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1. Introduction

The notion of an antichain in a partially ordered set was generalized in [1] and [2] to

the seemingly natural and useful notion of a “cloud-antichain” (Ai)ﬁil .

Whereas in antichains elements of a partially ordered set are compared in cloud—
antichains sets of elements take their role. Elements in different sets A; , called clouds,
are required to be incomparable. More formally, for every two clouds A; and A; we
have

A; 4 Aj for all A; € A; and all Aj € .Aj . (1.1)

This concept is a degree more sophisticated than those usually studied. Its logical
structure suggests to call it of type (V,V) . Clearly, this makes us also curious about
definitions of the types (3,V),(V,3), and (3,3) . In order to test whether there is
any substance to these speculations about concepts, we study them here in connection
with the simple notion of adjacency of edges in a graph.

Amagzingly, this leads to several new extremal problems. We hope that readers find
some of the solutions as beautiful as they appear to us. Extensions to hypergraphs (in
fact already to k—uniform hypergraphs) constitute a formidable program.

A very special case of the Erdos-Ko-Rado Theorem is the statement that a graph
Gpn,n with n vertices and N edges, which have pairwise a common vertex (that is,
are pairwise adjacent), satisfies

N<n-—1,if n>3. (1.2)

This fact is of course obvious and so is the fact that the optimal value of N is assumed
for stars (in the terminology of [10]).

We introduce now our new problems. It is often convenient to view edges as two—

element sets, that is as elements of (%}') , where V, = {1,2,...,n}.

Thus edges are adjacent if the sets intersect. In the sequel (Ai)i]il is always a family
of disjoint subsets of (1)2") . It is said to be of type (V,V,I),if for all i #j

AiﬂAj;éQ for all A; € A; and all AjE.Aj. (13)
Similarly, (Ai)i]il is of type (3,V, 1), if for all i # j
there exists an A; € A; such that for all A4; € A;A,NA; #0, (1.4)
it is of type (V,3,1) ,if for all i # j

for all A; € A; there exists an A; € A; with A;NA; # @, (1.5)
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and it is of type (3,3,1), if for all 7 #j

there exists an A; € A; and there exists an A; € A; with A4;NA; #2. (1.6)

We also speak of (V,V)—intersecting systems, etc. The maximal cardinalities N of
such systems are denoted by I,(V,V), I,(3,V), IL,(¥,3) and I,(3,3), resp. Here
the first quantity is readily seen to equal the maximal cardinality I,, of the usual
intersecting system.

The other three quantities are investigated in Section 3. The first two of them are deter-
mined exactly (Theorem 1, 2). The third grows like n3/2 (Theorem 3). A seemingly
small change in our definitions, namely, replacement of non-disjointness conditions
A;NA; # @ by disjointness conditions A; N A; = @ in the definitions above leads to
new notions of disjoint systems, whose maximal cardinalities are denoted by D,,(3,V) ,
D, (¥,3),and D,(3,3) . We have determined the growth of these extremal values in
Section 4 (Theorems 4, 5, and 6).

In the course of our investigations further notions arose. We speak of the type (3,V,I') ,
if (1.4) holds only one-sided, that is for at least one of the pairs (i,j) and (j,1) .
By analogy the types (V,3,I') and (3,V,D'), (V,3,D’) are defined. The extremal
cardinalities are denoted by I/(3,V), I,(V¥,3), D.(3,V),and Dj(V,3) . In Section
5 we comment on these functions. As a Corollary to Theorems 5, 6 we obtain the
asymptotic growth of D/ (V,3) . We have no idea about D}, (3,V) which goes beyond
the inequalities D, (3,V) < D/ (3,V) < D, (V,3) . Concerning I (3,V¥) and I}(V,3)
we present two constructions, which we believe to be optimal.

Finally, we emphasize that there are strong connections of our concepts to those which
have been developped in the context of so called “Intersection Theorems” (cf. [11], [12],
[10]), the successor of [7]. There are even connections to known theorems in special
cases, however, generally our concepts seem to go in new directions.

2. Auxiliary Results

In this paper we essentially start from first principles. With the notion of clouds we
continue the terminology of [1] and [2]. This and other concepts used are such that they
directly can be generalized to hypergraphs, in particular to the uniform hypergraphs
defined by the k—element subsets of an n—set . We use the well-known fact that
for every prime power p™ there is a projective plane of order p™ , which has n =
p>™ 4+ p™ + 1 points and lines.

Frequently we use the knowledge of the edge chromatic number of the complete graphs
which is based on the matchings P; = {(z,y) :  +y =4 mod n} . Even though this is
a rather simple case of Baranyai’s Theorem, we always refer to that Theorem, because
we want to suggest, what we believe to be, the right intuition for an understanding of
the presently open extensions of our results to hypergraphs.
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General form of Baranyai’s Theorem

Let ni,...,n; be natural numbers such that 2221 n; = (Z) , then for V, =
{1,2,...,n} (%) canbe partitioned into disjoint sets Pi,...,P; suchthat |P;|=mn;
and each £ € A is contained in exactly [2:%] or |2:%] members of P; .

Finally we use a result of Erdés and Hanani [5]. If A(n,2k — 2,k) is the maximal
cardinality of a family of k-element subsets of V), , which pairwise intersect in at
most one point (or, equivalently, have symmetric difference of size at least 2k — 2),
then

1
; _ 2_ _ -
nhm A(n, 2k —2,k)n K1) °

(Improvements of this result are presented in the language of codes on page 529 of [8]).

3. Intersecting Systems

Theorem 1:

n—1 for neN-{3,5}

n for n=3,5.

e =1

Proof: Let us consider a cloud system A,,..., Ay of type (3,V,I).If |A;] =1 for
1=1,...,N ,then N <n—1 except for n =3, where the bound is 3. Suppose now
that |A;| > 2 and that for A;; € A; (1=2,...,N)

AliﬂX#QVXE.Al. (31)
We distinguish between two cases

dB,C € A, with BNC # @ : Now at most 1+ n — 3 edges are adjacent with B
and C . Thus we have N<14+1+n-3<n-1.

dB.C € Ay with BN C = @ : Now only 4 edges are adjacent with B and C , and
we have N <5.

In all cases I,(3,V) <n—1 for n > 6 and the reverse inequality is true, because
n—1<1I1,V,V) < I,(3,¥) . The cases n = 1,2,3 and 4 are settled by inspection.
It remains to be seen that I5(3,V) > 5. Application of Baranyai’s Theorem with the
parameters n =5k =2,n; =2 for i =1,...,5 gives disjoint clouds A; = P;(i =
1,2,...,5) with non—adjacent members. The system (Ai)?zl is readily verified to be
of type (3,V,1I).

The next result is deeper.



Theorem 2:

n for ne N—{1,2,4}
n—1 for n=1,2,4.

I,(¥,3) = {

Proof: We establish first the inequality

I(v,3) <n. (3.2)

Let (Ci)i]\i1 be an (V,3,I)-system in V, = {1,2,...,n} . To every cloud C; we
associate the vertex set C; covered by all edges, that is,

c;=J C. (3.3)

ceC;

We also define for =z € V),

Jx)={i:1<i< N,z €C;},
L(x)={C;:i€ J(x)} .



The key observation is

L@ <| () Ci|l=n—-| J Ci - (3.6)
i€J(z)

i€ J(x)
Here the bar stands for complementation of a set in its ground set.

To verify (3.6) notice first that for j € J(z) there is a y; with {z,y;} € C; and
that by disjointness of the clouds these y;—’s are distinct. We have therefore

Lol = Hy; 15 € (@)}
Next, by the (V,3,I)-property for every j € J(z) and every i € J(x) there is a
{u,v} € C; with {z,y;} N{u,v} # @ and since z ¢ {u,v} necessarily y; € {u,v} .
This yields {y; :j € J(z)} C C; for i€ J(x) and thus (3.6).

we can write (3.6) in the form

Using the abbreviation p, = ‘miej(w) C;

N—|J()| <n—pg - (3.7)

If p, =0, then |J(x)] =N and all clouds contain an edge with vertex z . In this
case therefore N <n —1 and (3.2) holds. If p, #0 for all z €V, , then we derive
from (3.7)

1 — 1
;E(N—‘J(az)b Szﬁn—n.

x

. = —\—1 ope
Since ). ;%z |J(z)| = ZZJ\; D 2€C, ;%m < sz\;l Y 2cT, (C;) ~ = N by definition of
i , we conclude that

Z%N—Ngzuin—n. (3.8)
x z x z

Finally, it follows from p, <n for all z €V, that ), u(1> >1.

Moreover, . ﬁ —1 > 0 and thus (3.8) implies (3.2) unless |L,| = 0 for all

x € V, . In the latter case there cannot be any cloud.
We construct now (V, 3, I)-systems achieving the bounds claimed.

Case n=20+1:

We construct clouds with the help of Baranyai’s Theorem (Section 2) for the parameters
ni=4£ for i=1,...,t with t = (*1)¢"1, k=2 as follows



Ai=P, 1<i<t. (3.9)

Since there is exactly one point not covered by A; the system (Ai)§:1 is of type
(V,3,I) . We achieve the desired bound, because ¢ = (26;?% =n

Case n=2/:

Here the previous approach gives only ¢t = 2/—1 = n—1 . This is optimal only for n = 2
and, as inspection shows, for n = 4 . For the other cases there is a new construction

based on a concatenation argument. To every (V,3,I)-system in {1,2,...,m} we
can associate an (V,3,I)-system in {1,2,...,2m} which has twice as many clouds.
They are obtained from the original clouds Ay,..., Ay as follows:

{{2z — 1,2y — 1}, {22, 2y }},

({22 — 1,2y}, {22,2y — 1}}, (3.10)

{z,y} —

that is an edge {z,y} occuring in a cloud is replaced by two edges {2z — 1,2y —
1},{2z,2y} . Thus a cloud A; is transformed into a new cloud A}, ; . The clouds

5 are obtained by using the second replacement in (3.10). The replacement rules

ensure that (.A;)fivl is an (V,d,I)-system .

We know now that I,,,(V,3) = m implies I5,,(V,3) = 2m . This and the result of the
previous case settle the problem for all numbers divisible by an odd prime.

The remaining cases n = 2%, > 3 | were settled if we know that Ig(V,3) = 8 . Here we
have the following construction. There are 8 clouds all having 3 edges. The 4 edges not
used partition Vg . Here we choose for that partition {{1,2},{3,4},{5,6},{7,8}}.

The clouds are

Ci={{1,3},{2,5},{4,6}}  Cs = {{1,6},{2,8},{5,7}}
Cx = {{1,5},{2,4},{3,6}}  Ce = {{1,7},{2,6},{5,8}}
Cs ={{1,4},{2,7},{3,8}}  Cr ={{3,5},{4,8},{6,7}}
Ca={{1,8},{2,3},{4.7}}  Cs ={{3,7},{4,5},{6,8}}

and their associated vertex sets are

01=CQZV8\{7,8}, C3=C4=V8\{5,6}
C5=CGZV8\{3,4}, C7=Cs=V8\{1,2}.

Remarks

1.) The above arguments also give a closely related result of independent interest. Let
M,, be the maximal number N for which there exist graphs with n vertices
admitting a proper edge—coloring with N colors such that one cannot change the
color of a single edge without destroying the coloring, then clearly M, < I,(V,3) .
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Moreover, since our constructions in the proof of Theorem 2 use only clouds with
disjoint edges, also the opposite inequality holds.

Theorem 2’:
n for n e N—{1,2,4}
M, =
n—1 for n=1,2,4.

2.) If we allow clouds to consist of edges and vertices and consider again systems with
the (V,3,I)-property , then we can study their maximal cardinalities I*(V,3) .
We have

I’(V,3)=n forall neN. (3.11)

Proof: For every n the value n is assumed by the system
{1 ({28 ({Ln} )

Clearly, if no cloud uses a vertex, then Theorem 1 applies and gives the bound n ,
and if a vertex, say « , is in some cloud, then all other clouds contain an edge
{z,y} and again the number of clouds cannot exceed n .

Whereas the quantities considered until now grow linearly in n next we obtain an
3/2_1
n aw .

Theorem 3: lim,, _,, I,,(3, El)n_% =1.

Proof: Let (Ci)il\; be an (3,3,I)-system in V, . Since an edge is adjacent with
2(n — 2) edges we have the inequality

N <|Ci|2(n—2) forall i=1,2,...,N . (3.12)

Furthermore, since the total number of edges is (g) , we also have
) n\ . _q
min |C;| < 9 N~ . (3.13)
1
From (3.12) and (3.13) we deduce N < (3)N~'2(n—2) and hence

N < [n(n—1)(n—-2)]"2 <n3?. (3.14)

We provide now the construction, which asymptotically achieves this bound. It uses
the existence of projective planes of prime power order and again Baranyai’s Theorem.

Let k=p™(p#2), n=k?>+k+1,andlet Li,...,L, be the lines in the projective
plane with n points. We use the facts

|L;| =k+1 for i=1,2,...,n (3.15)

LN Lj|=1 for i#3j. (3.16)
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Since k + 1 is even, by Baranyai’s Theorem we can partition the set of all (k_gl)

edges in L; into k clouds of k—;l edges each. These clouds have among each other
the desired intersection property. Since all clouds live on exactly all £+ 1 points of a
line, by (3.16) also two clouds living on different lines have the intersection property.
Now the number of clouds N satisfies

N=k-n (3.17)

and since k:\/n—%—%,wehave N=n< n—%—%).

Now for arbitrary, but sufficiently large n , we use a familiar argument based on the
following density property of primes:

For all sufficiently large m there is a prime p(m) between m — £m?3 and m .
This and sharper results are stated and quoted on page XX of [9]. Choose now m
such that

m+1)2+m+1)+1>n>m?>+m+1.

Since n > p(m)?+ p(m)+1,since p(m) >m — E=m?> > \/n and since I,(3,3) is

monotonically increasing in n we conclude that
1,(3,3) 2 p(m)(p(m)* + p(m) + 1) > n®/2 .

This and (3.14) imply the result.

4. Disjoint Systems

We state first the main results of this Section.

Theorem 4: lim, ,o, D,(3,V)n"2 = ¢ .
Theorem 5: lim,,_,o, Dy, (V, )02 = 1 .
Theorem 6: lim,_,o, Dp(3, )02 = 1 .



A. The upper bounds

Lemma 1: D,(3,3) < 2.

Proof: In an (3,3, D)-system Ci,...,Cy there are at most |%| clouds with one
edge only. Therefore

Proof: For an (3,V, D)-system (C;)N, let the labelling be chosen such that the first
N; clouds have exactly one edge, the next N5 clouds have exactly two edges, etc.

We know that

N < PJ . (4.1)

: *\N1+N2
Next we consider (C;);Zn. 7 , Where

«_ (Ci
XeC;
and notice that these clouds form again an (3,V, D)-system .
C;
(%)

Furthermore, one readily verifies that

It uses Eivzl;ﬁfl >3 Ny edges.

<§Z>HC]:® for ’I:E{N1+]_,...,N1+N2} and

JE{N1+1,..., N1+ Na} . (4.3)

We conclude that N1 +3 Na+3 555 Nj < () and by (4.1) 3251 V5 < (5)+n.
Thus N <2 .
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B. Constructions yielding the lower bounds

From the Theorem by Erdés and Hanani we know that

1
lim A(n,4,3)n"% = G (4.4)

n—00

For any family A with parameters n,4 and 3 it follows from |AAA'| > 4 for
A, A" € A that the system of clouds {C = (g) N ONS .A} associated with A is of
(3,¥, D)-type .

Therefore
D, (3,Y) > A(n,4,3) (4.5)

and Theorem 4 follows from (4.4), (4.5) and Lemma 2.

The proofs of Theorem 5 and 6 will be complete when we have shown that

lim, ., Dnp(V,3)n"2 >

——n—>0Q

. (4.6)

AN

We construct now an (V, 3, D)-system yielding this result. It suffices to consider values
for n of the form

n==Fk-u® k=4t (4.7)

with k£ and wu tending to infinity. Partition now V,, into sets Wiy,..., Wy such
that all have a cardinality u? . Let Wy, = {W; : 1 <4 < k} be the vertex set of a
complete graph. By Baranyai’s Theorem its set of edges can be partitioned into sets
Eq,...,Ex_1 of disjoint edges such that

k
|ES|:§ for s=1,2,...,k—1. (4.8)

Since k is divisible by 4, we can define a partition Fy of F, into non—adjacent pairs
of edges.

Thus the members of F, are of the form {(W;, W;),(W,, Wp,)} with all four indices
being different and % < j,£ < m . Clearly, the elements of W; x W; etc. are edges in
Vi -

Below we match every edge in W; x W; with an edge in W, x W, and let two
matched edges form a cloud. This will be done for all members of Fy and all s.

Certain omissions are then necessary to convert this system of clouds into an (¥, 3, D)-system .
These matchings are constructed via the following basic bijection. Let ¢, : {1,2,...,u2}x
{1,2,...,u?} — {1,2,...,u®} be two maps defined by
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pla,b) =pu+q+1 ) {azpu+x,1§w§u (4.9)
Y(a,b) = (z—1u+y b=pu+yl<y<u '
Label now the elements in )),, such that
W;={(i,s):1<s<w?}; i=1,2,....k; (4.10)
and define for all quadruples of indices occuring f: W; x W; — W, x W,,, by
f (G, 8),(4:1) = (£, 0(s, 1)), (m,9(s,1))) (4.11)

The (V,3, D)-property must now hold for all pairs of clouds.

Three situations arise. In the case both clouds have an edge from W; x W, and an
edge from W, x W,,, the property obviously holds. The same is the case if the clouds
are based on two different members of the same F; . Finally we have to investigate
the case where one cloud is based on {{W;, W;},{W,, W,,,}} € Fs; and the other on
{W, Wi AW, W, }} € Fu (s #5') .

The (V,d, D)-property can be violated only if

{i',4'} € {i,g,t;m} or {¢,m'} C {i,j,£,m} or
(i} € {4, ¢, m'} or {&m}C {i',, ¢, m'} .

It suffices to consider a case like

{(1,a),(2,0)},{(3, ¢(a, b)), (4,4(a, b))},
{(Lal)’(?’vbl)}’{('a')} (4'12)

with a =d' and b = ¢(a,b) .
For fixed a , how many pairs (a,b’) have to be excluded in {1,...,u%}x{1,...,u?}?

Clearly, the conflict in (4.11) is resolved, if for every a € {1,...,u*} we omit the set

Gy(a) = {(a,b) = (a,(a,b)) : b€ {1,...,u°}) .

If we write a=pu+z, b=qu+vy, ¢(a,b) =pu+ g+ 1, then we see that

|Gy(a) =u . (4.13)

From the discussion above we know that there are 4 cases like the one in (4.12).
In total we have to exclude at most 4 - u2-u elements from the u* elements of
{1,2,...,u?} x {1,2,...,u%} .
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The total number of clouds left is therefore

(uf —4ud)E (k1) =2 — w5k 43k —1)> 2 (1- 1 — ) which implies (4.6).

Remark. A result of [12], Corollary 8.7 in [13], implies (4.6). This can readily be
verified by choosing the A in [13] to consist of two non—adjacent edges. For k—uniform
hypergraphs (k > 2) there does not seem to be such a simple connection. Also, our
proof is constructive and the proof in [12], being based on random selection, obviously
is not.
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5. Remarks about non—symmetric relations
The inequalities

D, (V,3) < D (V,3) < D,(3,3) (5.1)
and Theorem 5 and 6 imply
Corollary 7: lim,,_,o, D/, (V,3)n"2=1/4.
We turn to the 1-sided intersection property

Conjecture 8:

n—1 for n=1,2
n for n=3,4
n+2 for n=5
n+1 for n>6.

I (3,v) =

Constructions achieving lower bounds:

The cases n =1,2,3,4 being obvious we desribe the constructions for n =5 and for
n>>s.

n=5: C; = {5,i} for i = 1,2,3,4 and Cs,Cs,C7; are the sets of edges defined
by Baranyai-type partitions of {1,2,3,4} into disjoint edges. For larger values of n
these clouds based on partitions no longer have mutually the (3,V,I’) property. That
is the reason why the number five plays a special role.

n > 6: Choose C; ={n,i} for i=1,2,...,n—1 and
C,={{1,i}:1,2,....5}u{{n—1,0d ti=j+1,...,n—2} for 1<j<n—2.
Finally set Cni1 = (*2) — UL, Ci -

Actually we can prove optimality of these configurations, too.

However, a formal proof takes an amount of writing which seems unproportional to
the significance of this result. Having not written a formal proof we cannot state more
than a conjecture.

Finally for n > 3 we have the

Conjecture 9:
2n —3, if n isodd

2n —4, if n iseven.

.9 ={

Constructions achieving these values are as follows.

14



n=2m+1:Let Py,...,Psy,_1 be partitions of {1,2,...,2m} into disjoint edges
according to Baranyai. Define C; = P; for i =1,...,2m—1 and Com—14+; = {{n,j}}
for j=1,...,n—1.

Then (C;)i";® isan (V,3,1')-system .

n=2m: Let Pi,...,Py,_3 be now the usual partitions of {1,2,...,2m — 2} in
this case. Let now C; = P; for ¢ = 1,...,2m — 3 and Com—_34+; = {{n,j}} for
j=1,...,2m —2 . Finally set Cyp_4 = {{n —1,£}:£#n—1} . Now again (C;)>"*
isan (V,3,I')-system .
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