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1 Plan of the seminar

We prove the Gross-Zagier formula following [6].

1. Overview over the classical Gross-Zagier formula [10][8] (22.11.23, Gabriele
Bogo):

Introduce the modular curve X0(N) and its Heegner points. Introduce
the Neron-Tate pairing and state the Gross-Zagier formula. See [10] for a
survey and [8] for the original article.

2. Quadratic spaces, orthogonal groups, special divisors [5][2][3][7] (22.11.23,
Sören Sprehe):

Introduce the orthogonal upper half plane corresponding to the orthogo-
nal group of a quadratic space V over Q of signature (n, 2). Define the
discriminant kernel attached to an even lattice L ⊆ V of full rank. Define
special divisors and modular forms.

3. Theta and Eisenstein series, Siegel-Weil formula [6, Section 2] (29.11.23,
Simon Paege):

Introduce the Weil-representation acting on Schwartz functions. For a
Schwartz function define the attached theta function and show its mod-
ular properties. Introduce Eisenstein series corresponding to a standard
section. Mention its meromorphic continuation and functional equation
relating the values at s with the values at −s. State the Siegel-Weil for-
mula. Give an overview of Section 2.2 of [6] as an example.

4. Vector-valued modular forms and harmonic weak Maass forms [4, Section
3][6, Section 3] (29.11.23, Rebekka Strathausen):

Introduce vector-valued modular forms and harmonic weak Maass forms.
Show that they have a Fourier expansion involving certain special func-
tions. Define the ξ-operator and state the short exact sequence of [4,
Corollary 3.8]. Show the existence of harmonic weak Maass forms with
prescribed principal part [6, Lemma 3.4].
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5. Regularized Theta Integrals [1][4][3] (13.12.23, Annika Burmester):

Define the regularized theta lift following [1] and [3] and prove [6, Theorem
4.2].

6. CM values of automorphic Green functions [6] (10.01.24, Manuel Hoff):

Prove [6, Theorem 4.8].

7. Faltings’ heights of CM cycles [6, Section 5][9, Chapter III] (10.01.24, Paul
Kiefer):

Introduce Arakelov geometry and the notion of an arithmetic divisor [9,
Chapter II, Chapter III]. Define the Faltings height. Mention the rela-
tion to the calculations of the previous talk. If time permits, state [6,
Conjecture 5.1, 5.2, 5.3]

8. Height pairings on modular curves: Modular curves as orthogonal Shimura
varieties and the Shimura lift [6, Section 7.1, 7.2] (24.01.24, Patrick Bieker,
Lennart Gehrmann):

Show that the modular curves X(Γ0(N)) are orthogonal Shimura varieties
by choosing a certain lattice L of signature (1, 2). Recall the Shimura lift
and prove [6, Lemma 7.3].

9. Height pairings on modular curves: Gross-Zagier formula [6, Section 7.3]
(24.01.24, Patrick Bieker, Lennart Gehrmann):

Prove the Gross-Zagier formula [6, Corollary 7.8].
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