
Overview seminar on Hodge locus

The main purpose of the seminar would be to understand recent results on the Hodge

locus as proven in the paper [2], and some of the ingredients used in the proof.

The study of the Hodge locus starts with the classical Noether theorem which states

that the Picard group of a very general degree d ≥ 4 surface in P3 is of rank 1. If Ud

parametrizes smooth degree d surfaces in P3 (open in the projectivization of the space of

degree d homogeneous polynomial in 4 variables), the Noether-Lefschetz locus NLd ⊂ Ud

for degree d surfaces is the subset of those points in Ud such that the corresponding surface

has Picard rank greater than 1. One can show that this subspace is a union of countably

many analytic subvarieties of Ud.

More generally, given a smooth family of projective varieties f : X → S over a smooth

irreducible quasi-projective variety, one defines the Hodge locus for the family to be the

subset of s ∈ S such that the fibre X → S acquires “extra” Hodge classes with respect

to the general fibre. Again, the Hodge locus is a union of countably many analytic

subvarieties of S. A famous theorem of Cattani, Deligne and Kaplan [7] states that each

irreducible component of the Hodge locus is in fact an algebraic subvariety.

The understanding of the Hodge locus has greatly improved in the past years. The

paper [2] presents and partially proves the so-called Zilber-Pink conjecture, which would

predict rather precisely the general behaviour of Hodge loci. To explain it, one distin-

guishes between typical and atypical components. Roughly speaking, one can predict the

dimension of a component Z of the Hodge locus; when the dimension of Z equals the

expected dimension, then Z is said typical, else, Z is said atypical (to make this precise

one needs to move from S to the period domain associated to the family f : X → S).

We split the Hodge locus into the union of the atypical and typical Hodge locus, union

of atypical and typical components respectively. The Zilber-Pink conjecture predicts the

following dichotomy:

Conjecture. The atypical Hodge locus is algebraic (i.e., union of finitely many com-

ponents). The typical Hodge locus is either empty or dense (for the analytic topology).

Among the main results of [2], it is (essentially) shown that the positive dimensional

atypical Hodge locus is algebraic; however, it is hard to control atypical points. Moreover,

they show that the typical Hodge locus is either empty or analytically dense. In fact, it is

proven that it is empty for “most” families, specifically, when the level of the associated

variation of Hodge structures is at least 3. This level is a measure of the complexity of

the variation of Hodge structures; the case of level 1 is the most well-studied, arising

from families of K3 surfaces or abelian varieties, and the corresponding period domains

give Shimura varieties. As application, some results on the Hodge locus for the universal

family of degree d hypersurfaces in Pn are given (a more detailed exposition of this special

case can be found in [4]).

Arithmetic aspects. What discussed so far involves Hodge theory and it is done
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purely over the complex numbers. However, there are several related questions of arith-

metic flavour which we may study. Just to give an example, it is not at all clear from the

Noether theorem whether there exists a surface of degree d in P3 defined over Q̄ with Pi-

card rank 1; in fact, a priori, the complement of the Noether-Lefschetz locus may contain

no Q̄-point at all. One might also ask about the fields of definition of the components of

the Hodge locus. See [13, Section 1.3] and references therein.

Moreover, when the family f : X → S is defined over some field K finitely generated

over Q, instead of Hodge theory one can consider ℓ-adic étale cohomology and the asso-

ciated Gal(K̄/K)-representations, and define the “ℓ-Tate locus” of a family f : X → S in

analogy with the the Hodge locus. The algebraicity of the components of this ℓ-Tate lo-

cus has been studied by Kreutz [12]. The results of [2] have some other strong arithmetic

consequence as well, see [3].

Outline. We could maybe start discussing the classical Noether theorem; the article

[6] gives a historical overview as well as explaining successive developments. We would

then learn about variations of Hodge structures and period domains. References can be

Voisin’s book [14], or the book [9], and maybe Griffiths’ papers [10, 11]. The language

of Mumford-Tate groups should be introduced, and we could study Deligne’s theorem

of the fixed part [8] (relating the monodromy group with the Mumford-Tate group), a

crucial result in Hodge theory. A nice introductory reference on the Hodge locus is the

article of Voisin [13], touching several aspects. It is interesting (and not hard) to see how

the Hodge conjecture would imply that the components of the Hodge locus are algebraic;

from this perspective one might see the theorem of [7] as one of the strongest available

piece of evidence supporting the validity of the Hodge conjecture. The proof of the result

of Cattani, Deligne, Kaplan seems quite difficult, using Schmid’s nilpotent orbit theorem,

and we should probably leave it aside.

Perhaps the most important ingredient used in [2] is a Ax-Schanuel theorem, related

to the topic of functional transcendence, as proven in [1]. Schanuel conjecture regards

the transcendence degree of certain complex numbers over Q; these Ax-Schanuel theorems

prove so-called geometric versions of Schanuel conjecture, and several versions appeared in

the literature. Most of the recent versions use o-minimality, a key source of developments

in the study of Hodge loci, which led to a new proof of the theorem of Cattani-Deligne-

Kaplan, to the proof of the André-Oort conjecture for Shimura varieties, and to other

important algebraicity results for period maps. We could decide to learn some of this,

but a proper treatment would probably require a large part of the seminar. Otherwise,

in [1] a proof of the needed Ax-Schanuel theorem is given via the recent [5], which avoids

o-minimality and uses instead foliations. It should be very interesting in any case to

understand how these results on functional transcendence are related with the study of the

Hodge locus. The article [1] also gives an application to Grothendieck period conjecture

over function fields.
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