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Abstract—We consider subsets of the n-dimensional grid with the Manhattan metrics, (ie., the
Cartesian product of chains of lengths k1,...,kn) and study those of them which have maximal
number of induced edges of the grid, and those which are separable from their complement by the
least number of edges. The first problem was considered for k3 = - -- = k» by Bollobds and Leader [1].
Here we extend their result to arbitrary ki,...,kn, and give also a simpler proof based on a new
approach. For the second problem, [1] offers only an inequality. We show that our approach to the
first problem also gives a solution for the second problem, if all k; = co. If all k;’s are finite, we
present an exact solution for n = 2.
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1. INTRODUCTION

For nonnegative integers ki, k2, ..., ky, set
V* ={x=(z1,...,2,) : 0 < z; < k;, z;’s are integers}.

Consider the grid graph M™ with the vertex set V", two vertices x,y of which are joined by
an edge iff p(x,y) = 1, where p is the Manhattan metric, p(x,y) = 3 i, |z; — y;|. Clearly, the
graph M™ may be considered as the Cartesian product of chains of lengths k1, ..., k,.

For AC V™ and x,y € V", p(x,y) = 1, we say that the edge (x,y) is an inner edge of the
set A, if x,y € A. Otherwise, if one of x,y is in A and the other is not in A, the edge (x,y) is
called a boundary edge of the set A. Denote by E(A) (resp., R(A)), the collection of all inner
(resp., boundary) edges of A.

Now let m be an integer. Consider all the m-element subsets of V™ and the following two
extremal problems:

PROBLEM 1. Find a set A with maximal possible value of |E(A)].

PRrOBLEM 2. Find a set A with minimal possible value of |R(A)|.

Similar problems may be considered with respect to any graph G. Notice that if G is regular
of degree d, then
2-|E(A)| + |R(A)| =d- |A]| (1)

Thus, in this case, Problems 1 and 2 are equivalent in the sense that a solution of one of these
problems is at the same time a solution of the other.

*On leave from the Institute for Problems of Information Transmission, Ermolova str.19, 101447 Moscow.
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In the binary case (i.e.,, when k&; = ky = .- = k, = 1), Problem 1 was first solved by
Harper [2], and for arbitrary finite k;’s under the Hamming metric by Lindsey [3]. They proved
that for each m, the set of the first m vertices of V™ in the lexicographic order, gives a solution
for Problem 1 (and also for Problem 2). Here, by the lexicographic order £, we mean the order
induced by the following relation: a vector x € V™ precedes y € V™ if z; < y; for some ¢ with
T3 = Y1,.-.,Ti—1 = Yi—1. For the Hamming metrics, it is natural to assume that all k;’s are
finite, as otherwise if, say, k; is infinite, then the set {(0,...,0,z;,0,...,0), 0 < z; < m—1} gives
a solution, since it contains an inner edge between any pair of its vertices.

In the nonbinary case under the Manhattan metric, the graph M™ is not regular, and so the
equivalence of Problems 1 and 2 is not insured. It turned out, however, that if all k;’s are infinite,
these problems have a common solution. It is interesting that in the “bounded” case, i.e., when
all k;’s are finite, Problem 2 has no nested structure of solutions, while Problem 1 always has it,
and so in this case, our problems are not equivalent.

Problem 1 was solved first by Bollobds and Leader [1] for k; = -+ = k,. In the next section,
we present a simpler proof, which works for arbitrary k;’s. It turned out that the solution we
give works either for the “infinite” case or for the “bounded” one.

Section 3 of our paper is devoted to Problem 2 in the “infinite” case, i.e., when k; = oo,
1 = 1,...,n. For the “bounded” version, we are able to give an exact solution for the two-
dimensional case only. It turned out that there exist only two sets, “suspicious” to optimality,
and when m grows, the solution structure switches ones from one set to another. The study of
such switches is of particular interest, since, if a problem has no nested structure of solutions, the
present techniques, as a rule, cannot be applied for solving it. Some other examples of dealing
successfully with “jumping” solutions one can find in [4], where there exist many switches, and
in [5], with only one switch. Finally, in [2], one can find an edge isoperimetric inequality for
Problem 2, from which an exact solution for some particular values of m follows for n > 3.

2. SOLUTION OF PROBLEM 1

Denote V™™ = {(z1,...,2Z5) : z; 2 0,1 <4 < n}. We introduce an order £ on V™ and
prove that, for any m, the set induced by the initial segment of length m in £ gives a solution of
Problem 1.

Notice that € induces also some order on the set V™. Denote by Ig(m) C V"™ the initial segment
of length m in this induced order. Throughout this section, we assume that 1 < k; < .-- < k.

For x = (z1,...,2,) € V", denote |x[ = max; z; and let X be the vector obtained from x by
replacing all entries not equal to |x| by 0. The order £ is defined inductively. For x,y € V", we
say x >¢ y iff

(i) Jx[> ]y, or

(ii) |x[=]y[and X > ¥, or

(iii) Ix[=y[=t>1, k=7, and X’ >¢ ¥/,
where x’,y’ are obtained from x,y, respectively, by deleting all entries with z; = y; = t.

Therefore, we first order lexicographically all vectors with binary entries, and, in the binary
case, our order £ is just the lexicographic order. As an example, we list the vertices of V3 for
k1 = ko = k3 = 2 in increasing order of £: 000 001 010 011 100 101 110 111 002 012 102 112 020
021 120 121 022 122 200 201 210 211 202 212 220 221 222.

LEMMA 1. Let x >¢ y and x; = y;. Then x' >¢ y', where x',y’ are obtained from x,y,
respectively, by deleting the i*? entry.

PROOF. We apply induction on n and follow the definition of the order £. For n = 1, the lemma
is obviously true, so let n > 2. If |x[ > ]y[ holds, then |x'[ > ]y’[, and we are done. If |x[ = |y
and X >/ ¥, then either |x[ = |x/[ > ]y’[ or X’ >/ ¥, by the definition of the lexicographic order,
and so x' >¢ y’. Finally, let |x[ = Jy[ and X = §. If z; = ]x[, then x’ >¢ y’ by (iii) in the
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definition of £. If z; # |x[, then delete all the entries of x,y which are equal to |x[. We get
vectors x”,y" of smaller length with x” >¢ y”, and the lemma follows by induction.

We introduce V;*(j) = {(z1,...,22) € V* 1 z; =j}, i =1,...,n,j =0,...,k; and N(z) as
the position number of z € V™ in the order £. We also define

N(4) =Y N(z), Ai(j) = ANVP(),
€A

and introduce the compression operator C;(A), which replaces the part 4;(5) of A by the collection
of the first |A4;(7)| elements of V*(j) in order £ simultaneously for each j = 1,...,k;. Clearly,
N(C;A) < N(A) by Lemma 1.

For x = (z1,...,%n) € V™, we denote by x the projection of x on the set V", i.e., the vector,
whose i! entry equals z; = min{z;, ki}, 1 <i < n.

Since our proof technique works for n > 3 only, we consider the case n = 2 separately.

LEMMA 2. Let A C V? and C;(A) = A fori =1,2. Then |E(I¢(JA]))| = |E(A)|.

Proor. One has
[E(A)] = 2|A] — (|A1(0)| + |A=2(0)]) - (2)

Let x = (z1,z2) € A and z1,z2 > 0. We call x corner vector if (z; — 1,22) € A and (x1, 25 — 1)
€ A.

Assume first that |A1(0)] < {A2(0)|. Consider the vector y = (y1,y2) € A with y; = |42(0)]
and y maximal possible and replace it with some corner vector. It is clear that this replacement
decreases the function N. So, if there are corner vectors, then using such replacements one can
transform the set A to Ig(m).

Consider the case where there is no corner vector. If now |A;(0)| = ko, then A = Iz(m) and
we are done. Otherwise, if |A;(0)| < k2, replace the set A;1(]A2(0)|) by the set {(z;,z32) : 0 <
x; < |B2(0)| — 1, z2 = |B1(0)| + 1}. One gets a set B with |[E(B)| = |E(A)|, but N(D) < N(B).
Clearly, there exists at least one corner vector for the set B, and we apply the replacements above
to the set B. The proof in case |A41(0)] > |A2(0)] is similar.

THEOREM 1. |E(Ig(|A])| > |E(A)| for any A C V™.

PRrROOF. Assume that |A] = m and A # I¢(m). We use induction on n. For n = 1,2, the
inequality is true. Let us proceed with the inductive step for n > 3. Since for any set A one has

k,‘ ki
|E(A)] < Y 1B (AG) + D min{|4:i()], |45 ~ DI}, (3)
j=0

j=1

then, using the induction hypothesis, it follows that |E(C;A)| > |E(A)]. Lemma 1 implies
that N(A) cannot increase after the transformation C;. Clearly, N(A) strictly decreases, if
the transformation C; is nontrivial. Therefore, after a finite number of applications of C; with
i=1,2,...,n,1,2,..., one gets a stable set B for which C;B = B holds for + = 1,2,...,n.
Notice that for a stable set, the conditions (z1,...,z,) € B and z; > 0 imply (z1,...,2;—1,1;—1,
Tigly---,Zn) € B.

We proceed with more operations, which decrease the function N and transform a stable set B
into I¢(|B|) without decreasing E. Denote by x the greatest vector of B in the order £, and by y
the least vector in order £ which is not in B. Then x >¢ y. If now z; = y; for some %, then
y € B follows from Lemma 1 and C;B = B.

Assume that |x[ =t > Jy[ > 0 and show that T = {z € V" : Jz[ = t — 1} C B. Clearly,
(0,...,0,t) € B, hence, (t—=1,...,t —1,0,t — 1) € B. Therefore, one has only to prove that
P C B and @ C B, where

P={(t=1,...,t=1,pt=1):1<p<t—1}, Q={(t—=1,....t—1,q):0<qg<t—1}.
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Since |E(B \ {x})| > |E(B)| — n and for any z € P\ B, one has |E(B U {z})| = |E(B)| +n, and
since N(z) < N(x), after replacing x by z, we either transform the set B to Ig{(m) or P C B.

As to theset @, ift = (t—1,...,t —1,0) € B, then we apply the arguments above. So let
t ¢ B. Without loss of generality, one may assume that there exists a j for which z; <t —1
holds, since otherwise (t —1,...,4 — 1) € B and we are done. Consider the set T = {(z1,...,25) :
z;=z; for i # j, 0 < z; < z;} and replace it with theset S ={(¢ —1,...,t —1,8) : 0 < s < z;}.
Then

|[E((B\T)uS)| =|E(B),

but the function N decreases. Now we have (t —1,...,¢ —1,0) € B, and either B = I¢(m) or
(t=1,...,t—1)e B, and so T C B holds.

Now let |x[ = Jy[ =t > 1. If 2; = y; = t for some i, then by similar reasoning to above
y € B. So, we may assume that for some subscript ¢ the following holds: z; = ¢, y; < t, and
either s = 1 or z; < ¢, y; < ¢ for 1 < j < i. Notice that if x; > y; for some j # ¢, then y € B.
Indeed, consider the vector z obtained from x by replacing z; by y;. One has x >¢ z >¢ y and
z € B implies y € B. Hence, z; < y; for j # ¢, and so y; # 0 for j # 4. If now y; # 0, then
|[E(B U {y})| = |E(B)| + n, and we may replace the vector x by y without decreasing E, but
with decreasing N.

Finally, if y; = 0, then the two following cases are possible. In the first case, assume z; = 0 for
all j # i. Then clearly one could replace x by y without increasing E. Otherwise, if z; # 0 for
some j # i, then similarly to the above consider the sets

T={(21,-+-12n) * 25
S={(z1,.--y2n) : 25

zs for s # j, and 0 < z; < z;},
ys for s # 4, and 0 < 2z; < z;}.

Since T' C B and SNB = §, one may replace T by S without decreasing E, but with decreasing N.

In order to complete the proof of the whole theorem, we have to consider the case t = 1. In
this case, x and y are binary vectors, and one may assume that y is the binary coordinatewise
negation of x, since otherwise y € B as above. If there exists a vector z with x >, z >, ¥,
then y € B, since z; = 2; and z; = y; for some ¢, j. Therefore, one has to consider only the case
x = (1,0,...,0), y =(0,1,...,1). But in this case, replacement of x by y strictly increases the
number of inner edges, which completes the proof.

3. SOLUTION OF PROBLEM 2

Consider first the case when all k; are infinite, i.e., V™ = V™ We will show that any initial
segment in the order £ gives a solution.
THEOREM 2. |R(Ig(|A]))| < |R(A)| for any A C V™.
PRrROOF. The proof is very similar to the proof of Theorem 1. We go along the lines of this proof

and discuss only the differences. So, assume that |A| = m and A # Ig(m). We use induction
on n. For n =1, the Theorem is obviously true. For n = 2 instead of (2), we have

|R(A)] = [A4:1(0)] + |42(0)] , (4)

and so we have to maximize the same quantity as in (2) again, which proves this case.
Let us proceed with the induction step for n > 3. Instead of (3), one has

k;
R(A)] = SO IRAG)]+ 3 [ 14 = 14 — DI |, (5)
Jj=0 izl

and hence, by the induction hypothesis, it follows that |R(C;A)| < |R(A)|. Therefore, we may
restrict ourselves to consider only a stable set B.
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Denote again by x the greatest vector of B in the order £, and by y the least vector in order £
which is not in B. Then x >¢ y. We may assume z; # y; for 1 < i < n.

Assume that |x[ = ¢ > Jy[ > 0 and show that T = {z € V" : ]z] = t — 1} C B. Clearly,
(0,...,0,t) € B, hence, (t —1,...,t - 1,0,t — 1) € B. Therefore, one has to prove only that
P C B and Q € B where

P={(t-1,...,t=1,p,t—-1):1<p<t—-1},Q={(t—1,...,t —1,9): 0< g <t —1}.

Since |R(B \ {x})| < |R(B)| + n and for any z € P\ B one has |R(B U {z})| = |R(B)| - n, and
since N(z) < N(x), after replacing x by z, we either transform the set B into I¢(m) or P C B,
Astotheset Q, ift = (t—1,...,t—1,0) € B, then one can apply the arguments from above. Let
t ¢ B. Notice that there exists a j for which z; < t—1 holds. Consider the set T = {(21,...,2,) :
z = x; fori # j, 0 < z; < z;} and replace it by the set S = {(t —1,...,t - 1,5): 0 < s < z;}.
Then
|[R((B\T) U S)| = |R(B)],

but the function N decreases. Now we have (t — 1,...,t — 1,0) € B, and either B = I¢(m) or
(t—1,...,t —1) € B. Thus T' C B holds.

Now let |x[ = |Jy[ =t > 1. Then for some i, one has z; = t, y; <t, and either i =1 or z;,y; < ¢
for j < i. There is no loss of generality to assume that z; < y; for j # ¢, and so y; # 0 for j # i.
If now y; # 0, then |R(B U {y})| = |R(B)| — n, and we may replace the vector x by y without
increasing R, but with decreasing N.

Finally, if y; = 0, then similarly (see the proof of Theorem 1) we replace the vector x by the
vector y or the set T' by the set S without increasing R, but with decreasing N.

In the last case t = 1, the proof is quite similar to the proof of Theorem 1).

Consider now the “bounded” 2-dimensional version of this problem, i.e., let ki, k2 < co and
k1 < k3. Let A be an optimal m-element subset. We may restrict our attention considering the
case m < k1ka/2 only, because the number of boundary edges of the set and its complement are
the same.

THEOREM 3.

(i) If m < |+/k1/2], then |R(Ig(m))| < |R(A)| for any A C VZ;
(i) if [\/k1/2] < m < kik2/2, then |R(Ic(m) < |R(A)| for any A C V2.

Proor. Without loss of generality, we may assume that A is stable, i.e.,, C;(A) = Afor i =1,2.
Denote by I3 (respectively, by l2), the number of vectors of A of the form (0,z) (respectively,
(2,0)). Then the two following cases are possible:

CaASE 1. [j < k; and Iz < ka. Here, the number of boundary edges for such a set A equals
simply Iy + Iz. It is clear that A is inside an {; x lo rectangular area, and so if m = ¢ + p, then
IR(A)| > 2q,if p=0, or |[R(A)| > 2¢+1, if p > 0, i.e., the square is an optimal solution.

CASE 2. Iy = ky or la = ky. Assume first that only one of these inequalities holds. Then
|R(A)| > min{ky, k2} = k1, and clearly, I-(m) has exactly k; boundary edges.

Now let I} = k; and lp = kp hold. Then |R(A)| = k1 + k2 — (r + ¢), where r and c are,
respectively, the numbers of completely filled rows and columns of the grid V™ in the set A. One
has k; + k3 — 7 — ¢ > k1, because otherwise, if r + ¢ > ko, then |A| > kir + kac — re > kiko/2,
which contradicts our assumptions.

Therefore, the solution of our problem is either I¢(m) or Iz(m). Notice that the number of
boundary edges for the first set is an increasing function of m, while for the second set, it increases
first, and then jumps between k; and k; + 1. Hence, as m increases until some mg, there may
exist two solutions, among which is I¢(m), and for mg < m < kyko/2, the set Io(m) is better.
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