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Localized Random and Arbitrary Errors in the
Light of Arbitrarily Varying Channel Theory

Rudolf Ahlswede, L. A. Bassalygo, and Mark S. Pinsker

Abstract— We introduce probabilistic communication models
with localized errors and determine the optimal rates of codes, if
a priori error patterns or actual errors or both occur at random
according to uniform distributions. There are strong connections
to the theory of arbitrarily varying channels.

Index Terms—Localized errors, arbitrary and random errors,
capacities, compression lemmas, elemination and robustification
techniques, arbitrary varying channels with and without side
information at sender.

I. INTRODUCTION AND RESULTS

CENTRAL problem in coding theory consists in finding

bounds for the maximal size, say N(n, 2¢t + 1, g), of
a t — error correcting code over a g — ary alphabet with
blocklength n. This code concept is suited for communication
over a q — ary channel with input and output alphabet X' =
{0, 1,---,g—1}, when a word of length n sent by the encoder
is changed by the channel in at most ¢ letters. Here neither the
encoder nor the decoder knows in advance where the errors,
that is changes of letters, occur.

Bassalygo, Gelfand, and Pinsker introduced in [1] the con-
cept of localized errors. They assume that the encoder, who
wants to encode message m, knows the ¢ — element set
E c [n] = {1, 2,---,n} of positions, in which errors may
occur. The encoder can make the codeword, representing m,
dependent on E € &, the family of { — elements subsets of
[n]. We call them a priori error patterns. The set of assomated
(a posteriori) error is

V(E)={e"=(e1," ,en) EX":es=0fort g E}.
We endow X'™ with a group structure by adding componen-
twise modulo q. For a set M = {1, 2,---, M} of messages
of family {u(m, E): m € M, E € £} of words in X™ is an
(M, n, t, q) code, if for all E, £’ € &

(u(m, E) +V(E)) N (u(m/, E') + V(E')) = @
for all m # m'.

A quantity of basic interest is M(n, ¢, g) the maximal M for
which an (M, n, ¢, q) code exists. Rather sharp estimates for
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this quantity were obtained for ¢ = 2 in [1] and for general
g, but constant ¢, in [6].

Notice that there both the a priori patterns and the a
posteriori errors occur arbitrarily. We refer to this model as
(A, A). Here three new models are introduced and analyzed.

Model (A, R): The a priori patterns E € £; occur arbitrar-
ily and the errors occur at random according to the uniform
distribution on V(E).

Model (R, A): The a priori patterns occur at random
according to the uniform distribution on &; and the errors
occur arbitrarily.

Model (R, R): Both events occur at random according to
the previous distributions and independently.

In these probabilistic models for a message set M a code
is specified by codewords and decoding sets, that is, a family
of pairs

{((u(m’ E))EE&:’ Dm) m E M} (1)

where D,, C X™(m € M) and Dy, N Dppy = D(m # m').
With such a code and every model we associate two kinds
of error probabilities, which we call maximal and average
error. They can be describe in terms of the error function
M x & x X" — {0, 1}, defined by

1, if u(m, E) +e & Dp,

Alm, E, €) = {0, otherwise @)
as follows:
AAR = Tgéaﬂ)igleaéq Z A(m, E, €) 3)
ecV(E)
T a1 —t
Ar=M Z maxg Z A(m, E, e) 4)
me e€V(E)
-1
AR4 = Imax (n) max A(m, E, ) %)
meM\ L eeV(E)
€&
-1
Apa =M1 (?) max A(m, E, e) (6)
mem Fez, €V (B

n
/\RR:TIr?eaj\)E[(t> Zq Z)\mEe @)
EEEt ceV(E)
Y. a1 n ~t
Rnr = M z(t) S0t S A, B, ). )
meM Ee&: eEV (E)

We denote the corresponding maximal code sizes by
Magr(n, t, €), M ag(n, t, €), etc., if the respective error
probabilities do not exceed e.
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In this paper we always assume that

t=|r-nl, forn=12,--- ©)]

that is, ¢ is proportional to the blocklength n. Under this
assumption we characterize capacities such as
. 1
Car(r) = inflim, ., ~log Mar(n, |7-n], €).
€ mn
Since Mar > Magp, Mpa > Mpa, Mrr > Mpg and
since by Chebyshev’s inequality for any v € (0, 1)

Magr(n, t, €) > (1 —y)Mag(n, t, v¢) (10)
Mga(n, t, €) > (1 =7)Mga(n, t, vye) (11
MRR(na t7 6) 2 ( W)MRR(”a ta 76) (12)
we see that
Cuir=Cun, Cgra=Cpra, and Cgrprp =Crr. (13)

Thus only three quantities have to be determined. Notice also
that

Car < Crp. (14)
We state our results.
Theorem 1:
Cra(r) = _C_RA(’T)
_ [logq —Tlog (g — 1) — (1), f0r7<%
0, for > 3.

In particular, for ¢ = 2, Cra(t) =1 — h(r), for 7 < %
Remark 1: For ¢ > 3, Cpa(7) has a jump at 7 = 1/2. A
discontinuity in capacity formulas occurs also for arbitrarily
varying (AV) channels (see [2]).
Theorem 2: For all T € [0, 1]

Car(t) = Cag(r) = Crr(r) = Crr(1)

-1 -1
:logq—h<rq 7 )—qu log(qg —1).

In particular, for ¢ = 2, Cug(r) = 1 — h(7/2).

The paper is organized as follows:

We first address the upper bounds on Cpy and Cprz and
then we establish the lower bounds for Cz4 and C45. The
derivation of the upper bounds in Sections III and IV simulates
the approach of [1] in conjunction with some elementary
approximations. The key tools are Compression Lemmas 1 and
2 in Section II. Whereas the first lemma presents a familiar
inequality in terms of cardinalities, the second one provides a
novel entropy inequality.

Next we turn to the lower bounds. In Section V we present a
coding procedure for the model (R, A). It is based on the idea
to devide the information given to the decoder into protocol
information about the a priori pattern and useful information
about the message.

In Section VI we establish the lower bound for the model
(A, R). This completes the proofs of the capacity formulas
(Theorems 1, 2) for the models with localized errors (R, A),
(A, R), and (R, R).

Finally, in Sections VII and VIII we consider the model
(A, R) in the light of the theory of arbitrarily varying chan-
nels, which we shortly call AV channel theory. The model
associated with the model (A, R) is denoted as (4, R, V).
Here pattern E € &, takes the role of a state sequence
known to the encoder and the communicators, the encoder and
the decoder, are interested in codes with error probabilities
(maximal or average), which are small for all state sequences.
The appropriate error concepts are

ARV = max#neajaq z A(m, E, ¢) (15)
e€V(E)
and
Marv —maxM z q- Z A(m, E, ¢) (16)
meM e€V(E)
Certainly, as for capacities
Cur = Carv < Carv < Crr am

Theorem 2 gives us the formulas for C4ry and C 4ry.
Corollary 1: For all 7 € [0, 1]

Canv(r) = Carv(7)

-1
:10gq—h<1'q1 )—’Tq

However, we establish stronger results.

In addition to the model (A, 2, V) we consider the AV
channel model (A, R, V)*, which is characterized by the
assumption that there is no side information about the state
sequences at the encoder. We determine its capacity Chry
for average error.

Theorem 3: For all T € [0, 1]

q~1) qg—1
-7
q q

We give two proofs of this result. The first one, presented
in Section VII, relies upon special symmetry properties (such
as additivity) of the channel. The second one, presented in
Section VIII, proceeds via general AV channel theory.

Technically, we choose to use a canonical approximation by
a g-ary symmetric channel W: X™ ~» Y™ with transmission
matrix

1
log (g —1).

Coupy () =logg — h,(’l' log (g — 1).

g—1 T
-5 T’lq’ "q
T q= T
woo et
a= .
L .7I’1_‘1_*-T
4 q q

Notice that its capacity equals

q—-1 7 T
q q q

zlogq—h(rq—l)
q

(by the grouping axiom), our familiar quantity.
Recall that in our model (R, R) a member E € &; is
choosen according to a uniform distribution p on &; and then

logq—H(l—

~1
~ 4" 1og (¢ - 1)
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a member e € V(E) is choosen independently according
to a uniform distribution gz on V(E). This generates a
channel W: X™ ~ Y". It is not a memoryless channel, but
its transmission probabilities are close to those of W. Their
capacities are equal also for the model (R, R)*, where the
encoder has no knowledge about the a priori pattern E. The
details are presented in the Appendix.

Finally, we derive in Section VIII, by a standard argument
of [2], an important consequence of Theorem 3.

Corollary 2: For all 7 € [0, 1]

Carv () = Chpy(r).

Remark 2: Using (17) we see that Theorem 3 and Corollary
2 imply Theorem 2. This result thus can also be derived with
AV channel theory.

Remark 3: We draw attention to the fact that generally
Ciav (T) # Cugy (1), whereas in the case of side informa-
tion C4gry (1) = C Arv (7). This phenomenon was observed
in [4].

Actually we have here the same phenomenon, because

Chry(t) = Chg(r) = hmn_ﬁoo 1 logM(n, Tn)  (18)
where M (n, tn) is the maximal size of an error correct-
ing code with pairwise Hamming distances at least 7n. In
particular

Chgr(t) =0, for 7 > %

II. COMPRESSION LEMMAS FOR PROVING CONVERSES

It is instructive to start with the results of [1] for the model
(A, A). They can be summarized as follows:
Theorem BGP: For the binary alphabet, that is ¢ = 2,

2n
a) Maa (n, t)

0]

c) CAA()_I—h(mln(, ), foro<r <1

The upper bound in a) is Hamming’s bound. It is remarkable
that here it is asymptotically tight. For ¢ > 2 Hamming’s
bound has the form (see [6])

n

q

£

This is a consequence of a generalization of the Lemma in [1],
which we now state and prove.

Compression Lemma 1: For any distinct nonempty subsets
E(3),+ € I, of [n] and any elements u(z), ¢ € I, of X™ we
have

Maa(n, t) < (19)

Ju) + v(EG

el

)| > UV(Ez

iel

Proof: We partition I into JUK,where J = {1t € l:1¢€
E(#)} and K = I\ J, and define the associated sets

A= _Uu(i) +V(E())
and
B= .U u(i) + V(E(3)).

We want to lower bound | AU B|. For this we first replace B by

B' = {0} (Utu<z‘)2,-~-,

iEK

u(i)n) + V’(E(’i))> (20)

where V'(E(i)) =
V(E(i))}. It is true that

{(62)"'56"): (0, 62,---,6n) €

|AUB| > |AUB| (21)
because |B \ A| > |B’' \ A|.
For 1 € K replace now u(i) = (u(i)1, -, u(i),) by

(0, w(%)e, -, u(i)n) and make no changes for z € J. Denote
the resulting words by v'(7)(¢ € I). The E(i)'s and the sets
V(E(i))(¢ € I) remain unchanged. Reiterate this transfor-
mation for all components ¢ = 1, 2,---, n until we arrive at
u"(3)(s € I) with w/(i) = 0, if t ¢ E(i), and

U (4) + V(E(1) UU” ))‘
[Y=¥3 i€l
- UV(E(z'))‘.

Suppose now that

n(l) =Hiie I, |[EG)| =1} (22)
and that for any F' C [n]
VHF)={e€eV(F): e, £0forallt € F}. (23)
Then by the Lemma
) + VEG)| > UV (EG
el ieI
> Z” (g —1)" (24)

We derive now (19). First notice that for any code
{u(m, E):m € M, E € &} by (24) for every message

m € M
U utm, )+ V(B > (7} )@@=

Eecg,

This implies

(25)
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which implies already
Caua(T) <logyq— h(r) —Tlog, (g — 1).

However, there is a more efficient way to use (24). Choose
any map

(26)

t
flJ& - &
i=0
with the property £ C f(E). Then we can write

Uum By+vE)= | U ulm B)+V(F)
E€&, Ec&F: f(F)=E
27)
and by (24) the cardinality of the set to the right is at least

Zlfl g—1)° Z( )(q—l)

1=0
This gives (19).

Next we address the model (R, R). Let § be an RV with
values equally distributed in & and let T be an RV with
values equally distributed in V(E)(E € &;). For any function
u: & — X™ we consider the entropy H(u(S) + Ts), where
Ts is an RV with

Pr(Ts =e") = Z Pr(S=E) -Pr(Tgp =¢€").

E€ég,

Compression Lemma 2:
H(u(S)+ Ts) > H(Ts).

Proof: u(S) + Ts takes its values in

U wEB) + V(B).
FEeé&;

Denote the distribution by P. Now we follow literally the
transforrhations applied to « in the previous proof. In particular
recall the definitions of A, B, B’, and u’. Let P’ denote the
distribution of «'(S) + Ts.

Notice the following facts:

Pr(u(S)+ Ts = xxa--- x|l €5)
is independently of z for fixed zo- -z,

Pr(u'(S)+Ts = zzg---z,|1 € 5)

=Pr(u(S)+ Ts = zzp- - z,|1 € 5), forall z € X
and
Pr(u/(S)+Ts =0zq---z,|l €5)
= Pr(u(S)+ Ts =zmy- za|l € S).

zeX
Therefore for every fixed zo -z,
Pr(u(S)+Ts € X x {zg---xp})

:Pr(u'(S)+Tg € X x {.’172,-“

€ mx

,Tn})
However, on the subexperiment X x {za---z,} we have
P'J[P(X x {zg---zn})] is Schur dominated by P/[P(X X
{z2---zx})]. By the grouping axiom and the Schur convexity
of entropy H(P) > H(P'). (Schur’s theory can be found in
(81.)

II. UPPER BOUND FOR Mga(n, t, €)

Observe first that (5) implies that for every m € M there
is a set &(m) C & with the properties

[€:(m)| > (1 = Agra)l&:] (28)
max A(m, E, e) =0, for E € &(m) (29)

eeV(E)

or (equivalently)
U ulm, E)+V(E)C Dn. (30)

Ec&(m)

Moreover, the sets £;(m) = {F € &: F C E for some

E € &(m)} satisfy

|€:(m)] > (1 — Aga) (?)

because by counting containments in two ways we see that

(€29

1
|Ee-1(m)| 2 |Ee(m)| 7 2 (1= Ara)l&|

and so on.

Choosing a map

n—t+4+1 .

fr |J&:(m) — &(m)

=0

with the property F' C f(F') and keeping in mind that now
&i(m) takes the role of & in the derivation in Section II we
conclude from (30), (27), (24), and (31) that

IDml>| |J u(m, E)+V(E)
E€&:(m)
> (1-Ara)Y (2})((1 — 1)

We summarize our findings.
Proposition 1:

n

q

a-9% (7)a-1

Mpa(n, t, €) <

Next we analyze the case 7 > %
Proposition 2: If 7 > % and € < % then M4 (n, Tn, €) =
1.

Proof Consider a code {((u(m, E))gee,, Dm): m =
1,2} with two codewords and maximal error probability
Ara < €. Then there are two subsets £(1) and &£:(2) of &,
which both have cardinality at least (1 — €)(7), and such
that message m is correctly decoded, if E € &(m)(m =
1, 2).

Let us define
shadow,,_+(€4(2)) = {F € &,_y: IE € &(2) with F' C
E}. By counting containment relations we get
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shadovs, (62| 2 €61, ) (ol )

(32)
and hence |shadow,_.(&:(2))] > |&2].

Since |£:(1)] > $(%) and [shadow,_(&:(2))| > (%)
there must be a pair (E, F) with E € &(1), F €
shadow,,_+(€:(2)), and F = E°.

Let E' € £(2) contain E°. Then u(l, E) + V(E) N
u(2, E'Y + V(E') # © in contradiction to our definitions.

Remark 4: Perhaps the following problem is unsolved. Let
A, B C &, |A| = |B|, satisfy AUB # [n] for all A €
A, B € B. What is max|A|? The answer can be used to
improve Proposition 2 to ranges € > 3.

IV. UPPER BOUND FOR M gg(n, t, €)

Consider the code {(u(m, E), D,,) : m € M, E € &}
with average error Agg.

Let Z be equidistributed with values in M, let S,, be
equidistributed with values in &, and let T, ,, be equidis-
tributed with values in V(E)(m € M, E € &). The RV’s
are independent.

Then u(Z, Sz) + Ts,,z = Y™ describes the received
sequence. By Fano’s inequality

H(Y™ ~ H(Y™Z)+ 1
1—Arr

log M < (33)

and by the second Compression Lemma H(Y™|Z = m) >
H(Ts,, m). Therefore

We calculate H(Ts) first for ¢ = 2. For this we look at the
structure of V(E).
Define

V,(E) = {e = (e1,-+,en) € V(E): Ze = r} _

i=1

and notice that by Chebyshev’s inequality the set

t/24/t/4a
viEy= |J VB
r=t/w—\/t/4a
satisfies
VHE) > (1 -a)-2, a>0. (35)
Now

H(Ts) > (1~ a)H (TS|TS € UV“(E))
E

and since elements in

U v

Ecé&,

are equiprobable

H(TSITS € UV"(E))
E
t/24+/t/da

> > Pr(TS’eUVT(E)>
r=t/2—\/t/4a E

-H<T5|Ts € Uvr(E))
E
- Pr (TS € UV“(E))

E
> min H | Ts|Ts € | Vi (E)
t/2—\/t/4a<r<t/24+\/t/4a E

= log <t/2 _71/”—4&) = ’fl(h(T/z) —g(7; a))

for n > ng(r, o) and a function g with lim,_, g(r, @) = 0.
We give now our result for general q.
Proposition 3:

q-

1) qg—1
— -7
q q

Proof: Set Voo .., (E) = {e = (e1,---,en) €
V(E): z occurs r, times in e, z € X'} and set

CVHE) = U Vroy-“,rq—l (E)
t/q—\/t/alr.<t/q++/t]/a
Then |V*(E)| > (1 — a)q* follows by applying Chebychev’s

inequality ¢ times. The previous arguments extend to this
general case.

log (g — 1),
for all T € [0, 1].

Crr(r) < logq—g(T-

V. A CODING SCHEME FOR THE MODEL (R, A)

We need an auxiliary result.
Covering Lemma ([3]): For a hypergraph H = (V, £)
there is a covering C, C C &, of the vertex set V with
Cl < [I€]d™" log [V]]

where

d=min|{E €& ve L}
min|{E € £: v € F}]

Corollary: Let t < I < n be positive integers. For the
hypergraph H = ((@), ([’l‘])) there is a covering C; C

([’;l) with
as(i))
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Proof: Since

saonvt= (1) (7)) ()= ()(0) 0

the result follows from the Covering Lemma.

The guiding idea in deriving a lower bound on
Mpga(n,t, €) is based on the following calculation for
the “useful information.” Choose a function ¢: & — C; with
the property g(E) D E. The encoder, knowing E, also knows
g(E). Now, if the decoder would also know g(FE), then the
communicators could transmit M = ¢"~! messages. However,
since g(E) is not known to the decoder, |C;| of these messages
must be reserved for the “protocol” and there are only

M7t > ¢! (i) (?)_ln_l

(see corollary) “useful messages.” An elementary calculation
shows that this expression attains its maximum for [ =
q/(g — 1)t. Since

/@) (g — 1) (qt/(q—l))

i

e,
) )

ngd—1
(36)

its value is

(G

and (in rate) corresponds to the Hamming bound.

How can the Information be Coded?

1) Write the blocklength n in the form n = mg+ m =
mgy + my1 + - -+ + m,, where

m m
m; = t—J or [—-I, for
T T

and mg and r are specified later. Furthermore define By =
[1, mo] and for ¢ > 1

i—1 z
J=0 3=0

Set
E,=B;NE.

The encoder, knowing E knows also the sets F; and he orders
the intervals B;(i = r) as B,,,---,B;, according
to increasing cardinahtles t; = |E;| and, in cases of ties,
according to increasing #'s.

2) Forany'y>0w1thr+7<
has with a probability at least

the randomly chosen £

1 —exp{—c(v)mo}
where ¢(vy) > 0, the property
|Eo| < (7 + 7)mo. 37

If (37) is violated, an error is declared. With increasing mg
this error probability tends to zero.

3) By Theorem BGP there is a code over the interval By,
which uses only the letters 0 and 1 and has size
AR

1
Maa (mo (T + ’Y)mo) - 2m0 (T-7)mo )
m

i=0 i
This code is used to inform the decoder about the order
defined above and about the values ¢;,,- - -, ¢; . This requires
at most r!{” messages. Furthermore, this code is used to

inform the decoder about F;, € (It} 1 ) Clearly, a total of
i1

M; = rlt" - 2[™] message suffices for all three purposes.
Therefore, log My < rlogr+rlogt+[™ | and with the choice

- (38)

T =

logn
we obtain
log M) < 2rlogn + ; = 3y/nlogn.
On the other hand,
log Maa(mao, (7 +7)mo) > mo(l — h(t +7)) - 3

> 3/ nlogn
if mg = ei(r, v)v/nlogn with a sufficiently large constant
e (T, ).
4) Apply the Corollary to each interval

Bi..

Bi,, B:

igy "7

In interval By the decoder was informed about E;, C B;
and thus also about g;(E;). In the positions (B; ~
91(Eq)) U (Biy ~ 92(2,)) U (B, ~ a(Bs,)) U U (Bi, N
g-(E;,)) the decoder will be informed successively about
92(Ei,), 92(Ei,),- - - Since the cardinalities I;, = (g/q—1)ts,
increase, this is possible. The information about g;(E;,)
is given before we start in B;, \ g;(E;). After the total
protocol information is conveyed the decoder will get the
useful information in the remaining free positions.
The attainable number of useful messages exceeds

T m,

q 7 q

>
_ t—t T — 1NQ
(¢-1) °<t—t0 )

o ()

because as in (36)

l‘ . -1 - M,
my =l <tl,j ) (7;%1_7 ) "ni_Jl ~ q '
AR (g—1)™ (m )
and because
a+b a b
> . .
(ex0)=(2)-(2)

With our choices of mg and ¢y it follows that for any ¢ > 0

n—mgo

lim, _, .

1
ElogMRA(n, TN, €)
‘ > logg — rlog(q— 1) — h(7).

This and Propositions 1, 2 imply Theorem 1.
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We begin with an auxiliary result.
Lemma 3: Forany A, B C X™ and a > 0

1
[{z™ € &™: |(z" + A) N B| > a|A|}| < a|B|-
Proof:
|AlIB| = ) I(z"+A)nB|

rrexXn

> |{z" € A" |(2™ + A) N B| > a|A|}|a|A|.

We present next the key result.
Lemma 4: Forany T, Ay,---,Ar C X", a € (0, 1) and
aq™
M<———
= |T|IY/"ng
there exists a sequence of families (C(1),---,C(M)) with n

members from A" each and with the property:
Forallsand al m(1 <i<I,1<m < M)

min |(c+ 4;) N U

(¢ +T)| < alAi.
ceC(m) €€ Uy C(m?)

(39)

Proof: We consider all sequences of families (C~(1)7 S
C(M)) with n members from X™ each. The number of such
sequences equals q"Q'M . We call such a sequence bad, if for
some i and some m

min |(e+ 4;) N U
c€C(m) c’eumr;émé(m’)

(¢ +T)| > a4l

Using Lemma 3 with choices

B = U (¢ +T)

c’EUm:#mé(m)

and A= A;

we see that the number of bad sequences does not exceed

(8
_(TMYMTM = 0\ sy,
= aq'n, q .

This is smaller than the total number of sequences q”zM R
because by our assumption on M the first factor is smaller
than 1. There exists a good sequence of families.
We describe now our coding scheme.
Write & = {Ey,---,Er}, I = (7), and define
-1
A;=V(E)NB (n, 1=y + et) 40)
q
where B(n, r) denotes the Hamming ball of radius r in '™
around the origin. It is well known that

1
B(n, g—t+et>’
q

]
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and that .

[A||V(E)|™' ~ 1. (42)

Apply now Lemma 4 with

-1
T= B(n, q—t+et>
q
and A; as in (40). The bound on M is the desired Hamming
bound in rate.

Choose as codeword u(m, F;) a member from C(m) for
which the minimum in (39) is assumed and choose as decoding
set for message m

I
D, = U(u(m, E)+ A)~

i=1

U (¢ +1).

cleum';émc(ml)

The maximal decoding error probability can be made arbi-
trarily small, since o in (39) can be made arbitrarily small
and since (42) holds. The disjointness of the decoding sets is
guaranteed by our definitions.

VII. THE FIRST PROOF OF THEOREM 3

By exchanging summations we can write the average error
probability in the form

M

X,ZRV = maxq~* Z %Z)‘(Wh E, e).

max (43)
ecV(E)

m=1

Translations invariance of the transmission probabilities of our
channel allow a simple analysis of the term

1 M
MZ)\(m, E, 6)

m=1

in a random ensemble of codes.

Lemma 5: There exists a code U = {uy,---,upm} C A"
with
q" g—1 2/3
M>| ——m 1<I<—n— /
Y = LnQIB(n, mJ’ SR
and
M
b) {uel: d(u+e,b{—{u})§l}|§?

for all e = (e1,---,e,) of weight less than I.
(Here d denotes the Hamming distance and B(n, I) denotes
again the Hamming ball of radius [ and the origin as center.)
Proof: The number of families ¢/ = {ug,---,up} with
members from X™ equals ¢"M. A family is called bad for a
fixed e € B(n, 1),if |[{u € U: d(u+te, U—{u}) <1} > M/n.
Clearly
Huel: dlu+e U— {u}) <1}
< l{um eu: d(um + e, {Ul, T ,um—l}) < l}l
+ [{um €U: d(tm + €, {tmi1, - un}) <1}

and so for a bad U
|{’le1 d(um +e, {ulvl ",’le-l}) < l} > M/2n
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or

Htm: d(tm + €, {tms1, - unm}) <1} > M/2n.

For each of these two cases the number of families realizing
it does not exceed

M n n(M—(M/2n
(M)(M'b(”v 1)) M /20 (M ~(/2m)
2n

if we use the notation b(n, 1) = |B(n, 1)}, and the total number
of U’s, which are bad for any e, therefore does not exceed

b(n, 1)2 (%) (M)Mﬂ" M

2n qn

We have chosen [ and M judicially, so that this quantity is
smaller than ¢"™. A good U exists.

Now Theorem 3, that is, its direct part, is readily established.
The choice

—1
1=1" g
g

insures that a) gives asymptotically the desired bound on the
rate. As decoding rule we use a minimal distance decoding,
that is, we define

Do = (tm + B(n, D)\ | (umr + B(n, 1)).

m'#m
Then

1, if u, +e & Dy

Am, E, €) = XN(m, €) = {0 otherwise

and for e € V(E) N B(n, 1) by b)
1 M

17 2 AMm, B, e)

m=1

1 1
= —_— M -_— < —_—.
M|{u€Z/{. d(u+e,u {u}) <1} < -

Furthermore, |V(E) N B(n, )||V(E)|™' — 1 as n — oc and

™

we see from (43) that Az, — 0 as n — oo.

VIII. THE SECOND PROOF OF THEOREM 3
AND DERIVATION OF COROLLARY 2

We derive first the inequality Cypy (1) > Chp(7). The
reverse inequality is obvious.

The proof uses methods from the theory of AV channels,
namely, a simple version of the robustification technique and
a novel version of the elimination technique, which is based
on several ensembles of codes.

An AVC is defined here by a sequence A = ({w(| -
[s7): s* € S8™})S2, of sets of transmission probabilities,
where for a finite input alphabet X, a finite output alphabet
Y and a finite set {w(-] - |s): s € S} of stochastic |X| x ||
matrices

w(y"z"|s") = [Jwyelzels:) (44)
1

for all 2" = (z1,--,2,) € X" =[] &, for all y* € V",
and for all s™ € S™.

In case of (A, R, V)* it is appropriate to choose S = {0, 1}

wtl- 0= (p 7)
(1 1)

and to replace S™ by

S™(1) = {s" eSs™: Z‘Sl :'rn}.
i=1

Consider now the symmetric group (the set of all permu-
tations) ., acting on {1, 2,---,n}. We then define for
s" e 8"(r),AC S8 (r),and w € >,

ws" =7(81, . 8n) = (Sx(1)s ", Sm(m)), (45)

w(A) = {rs": s" € A} (46)

Robustification Lemma: 1f g 8"(1) — R satisfies for a
B € R the inequality

GR>

smeSn(T)

g(s™) < B

then it satisfies also the inequality

1S w2

‘e,

for all s™ € 8™(7).

Proof: Since m: 8™(t) — S™(7) is bijective, the first
inequality is equivalent to

-1
<,tl) Z g(ms™) < B, form e ¥,

snES™(T)

and thus

(1)L T Taem<s

TemeS™(r)mET,

Since

> glrs™)

wEL,

does not depend on s", we conclude that

=3 gy < B

TEL,

We use now for any finite set Z the following notions:
P(2) & set of all distributions on Z, P(n, Z) £ {P €
P(Z): P(z)n is an integer for all z € Z}, 2" = (z1,-++, zn)
is said to be (P, §)-typical, if ||{i: z; = z}|— P(z)n| < bn for
all z € Z, and Z™(P, §) is the set of those sequences in Z".
(P, 0)-typical sequences are also said to be of type P. Often,
if the reference set is clear, with a hint to typically Z"(P, §)
is written as 77 . For § = 0 we omitt the 6.

We turn now to the channel W. For codes of this channel
we shall apply the Robustification Lemma. Codes with desired
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properties are obtained by approximation with the g-ary sym-
metric channel W. Both channels are defined in Section I. It is
well known that for any P € P(n, X) and Q = P-W we have
codes {(u;(P), D;(P)): 1 <1i < M} for the g-ary symmetric
channel W of rate R = I(P|W) — 61 (where I(P|W) is
the mutual information in terms of input distribution P and
channel W) with the properties

i) ui(P) € Tp, fori=1,--- .M

i)  Dy(P)C T,

i)  W(Di(P)|ui(P)) < exp{-f(R, b2)n},
fori=1,---,M

for arbitrarily small 61, 62 > 0, and f(R, 62) > 0.

By the Approximation Lemmas 1, 2 in the Appendix (see
Remark 5) we have also

iv) V(D§(P)lui(P)) < exp{—3f(R, b2)n}

fori=1,---,M and P € P(n, X)

and thus codes for V.
Define now

Mzw (DE(PYu(Pus(P)ls™), 5" € 8(r)
and notice that
n -1 1 M
<t> D 9™ = g VIDIP)ui(P) < B
smES™(T) i=1
if
B2 exp (~Lf(R, S2)n}.

By the Robustification Lemma we know that

M
1 1 . n
— MZw(Di(P)m,-(P)m Yy<B @47
.ﬂ'EZn i=1
and by the permutation invariance of a DMC
n' Z MZ“’ m(D§(P))|mu;(P)|s™)| < B8 (48)

for all s™ € S"(T).

We have arrived at a random (or correlated) code for
(A, R, V)*; namely, the collection of deterministic codes
{(mui(P), m(D;(P)))i<icn: ™ € Y.} together with the
equidistribution g on Y. Choose now L codes from this
collection at random according to y and associate with it the
equidistribution & on {1, 2,---, L}. This results in a new ran-
dom code ({(u}(P), D{(P))1<icar: L € {1,2,---,L}}, b).

It was shown in [2] that the probability, that for fixed s™
this random selection fails to lead to a new random code
with an average error probability less than ), is smaller than
e~ (1 + e*B)L (for any a > 0). Therefore, the probability
that it fails for any s € S™(7) is smaller than

|Sn(T)|e—a/\L(1 + Ba,B)L.

For the choice « = 2 and L = n? (as in [2]) the quantity
is strictly smaller than 1. This can also be achieved (see [7])
with a constant

L> (£(R, 6)A)tlog|S]. (49)

‘In [2] a very small blocklength was reserved to transmit the

index [ of the deterministic code choosen now at random
with fi. For this only positivity of the capacity if necessary.
Presently, however, because of lack of knowledge of s™ (or
FE) such a time-sharing argument is not possible. The new

trick is to use L different input distributions P1, -, Pr, with
I(P,|W) close to Crpg, but such that for @, = P, - W and §

sufficiently small we have
T8 sNTS, 5 =D #1). (50)

To each input distribution P; we use a code with the properties
described in i)-iv). Then we produce for each P, a random
code as in (48). Next we choose at random one code from
each of the L ensembles and form again a random code, say

({(@(P), Di(P))icigm: L= 1,---, L}, ).

The derivation of [2] applies with a small modification:
the choices described by independent, but not identically
distributed RV’s are now described by independent, identically
distributed RV’s with the same bound 3 on the expected
values. Bernstein’s form of Chebyshev’s inequality literally
also applies in this case.
But now we know that
M ~
UD:p) c 15, s
i=1

(1)

and by (48) we can form a code with randomized encoding
only, namely (p;, D;)1<i<m, wWhere

(52)

and p; € P(X™) with

plia(P)) = 1, forl=1. L (53
The error probability is bounded by X again. By [2, Theorem 3]
there is a deterministic code with average error and essentially
the same performance.

Finally, the reader easily verifies that distributions
Py,---, Py with the desired properties can be found in the
neighborhood of (1/g,---,1/q). This proves Theorem 3.

One way to verify Corollary 2 is to start with the code
(pi, Di)1<i<nm specified in (51)—(53). Since now the encoder
knows the a priori error patterns E we can replace via
the pigeon-hole principle the randomized encoding p; by
deterministic codewords u(i, E) (1 < ¢ < M; E € &)
without increasing the maximal error probabilities.

Alternatively, we can pass from a code with average error
to a code with maximal error, but randomized encoding, via
[2, Theorem 3]. Thus we derive the Corollary directly from
our Theorem 3.
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IX. A DISCUSSION OF OTHER MODELS FOR ERRORS

We sketch here observations and ideas. Some of them
require for their understanding familiarity with advanced parts
of AVC theory or the willingness to move deeply into the
subject.

a) Defects: Suppose that in the positions of E € &; the
transmission is governed by

G )
6 )

In case (R, R) (the second R is meaningless and only kept
in order to stick to our terminology) the channel can be
approximated by a channel with random parameters in the
sense of [5]. We get Crpr(7) = 1 — 7 and by the approach of
[4] Cagr(T) =1 — 7. This shows that this classical result also
is included in AVC theory.

In case of no side information the approximating DMC has

transmission matrix
1-7 7
0 1/

An elementary calculation shows that here

Chp(T) < Cag(7).
(1)
(G 5)

in the preceding discussion. Obviously Cu4(7) = Crr(7) =
1, because the sender can switch letters in the position of E.

However, if the sender does not know the pattern E, then by
AVC theory

and in [n] \ E by

b) Replace the matrix

by

Chp(r) = -C;ZRV =1-h(r).

¢) Two kinds of defects: Let

Y

and

define a channel with randomized parameters. The capacity
formula of [5] is

max

w & X)GRq[I(U ANY)—I(U A S)

C,=

where |U| < |X| + |S], Ry is the set of triples of RV’s
(U, S, X) with

Psyxvy(u, s, z, y) = Pusx(u, s, z)w(ylz|s)

and I(UAY) is the mutual information for the RV’s U, V, etc.
Set now U = Y, Vs = {y: w(y|z, s) = 1 for some z € X},
and

V71, for u € Y,
0, otherwise.

Fuystuls) = {

Furthermore, let Px sy be deterministic, that is, a function
z: 8 x Y — X with the property w(ul|z(u, s)|s) = 1 for
u € ), and arbitrary otherwise. We have U = Y with
probability 1

Py(u) =Y Pyis(uls)q(s)

and thus
HWUAY)-I(UAS)=HU)-HU)+ HU|S)
= _a(s)log V|-

SES
Since Yo = Y, Y1 = {0}, Va2 = {1} we get
I(U/\Y)—I(U/\S) =q(0) =1—7 —To.
Again by AVC theory this gives the coding theorem for two
types of defects known to the encoder.
d) If under the conditions of c¢) we drop the side informa-

tion, then for average error (again by AVC theory) the capacity
CZ ry equals that of the DMC with transmission matrix

To+T1 T2
T To+T2 )
e) If in the previous case only 7 is known, then C 4 RV
equals 1 — h(r/2), where 1 — 7 = 73. The case of side

information suggests to consider AV channels with partial side
information: for the position in £

(o)
G 1)
6 7)

occurs n — t times and in the remaining ¢ positions

6 7)

or

govern the transmission.

f) If
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or and conclude that
0 1 -1 g
n+1) " ex {n(rh(ﬂ)—hd —7-)}
(o) (v fn(eh(Z) 1o
_ _ o . _ < W(y*|o)
occurs arbitrarily and there is no side information, then this < 1 L g L
AV channel has average error capacity 1 — h(7). However, if < (n+1)exp { (T (_) = h(o) - T) }
we replace here the matrices (AS)
o 01 We also can write
01 1 0 ]
W(y |o)_exp{ [l—d)log(l——>+alog }
i 2
by the matrices (A6)
10 0 1 We express the difference, say d(o, 7/2), of the exponents in
1 0 0 1 (A5) and (A6) in terms of Kullback-Leibler divergences. For

: binary distributions (o, 1 — &) and (8, 1 — B) we use for the
that is, we describe errors differently, then the average error  givergence D((c, 1 — a)||(8, 1 — f)) the shorthand D(c|3).

capacity equals 1 — h(7/2). Now
g) The same answer is obtained, if we replace the two - -
matrices by the single matrix d(a, —2—) - [(1 —o)log (1 - —) + olog 5]

S B S TS

+[mh(2) - ho) - ]

= _[(1 o) log (1 %) + alog%# h(v)]

ST

)

ML IR

(

APPENDIX

o
APPROXIMATION BY A DISCRETE MEMORYLESS CHANNEL - ["' - Th( - )]
We show now how our channel W: X" ~ )" relates to _ D(G’“I) D ng
the g-ary symmetric channel W, with transmission matrix W,. 2 2/

Both are defined in Section I. To simplify matters we treat the

case ¢ = 2. Since both, W and W are translation invariant, By the continuity of D we have

that s, lim d(e, Z) =0
n n nl .n o—-1/2 ’ 2 -
W(y" +a"fe" +a") = W(y"|z") !
We summarize our findings.
and Approximation Lemma 1: For
W(yn Jr_a"\z,"ﬂ _ ") :W(?J”\x“) " = (wl’...’mn)
it suffices to consider the input " = ¢ = (0, -+, 0). Yy = (Y1, Yn) € {o, 1}~

For y* = (y1, - +,yn) With .
B with Hamming distance d(z™, y*) = s <t

;yi =% s<t W(y"|m”)exp{—nd<a, :;-) —log (n + 1)}

< W(y"|=")
—1 " < W(y"|z™) exp{nd( ) +log(n + 1)}
wil = (772 (5) (5
e b—s J\1 2 where
t\[n AN
= = Al i i
06 G e i i(e. ) =0

n n—s T L]

W(y"|o) = (1 - ‘2‘> (5) . (A2)  We see that the two transmission probabilities are close to

o ) ) ] each other, if o is close to 7/2. Next we show that there the
We use the well-known approximation of binomial coefficients probabilities concentrate.

we have

(and remind the reader that o = s/n, 7 = t/n) Approximation Lemma 2: For the set
_ n
(n+1)""exp{nh(o)} < (S) <exp{nh(o)} (A3) Au(a™) = {yn: % —e< %d(mn’ v < %+6}

(n+1)"lexp {’rnh(%)} < (i) <exp {ﬂrnh(g—)} (A4 W (A(z™)|z™) > 1 —2exp {—nD(% + g||%) }
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Proof: A consequence of Chebyshev’s inequality states
that for independent, identically distributed RV’s X, -+, X,
with values in [0, 1] and EX; < p < A< 1

Pr{ > X; >n\| <exp{-nD(A|u)}.
=1
This inequality and the inequality

2) <25 -3)

D(-;:-i-e

give the result.

Remark 5: These Lemmas immediately yield that a code
for W with error probability less than exp {~dn} is also a
code for V' with error probability less than exp {—(8/2)n}, if
n is sufficiently large.

Remark 6: It is now just an exercise to make the corre-
sponding approximations for general q.

(11

2

—

14]

[5

[6

=

[8]
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