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Abstract. The asymptotically optimal transmission rate of binary codes
correcting localized errors is known for the case when the number of errors grows
linearly in the code length. Here we prove that this rate can be attained by codes
with polynomial complexity of encoding, decoding, and code construction.

Recall that the only difference between codes correcting localized errors (see [1], [2]) and
the conventional codes lies in the fact that the positions of possible errors are known to the
encoder in advance. Therefore, codewords depend not only on messages but also on these
-positions. The asymptotically optimal transmission rate of such binary codes is known
[1]. Here we prove that this rate can be attained by codes with polynomial complexity of
encoding, decoding, and construction. We supply a recurrent proof in which every passage
(recurrence) from the greater to the smaller length is accomplished in three steps. This
proof is based on the following argument.

In the first step, we split the entire transmission segment of length n into a number,
growing with n, of consecutive segments of equal length. We then choose a segment with
the least possible number of errors. We call it the auxiliary segment for it will be used to
transmit a certain auxiliary information rather than the message. However, its length is
- small compared to n and does not affect the asymptotic behavior of the transmission rate.

Having chosen the auxiliary segment, we proceed to the second step. We arrange a new
partition of the entire transmission segment except the auxiliary segment into a large number
of intervals whose length grows slowly in n (here we say ‘interval’ instead of ‘segment’ only
in order to distinguish between the first and the second steps). The choice of the interval
length is determined by the two following conditions: a) the exhaustive search encoding
and decoding methods on the interval must be polynomial in =, b) we must record on
the auxiliary segment the number of possible errors on every interval. These conditions
suggest the following precoding method. We record on the auxiliary segment the number of
-possible errors on every interval while the message is encoded on the intervals themselves.
Here we employ the existing asymptotically optimal codes correcting the known number of
localized errors (the asymptotic optimality of the code on the full length follows from the
asymptotic optimality of the code on every interval). Moreover, these codes can be taken
constant-weight with certain natural restrictions on the weight, and we use precisely these
codes (we need this on the third step).

If the number of the auziliary segment were known to the decoder, there would be no
need for the third step. It would be sufficient to transmit the codeword obtained on the



second step and our problem would have been solved, because the encoding/decoding on
the entire segment of length n would be reduced to the encoding/decoding on the auxiliary
segment and to the encoding/decoding on every interval whose complexity is polynomial
in n by Condition a). Applying the same procedure to the auxiliary segment (notice that
the fraction of errors on it does not exceed the fraction of errors on the entire transmission
segment), and so on, after a certain number of steps (growing in n) we shall arrive at
the recurrent auxiliary segment of the sufficiently small length. For this segment, we can
accomplish the encoding/decoding by exhaustive search, which completes our recurrent
procedure. .

Thus, the only thing left is to ezplain the way in which we communicate the number
of the auziliary segment to the decoder. Since the number of numbers is small (certainly
less than n), any reasonable transmission method, at first, does not reduce the transmis-
sion rate asymptotically, and, secondly, admits the exhaustive search encoding/decoding of
complexity polynomial in n. On the third step we present such a method. Here we consider
the codeword constructed on the second step as the error vector known to the encoder and
construct a code that corrects known errors and localized errors at the same time. We need
an additional restriction to the decoding method, namely, the decoder must reconstruct cor-
rectly not only the message, which in our case bears the number of the auxiliary segment,
but also the transmitted codeword (it is precisely this property that imposes the restriction
on the weight of the known error, to which we paid attention on the second step). By now
it is clear that the transmitted codeword equals the sum of the codewords constructed on the
second and third step. When decoding, we first reconstruct the codeword constructed on
the third step (and hence the auxiliary segment number) and then subtract it from the
received word (add modulo 2 since we deal with binary codes only). We then arrive at the
situation described above, namely, we transmit a codeword constructed on the second step
and the decoder knows the auxiliary segment number.

Let us now proceed to the formal exposition of the result. Let us introduce the notation.
Let B be the set of binary sequences of length n, M = {m} the message set, let £ =
{E C {1,2,...,n}| |E| = t} be the set of all possible positions of errors of multiplicity ¢

(|&] = (’:)), and let V(E) = {e = (e1,...,es) € Ble; = 0, if i € E} be the set of binary
words of length n that are zero outside the positions of E (|[V(E)| = 2°). Since on the
encoding stage, we know the possible ¢ error positions, the codeword z(m, E) depends on

m € M and E € &,. The code X = {z(m, E)|lm € M, E € &} corrects t localized errors if

the following condition holds:
z(m,E)+e#a(m' E')+e forall E,E' €&, ec V(E), € € V(E"),m,m' e M,m #m'

It is known {1] that the maximum transmission rate of such a code equals 1 — k() — o(1),
where t = 7r(0 <7 < 1/2) and o(1) — 0 as n — oo.

Theorem 1. Let 0 < 7 < 1/2. Then for any € > 0, there ezists n(e) such that for
n > n(e), there ezists a code of length n with transmission rate 1 — h(7) — € that corrects Tn
localized errors and has the encoding and decoding complezity not greater than cn®, where c
is a constant. The construction of this code can also be accomplished with complezity not
greater than cn3.



In the course of the proof of Th.1 we frequently refer to Theorem 2 below, which is
of independent interest. This theorem provides a natural continuation of Theorem 3 [1],
pointing out auxiliary properties of codes correcting localized errors, which were unclaimed
before the present paper.

Theorem 2. There ezists a t localized error-correcting binary code of length n for the
transmission of M messages, where M salisfies the following inequality:

> 2"
- 32n.5't

. .

(St=% (’:) is the volume of the sphere of radius t). This code can be chosen so that the
- 1=0

two following properties are satisfied:

a) The decoding into the nearest codeword reconstructs not only the message, but
also the transmitted codeword, .

b) For any binary sequence e of length n and any message m, in the code set
corresponding to m there ezists a word such that its modulo 2 sum with the .
sequence e lies at the distance greater than t from all other codewords (including
codewords of the same code set).
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