has
four messages. For each message of the first user, we
choose a subset of {1,---,6} and denote it by X, (1 < i < 4).
For each message of the second user, we also choose a
subset of {1,-:+,6} and denote it by Y; (1 < i < 3). We call
these two collections of subsets the basis of the code.
Then we define either C;; = {X; N Y, X N Y} or C; =
{X; nY?, X{ NY}. Obviously, if all of the sets C;; so
defined are disjoint, then {C;;: 1 <i < 4,1 < < 3} forms
a two-user WUM code. For our (6,3,4) code, we use
X, =1{1,2,3}, X, =1{1,2,6}, X, =1{1,3,5}, X, =1{2,3,4}
and Y; ={1,2,3}, Y, = {1,2,6}, Y; = {1,3,5). When we
construct the code, all we need to take care of is the right
choice for C;; between the two possible methods for each
pair (i, ).

The construction of the next two codes is quite similar,
even with respect to the choices of the X;’s and the ¥}’s.

X, =1{1,2,3,4,5},
X, =1{1,2,3,4,10},
X, =1{1,2,4,5,9},
X, =1{1,2,4,5,8},
Xs =1{1,3,4,5,7},
Xs = {2,3,4,5,6},

Y, = {1,2,3,4,5},
Y, = {1,2,3,4,10},
Y; = {1,2,3,5,9},
Y, = {1,2,4,5,8},
Ys = {1,3,4,5,7},
Y, = {2,3,4,5,6},
Y, ={1,2,3,9,10},
Y, = {1,2,4,8,10},

(8, 6, 6) Two-user WUM Code: We take
X, ={1,2,3,4}, and Y, ={1,2,3,4},

X, =1{1,2,3,8}, Y, = {1,2,3,8},
X; =1{1,2,4,7}, Y, = {1,2,4,7},
X, = {1,3,4,6}, Y, = {1,2,7,8},
X, =1{2,3,4,5}, Y; = {1,3,6,8},
X, =1{2,5,7,8}, Y, =1{1,4,6,7},

Define either

(*) C;={X,nY, X NY)

J

or

(x*) C;={X,nY’XfNY}

except for (i, ) = (6,2), where we set Cq, = {J}. The
code is defined through the following table. The entries of
the table are either * or * *, indicating which formula is

used to form the set C;;, except for C,, where the entry is

the set {}.
F\i 1 2 ‘3 4 5 6
1 * * * * *
2 * % * * * % {@}
3 * ¥ * ¥ * * * ¥ *
4 * * * * % * * *
5 * % * * % * * % *
6 * * * * * * * % *

The total rate is 4 log6- 6 = 0,6463 -+ .

(10, 6,16) Two-User WUM Code: The construction of
this code is similar to the first two two-user codes. To
choose the basis, we divide the ten positions into two
equal parts, {1,2,3,4,5} and {6, 7, 8,9, 10}. For a subset of
the first part, say Z = {1, 2,5}, we denote {3,4} by Z¢ and
{8,9} by 5 + Z¢, and we define Z = {1,2,5,8,9) = Z U (5
+ Z°). For this code, we take as X,’s the six Z’s such that
the cardinalities of the corresponding Z’s are greater
than or equal to 4, and as Y}’s the 16 Z’s such that the
cardinalities of the corresponding Z’s are greater than or
equal to 3.

Y, = {1,2,5,8,9},

Y, = {1,3,4,7,10},
Y, = {1,3,5,7,9},
Y, = {1,4,5,7,8},
Y;; = {2,3,4,6,10},
Y, = {2,3,5,6,9},
Y;s = {2,4,5,6,8},
Y, = {3,4,5,6,7}.



AHLSWEDE AND ZHANG: MULTIUSER WRITE-EFFICIENT MEMORIES 683

The code is given in the following table by showing
which formula is used to form the sets C;;.

J\i 1 2 3 4 5 6
1 * ® % * % * * * * ®
2 * * * ok * % * ok * K
3 * * * * k * % * %
4 * * * * % * %
5 * * * * %
6 * * * %
7 * % * * * ok * % * *
8 * % * * k * * ok * ok
9 * ok E ® * * ok * *
10 * ok ® * % * %
11 * ok * % * ® % * * ok
12 * * %k * % * * *
13 ok oE ® * % ® K ® % *
14 * * % * ® %k * % *
15 * % * % * % ® ® % *
16 * % ® % * % x ok * *

For this code, the sum of the two rates is 0.6585---.
This is the best two-user WUM code we know.

For more than two users, it is convenient to write
symmetric alternating WUM codes in the following way.

Let . {1 2,,M}, 1 <i <k be finite sets and let
M—n{
An (n, M 1, My ) (symmetric alternating) k-user WUM

code is a collection of sets & = {C,: u €.#} with C, C
{0,1}* such that, for all u €# and all v €4 with
dy(u,v) < lforall x e C,,ay € C, existswith x Ay =
0.

We consider the case M, =2 for i = 1,---,k, and we
address [n, k] one-bit k-user WUM codes. Their total rate
is obviously k /n.

[5, 31 One-Bit WUM Code:

= {00000}, C,q = {01100,00011},
Cypo = {01010,00101}, Cgo, = {01001, 00110},
C,yo = 100100,10010}, Cj; = {00001, 10100},
Cyyy = {00010,10001}, C,;, = {10000, 01000}

The rest of this sectlon is devoted to a one-bit six-user
WUM code. Its rate £ is surprisingly high for an alternat-
ing code.

[7, 6] One-Bit WUM Code: We first look at the point-line
incidence matrix of a projective plane:

OO R FEP
SO R =R OO
RO OO
OFR O, OO
= O = OO RO
—_OOR = OO
O = O = OO

! Here and later, it is more- convenient to denote sequences z" =
(Zly"', Z") by Z.

Deleting the first column results in a 6 X 7 matrix:

OO R FER OO =
——--0 0 oo
O O O=O
—_O =R OO RO
_O Ok OO
O = O OO

Denote the entries of this matrix by z,; 1 <i <6,1 <j
< 6; the rows by X, X,,--, X;; and the columns by
Y,,Y,, Y. For x € {0, 1)%, define

(I)(x) éy = (.yl"“,y7)

where y, = 1 iff d (X, x) <2 and y, = 0 iff d,(X,, x)
> 3. Similarly, for y € Q] = {z € {0, 1}": |z] < 3}, define

Y(y) Ax= (xn'",x )

where x;, = 1 iff dy (Y] = 0 iff d,(Y;

Theorem 6:

() ®: {0,1)° - Q} is bijective and ¥ = &~

(i) & = {{®(x), D(x)}: x € {0,1}%} is a one-bit six-user
WUM code.

Ad (ii): We know from (i) that ® is the encoding
function and ¥ is the decoding function. Both functions
are quite simple and easy to implement. Now, the WUM
property remains to be verified. It suffices to show that
dy(x,x') <1 implies ®(x) A ®(x') = 0. For this, notice
that in case d,(x,¥) =35 for any i, we have, by the
triangle inequality, either d(x, X;) > 3 or dy(¥, X)) =
3. This means that

(®(x) A ®(¥))i=0 fori=

,¥) <3, x ) =4

1,2’..., n
or ®(x) A D(¥) =0.
IX. More OPEN PROBLEMS

Problem 7 (Carrier Problem): Prescribe cost function @,
per-letter cost d, and rate R. Find § ¢ 2" with minimal
cardinality such that

Vs € S:1S N S,,(s)| > exp {Rn}

where S,,(s) = sphere of cost radius dn. In particular, we
are interested in the Hamming case.

Problem 8: Recall from the Introduction the definition
of an (n, M, d) WEM code in case (E,, D_), and for any
code & = {C,,**, Cy}, the definitions of dg, v¢, and R(d).

We impose the following condition on &.

IC,l < exp{pn} fori=1,2,--,M 9.1

and set R(d, p) = sup{vg: dy < d, ¥ satisfies (9.1)}. De-
termine this rate function. There is a relation to Problem
7.

Problem 9: We speak of an automatic privacy guarantee
if the code {C;;: 1 <i <M, 1 <j < N} is such that updat-
ings from C; to C, in one step are impossible (for
instance, for the WUM or other cost constramts) ifi#i
and j # j'. This means that the users can “move only in
rows or columns,” and keeping their interests in updating
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never can hurt the other. What are the achievable rates in
the various models of side information, etc.?

APPENDIX
Two SINGLE-User WUM CobDEs

We begin with historical remarks.

Write-unidirectional memories (WUM’s) have been intro-
duced independently by Willems and Vinck [3] and Borden [4].
A WUM is a binary storage medium that is constrained the the
following way. During alternate updatings of its contents, the
encoder may write either 1’s in selected bit locations or 0’s in
selected bit locations, but is not permitted to write combinations
of 0’s and 1’s. Such a constraint arises when the mechanism that
chooses to write 0’s or 1’s operates much more slowly than that
of accessing and scanning the memory.

Corresponding to the given constraint, a WUM code is de-
fined as follows.

A family & = {C,, -, C,,} of subsets of {0,1}" is a WUM code
of length n and size M, if

O CNnC=Dfori+]j,

(i) for all ie{l,--,M}, all x< C,, and all j € {1,---, M},
there exists a vector y € C; such that x <y or y < x, where we
write x = (x>, x,) <y = (y,,-, y,) if, for all i = 1,---,n, x,
= 1 implies y, = 1.

The sets C,; are called the WUM sets of the code #. All
codewords of a set C; represent the same message, say m;. We
use the abbreviation (n, M) code for a WUM code of length n
and size M. The rate R of an (n, M) code is

1
R= ;log2 M. (A1)
Let M(n) be the maximum value of M such that there exists an

(n, M) code, and let R(n) be the corresponding rate. Borden [4]
proved the following result.

Theorem:
1+v5
() R(n) <yi= 10g2( 5 ) ~06942 ifn>5
(A.2)
(i) lim R(n) = y. (A3)

In Borden’s model, the encoder can choose whether he will
operate in the O-write state or in the 1-write state when he
updates the information stored by the WUM. Willems and
Vinck considered a slightly different model. They required that
the encoder writes (s and 1’s alternately during successive
updatings. The WUM code in the sense of Willems and Vinck
has later been called alternating WUM code by Simonyi [5]. Its
definition is given in Section IV.

Let R,(n) be the maximal rate of an alternating WUM code
of length n. It follows from Borden’s proof of his theorem above
that also lim,, _,,, R,(n) = y. The subclass of alternating WUM
codes is important because any alternating WUM code can be
expanded with the same rate to arbitrarily large n simply by
concatenation. Note that this is not true for general WUM
codes.

Borden’s proof of (A.3) is not constructive. The best explicit
construction in [4] for arbitrarily large n yields R = % and is the
following one. Let n, the number of binary positions of the
memory, be even, and assume that the memory is initially filled
with 0’s. Divide the WUM into two parts, 4 and B, each of size

n/2. When updating the content of the memory for the first
time, write 1’s in selected bit locations of part 4 and in all bit
locations of part B of the memory; during the next updating,
write 0’s into all bit locations of part 4 and into selected bit
locations of part B, and so on. Thus, in every updating, n /2 bits
of information can be stored in one of the two parts of the
memory, and the other part is prepared for the next updating.
This corresponds to a WUM code with the rate R, = 1.

Several WUM codes with higher rates are know. Willems and
Vinck [3] gave the construction of a (5,6) code with the rate
(log, 6) /5 = 0.5170. Simonyi [5] presented an (11, 58) code with
the rate (log, 58)/11 = 0.5325. Zhang constructed the (10, 41)
code and the (15,307) code presented below which achieve the
rates 0.5376 and 0.5508, respectively. The presently known high-
est rate is 0.5637 for Koschnick’s [11] (17, 767) code. All of these
codes have the “alternating” property, and therefore can be
used for arbitrarily large memories.

They are also all symmetric in the sense defined in (4.3).

To fix ideas, we begin with a simple symmetric alternating
WUM code. _

Example—(5, 6) WUM code (Willems and Vinck [3]):

C, = {10000,01100,00011}, C, = {01000, 10010, 00101},
= {00100, 10001, 01010}, C, = {00010, 10100, 01001},
= {00001, 11000, 00110}, C, = {00000}.

The rate of this code is £ log, 6 = 0.5170.

This code, as well as Simonyi’s code, have the property that
for all i e {1,»-, M}, the words of the WUM sets C; have
disjoint supports. However, one can show that symmetric alter-
nating WUM codes with this property cannot have rates arbi-
trarily near y. Actually, the best code with this property is
Simonyi’s code having the rate 0.5325.

We now present two single-user WUM codes. One of them is
a (10,41) code; the other one is a (15,307) code. We first
introduce a new concept—WUM subsets—which will play a key
role in their constructions.

Let
Q7 = {x €{0,1)": lix| <k} (A4
where || x|| is the weight of x.
A subset W of Qf is called an (n, k) WUM set if
Vxe Qf dye W  suchthat y and x are disjoint. (A.5)

Obviously, a set of disjoint (n,k) WUM subsets of Qf for a
symmetric alternating WUM code. Our two codes presented
here are both of this type.

First, the reader is asked to check that the following sets are
(10, 3) WUM sets.

A: 1110000000 B: 1110000000 C: 1110000000
1101000000 0001110000 0001110000
0011000000 0000001110 0000001100
0000111000 0000000001, 0000000011.
0000000111;

Not only are these three sets (10,3) WUM sets, but their
permutations are as well. In fact, we have the following more
general observation:

Let W be an (n, k) WUM set and o a permutation on the set
{1,--, n}; then W is again an (n, k) WUM set.

Now, the idea for our construction is clear. To construct our
codes, we first choose a set of basic WUM sets, and then choose
a set of permutations for each WUM set to make the results of
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the permutations all disjoint. These WUM sets obtained from tions:

the permutations form a WUM code. An inspection of Borden’s

proof of (A.2) shows that rates arbitrarily close to y can be S = (; g i g i g g g 1?) 12 ﬁ g ﬁ ig ﬁ),
obtained with these codes. The task of choosing WUM sets and

permutations is usually very difficult. It can be done (as here) S = (1 2345 678910 11 12 13 14 15),

artistically or algorithmically (as in [11]). 23451 678910 1112131415/
(10, 41) WUM Code: We use the following permutation in the 12345 678 910 11 12 13 14 15

construction of this code: S2 = (1 2345 78910 6 11 12 13 14 15);

(12345678 910 Ss=(12345 678910 1112131415);
S“(zs 3es s 0 6)‘ 12345 678910 12 13 14 15 11

T=( 12345678910 1112131415),

This permutation has the property that 1112131415 1234 5 67 8 910

234 5 678910 11 1213 14 15

1
R‘(67s910 1234 5 1112131415)'
The code contains the set {000000000000000}, and the following

and for any nonzero codeword x in Q3°, sx # x. To show how 12 basic WUM sets and their various permutations. The 12 basic

this permutation works on the words in {0, 1}'°, we present the sets are
foli(;vmg example. A;: 110001000001000  A,: 110001100000000
010001100010000 000001100011000
x = 1101001010; 100000100011000 11000000001 1000
001010010000001 001100000100000
then 000010010100100 000000011000001
001000000100101 0000100000001 10;
000001010010100 000000101001000
and finally, 101000000010100 000010000010010
010110000000000 010010000100000
5°x1101001010 = x. 000000101100000 000000010000101;
000000000001011;
For a set A of WOrdS, Siz‘l is defined by Si14 = {six: x e A} A.: 110000001000000 A.: 111001000000000
The (10, 41) WUM code consists of the set {0000000000}, and 3 000001100001000 6 110100010000000
the following eight basic WUM subsets B,~Bg of QY and all 000100000010100 001101010000000
their permutations s'B; 0 <i<4,1<j < 8 There are all to- 000000010100001 000010000010100
gether 1 + 5 X 8 = 41 distinct subsets in this code. We leave to
the reader the task to check that this code satisfies all of the 001010000000010; 000000101100001
requirements for a symmetric alternating WUM code. This can 000000001001011
be done by computer. 000000100101010;
: A,: 111000001000000 A4: 000010000000000
B,: 1100010000 B,: 1010010000 B,: 1000011000 110100000100000 111000100000000
1100001000 1010000100 0100011000 001100001100000 000100011100000
0000011000 0000010100 1100000000 000010000011000 000001000000001
0010100010 0001101000 0011000001 000001110000100 000000000011110;
0001000101 0100000011 0000100110 000000100000111
000001010000011;
B,: 0010000010 B;: 0001010100 B,: 1010000010 A,: 110001010000000  A,o: 101000110000000
00010000100 1000001010 0101010000 000001010001010 000001000110100
0000111000 0000000001 0000100000 110000000001010 000110000000010
1100000001 0110100000 0000001101 000000101010100 000000001001000
B,: 1000010100 Bg: 1110000000 8003%(1)8?1(1)8281 01000000000001;
0001001010 0000001110 001110000000000:
%fg‘f%ggé 888%2%8(1) Ajy: 110000011000000 A ,,: 110100001000000
: 000001000100110 000010110100000
(15, 307) WUM Code: This code uses up all of the words in 000000100010001 001000000000110
Q3. It consists only of (15,4) WUM sets. To describe the 001000000001000 000001000010000
000110000000000; 000000000001001.

construction of this code, we first introduce a few basic permuta-
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The (15,307) WUM code consists of the following subsets of
Q.
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a) {000000000000000}; :

b) SiS{Sk4,,0<i<4,0<j<4,0<k<4

c) $4,0<i<4,2<j<3

d) T'/RIA,0<i<20<j<1

e) S'T'R*,,0<i<4,0<j<20<k<1,5<i<7,

) ST/4,0<i<4,0<j<2,8<I<12

Remark: For these two codes, only minimal WUM sets and all
the elements in O} are used. This leads us to conjecture that
these two codes are optimal for their blocklengths.
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