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Thue–Morse spectrum
(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Substitution: ̺ :
1 7→ 11̄

1̄ 7→ 1̄1
( 1̄ =̂−1 )

Note that ̺ maps a ∈ {1, 1̄} to aā (where ¯̄a = a)

Iteration and fixed point:

1 7−→ 11̄

7−→ 11̄1̄1

7−→ 11̄1̄11̄111̄

7−→ 11̄1̄11̄111̄1̄111̄11̄1̄1

7−→ · · · −→ v = ̺(v) = v0v1v2v3 . . .

Starting from 1̄ results in the fixed point v̄.
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Thue–Morse spectrum
(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Fixed point v = v0v1v2v3 . . . vi · · · = ̺(v), so

̺(v) = ̺(v0)︸ ︷︷ ︸
v0v1

̺(v1)︸ ︷︷ ︸
v2v3

̺(v2)︸ ︷︷ ︸
v4v5

̺(v3)︸ ︷︷ ︸
v6v7

. . . ̺(vi)︸︷︷︸
v2iv2i+1

. . .

which implies (noting that ̺(vi) = vivi)

v2i = vi and v2i+1 = vi

for all i ≥ 0.

Given v0, this determines v recursively.
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Thue–Morse spectrum
(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Autocorrelation coefficients

η(m) = lim
N→∞

1

N

N−1∑

i=0

vivi+m

Consider η(2m) and split the sum into two parts:

i = 2j even: vivi+2m = v2jv2j+2m = vjvj+m

i = 2j+1 odd: vivi+2m = v2j+1v2j+2m+1 = vj vj+m = vjvj+m

This shows that

η(2m) = η(m)

for all m ≥ 0.
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Thue–Morse spectrum
(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Autocorrelation coefficients

η(m) = lim
N→∞

1

N

N−1∑

i=0

vivi+m

Consider η(2m+1) and split the sum into two parts:

i = 2j even: vivi+2m+1 = v2jv2j+2m+1 = vjvj+m = −vjvj+m

i = 2j+1 odd: vivi+2m+1 = v2j+1v2j+2m+2 = vjvj+m+1

= −vjvj+m+1

This shows that

η(2m+1) = −1

2

(
η(m) + η(m+1)

)

for all m ≥ 0.
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Thue–Morse spectrum
(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Autocorrelation coefficients

η(m) = lim
N→∞

1

N

N−1∑

i=0

vivi+m

satisfy

η(2m) = η(m) and η(2m+1) = −1

2

(
η(m) + η(m+1)

)

for all m ≥ 0. Given η(0) = 1, all coefficients η(m) for m > 0
are uniquely determined. In particular,

η(1) = −1

2

(
η(0) + η(1)

)

which implies η(1) = −1
3 .
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Thue–Morse spectrum
(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Autocorrelation coefficients

η(m) = lim
N→∞

1

N

N−1∑

i=0

vivi+m

satisfy

η(2m) = η(m) and η(2m+1) = −1

2

(
η(m) + η(m+1)

)

for all m ≥ 0.

Renormalisation relations

Equations contain a self-consistent part (here m ∈ {0, 1})
plus recursions (determining coefficients for m > 1).
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Thue–Morse spectrum
(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Autocorrelation coefficients

η(m) = lim
N→∞

1

N

N−1∑

i=0

vivi+m

Thue–Morse measure

η positive definite, Herglotz–Bochner theorem implies

η(m) =

∫ 1

0

e2πimy dµ(y)

with positive measure µ on [0, 1).

Renormalisation relations for η

=⇒ µ purely singular continuous measure

=⇒ Riesz product
∏

ℓ≥1

(
1− cos(2ℓπy)

)
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Thue–Morse spectrum
(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Thue–Morse measure

0 0.5 1

0

0.5

1

Plot of distribution function F (x) =
∫ x
0 dµ(y) = x+

∑
m≥1

η(m)
mx

sin(2πmx)
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Renormalisation approach

This approach was generalised to show purely singular
continuous spectrum for generalised Thue–Morse
sequence (Baake, Gähler & G 2012) and
higher-dimensional binary bijective block substitution tilings
(Baake & G 2014), such as the ‘squiral’ tiling

More generally, rather than working with autocorrelation
coefficients directly, renormalisation relations can be
derived using the pair correlation coefficients (Baake &
Gähler 2015).
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Connection with diffraction

L A S E R

Wiener’s diagram obstacle f(x), with f̃(x) := f(−x)

f
∗−−−→ f ∗ f̃

F
y

yF

f̂
| . |2−−−→ |f̂ |2
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Connection with diffraction

Structure translation bounded measure ω

assumed ‘self-amenable’ (Hof 1995)

(here, ω = δΛ :=
∑
x∈Λ

δx for point set Λ ⊂ R
d)

Autocorrelation γ = γω = ω ⊛ ω̃ := lim
R→∞

ω|R ∗ ω̃|R
vol(BR)

Diffraction γ̂ =
(
γ̂
)
pp

+
(
γ̂
)
sc
+
(
γ̂
)
ac

(relative to λLeb)

pp: Bragg peaks

ac: diffuse scattering with density

sc: whatever remains ...
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Fibonacci inflation
Substitution rule and substitution matrix

̺ :
ℓ 7→ ℓs

s 7→ ℓ
M =

(
1 1

1 0

)

One-sided fixed point w = ̺(w) by iteration of ̺ on w(0) = ℓ:

ℓ 7→ ℓs 7→ ℓsℓ 7→ ℓsℓℓs 7→ ℓsℓℓsℓsℓ 7→ · · · 7→ w(n) n→∞−−−−→ w

Fibonacci numbers

|w(n)| = fn+2 with cardℓ(w
(n)) = fn+1 and cards(w

(n)) = fn

where f0 = 0, f1 = 1 and fn+1 = fn + fn−1

Golden ratio

lim
n→±∞

fn+1

fn
=

1±
√
5

2
=

{
τ

τ ′
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Fibonacci inflation

Recursion: w(n+1) = w(n)w(n−1)

Two-sided Fibonacci sequence

ℓ|ℓ ̺7−→ ℓs|ℓs ̺7−→ ℓsℓ|ℓsℓ
̺7−→ ℓsℓℓs|ℓsℓℓs ̺7−→ ℓsℓℓsℓsℓ|ℓsℓℓsℓsℓ
̺7−→ ℓsℓℓsℓsℓℓsℓℓs|ℓsℓℓsℓsℓℓsℓℓs ̺7−→ · · ·

limiting 2-cycle ⊲ two fixed points under ̺2

Geometric realisation

s ℓ

ℓ ℓ s

as an inflation rule on one-dimensional tiles (intervals)
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Displacement matrix

Inflation rule

s ℓ

ℓ ℓ s

Choose natural tile lengths according to left
Perron–Frobenius eigenvector (τ, 1) of M

Displacement matrix

T =

(
{0} {0}
{τ} ∅

)

with card(Tab) = Mab.

Consider fixed-point tiling obtained by an even number of

inflations of the initial patch ℓ ℓ

Control point sets Λa ⊂ Z[τ ]: sets of left endpoints of
intervals of type a ∈ {ℓ, s}, and Λ = Λℓ ∪ Λs ⊂ Z[τ ].
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Displacement matrix

Squared inflation rule

s ℓ s

ℓ ℓ s ℓ

Displacement matrix

T =

(
{0, τ+1} {0}

{τ} {τ}

)

with card(Tab) = M2
ab.

Fixed point equations for point sets Λℓ,s

Λℓ= τ2Λℓ ∪
(
τ2Λℓ + τ2

)
∪ τ2Λs

Λs=
(
τ2Λℓ + τ

)
∪
(
τ2Λs + τ

)
}

Λa =
⋃

b

τ2Λb + Tab
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Pair correlations

Pair correlation coefficients

νab(z) :=
dens

(
Λa ∩ (Λb − z)

)

dens(Λ)

satisfying νab(z) > 0 for z ∈ Λb−Λa (and νab(z) = 0 otherwise)

Autocorrelation coefficients

η(z) := dens
(
Λ ∩ (Λ− z)

)
= dens(Λ)

∑

a,b

νab(z)

Strategy

derive renormalisation relations for νab(z)

take the Fourier transform

obtain conditions on spectral components
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Pair correlations

From the fixed point equation we get

νab(z) =
dens

(
Λa ∩ (Λb − z)

)

dens(Λ)

=
dens

((⋃
a′ τ2Λa′ + Taa′

)
∩
(⋃

b′ τ
2Λb′ + Tbb′ − z

))

dens(Λ)

=
∑

a′,b′

∑

x∈Taa′

∑

y∈Tbb′

dens
(
(τ2Λa′ + x) ∩ (τ2Λb′ + y − z)

)

dens(Λ)

=
1

τ2

∑

a′,b′

∑

x∈Taa′

∑

y∈Tbb′

dens
(
(Λa′ + x

τ2 ) ∩ (Λb′ +
y−z
τ2 )
)

dens(Λ)

=
1

τ2

∑

a′,b′

∑

x∈Taa′

∑

y∈Tbb′

νa′b′
(z+x−y

τ2

)
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Pair correlations

νab(z) =
1

τ2

∑

a′,b′

∑

x∈Taa′

∑

y∈Tbb′

νa′b′
(z+x−y

τ2

)

a
′

b
′

(z+x−y)/τ2

̺2(a′) ̺2(b′)

a bx y

z

z+x−y

a b
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Pair correlation measures

Define pair correlation measures

Υab :=
∑

z∈Λb−Λa

νab(z) δz

The autocorrelation measure γ and the

diffraction measure γ̂ are given by

γ =
∑

z∈Λ−Λ

η(z) δz = dens(Λ)
∑

a,b

Υab

γ̂ = dens(Λ)
∑

a,b

Υ̂ab
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Pair correlation measures

Define pair correlation measures

Υab :=
∑

z∈Λb−Λa

νab(z) δz

and set Υ̂ =
(
Υ̂ℓℓ, Υ̂ℓs, Υ̂sℓ, Υ̂ss

)
. Then (with λ = τ2)

Υ̂ =
1

λ2
A(.)

(
f−1.Υ̂

)

with f(x) = λx and A(k) = B(k)⊗ B(k)

B(.) is the Fourier matrix

B(k) = |δT (k) = δ̂T (−k)
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Fourier matrix

For the Fibonacci inflation

T =

(
{0, τ+1} {0}

{τ} {τ}

)
=⇒ B(k) =

(
1 + e2πi(τ+1)k 1

e2πiτk e2πiτk

)

For N -fold inflation, the Fourier matrix is (λ = τ2)

B(N)(k) = B(k)B(N−1)(λk)

= B(k)B(λk)B(λ2k) · · ·B(λN−1k)

This cocycle, and in particular its Lyapunov exponents,

provides information about the spectral components

⊲ more on this in Neil’s talk tomorrow

Informal summer school on substitutions and aperiodic order, 12–13 August 2020 – p.9



Fibonacci model set

Substitution ℓ 7→ ℓs, s 7→ ℓ (inflation factor τ = 1+
√

5
2 )

Point set Λ =
{
x ∈ Z[τ ] : x⋆ ∈ W

}
with W = (−1, τ − 1]

⋆-map
√
5 7→ −

√
5 which means τ 7→ τ⋆ = 1− τ

Minkowski embedding L =
{
(x, x⋆) : x ∈ Z[τ ]

}
lattice

s ℓ s ℓ ℓ s ℓ ℓ s ℓ s ℓ
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Diffraction of Fibonacci chain

s ℓ s ℓ ℓ s ℓ ℓ s ℓ s ℓ

Basis matrices of L and L∗:

(
τ 1

1−τ 1

)
and 1√

5

(
1 τ−1

−1 τ

)

Fourier module: L⊛ = L/
√
5, Bragg peaks for k ∈ L⊛

Intensity: I(k) =
∣∣∣dens(Λ)vol(W )

|1W(k⋆)
∣∣∣
2
=
(

τ√
5
sinc(πτk⋆)

)2
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Diffraction of Fibonacci chain

Basis matrices of L and L∗:

(
τ 1

1−τ 1

)
and 1√

5

(
1 τ−1

−1 τ

)

Fourier module: L⊛ = L/
√
5, Bragg peaks for k ∈ L⊛

Intensity: I(k) =
∣∣∣dens(Λ)vol(W )

|1W(k⋆)
∣∣∣
2
=
(

τ√
5
sinc(πτk⋆)

)2
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Diffraction of Fibonacci chain

0 5 10 15 20

0.1

0.2

0.3

0.4

0.5

Basis matrices of L and L∗:

(
τ 1

1−τ 1

)
and 1√

5

(
1 τ−1

−1 τ

)

Fourier module: L⊛ = L/
√
5, Bragg peaks for k ∈ L⊛

Intensity: I(k) =
∣∣∣dens(Λ)vol(W )

|1W(k⋆)
∣∣∣
2
=
(

τ√
5
sinc(πτk⋆)

)2
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Square Fibonacci model set

0
3

1
3 2 2 3

1

3 3 2

1 0
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Square Fibonacci model set
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Variations
(Baake, Frank & G 2021)

3 2 2 3 3

1

1

3

0 1 0 1

3 2

01

0

3 2

0 1

1 2

3 0

21

3

2 3

10

4

0 3

2 1

5

2 3

1 0

6

0 1

32

7

2 1

30

8

1 0

2 3

9

1 0

23

10

0 1

3 2

11

1 2

03
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Variations
(Baake, Frank & G 2021)
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Variations
(Baake, Frank & G 2021)

(0,0,0) (0,1,9) (1,0,3) (1,1,6)

Informal summer school on substitutions and aperiodic order, 12–13 August 2020 – p.13



Variations
(Baake, Frank & G 2021)

(0,0,1) (0,0,3) (0,0,5) (0,0,2) (0,0,9) (0,0,11)

(1,1,8) (1,1,9) (1,1,10) (1,1,7) (1,1,3) (1,1,4)

(0,1,10) (0,1,6) (0,1,8) (0,1,11) (0,1,0) (0,1,2)

(1,0,5) (1,0,0) (1,0,1) (1,0,4) (1,0,6) (1,0,7)
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Variations
(Baake, Frank & G 2021)

(0,0,6) (0,0,4) (0,0,10) (0,0,7) (0,0,8)

(1,1,0) (1,1,11) (1,1,5) (1,1,2) (1,1,1)

(0,1,3) (0,1,7) (0,1,1) (0,1,4) (0,1,5)

(1,0,9) (1,0,2) (1,0,8) (1,0,11) (1,0,10)
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Diffraction for this case
Diffraction

⊲ cut and project set, pure point diffractive

⊲ general diffraction formula applies

⊲ Fourier module stays the same

⊲ but how to calculate }1Wi
(y) for such windows?

⊲ integration not feasible

Approach

⊲ exploit substitution structure: renormalisation

⊲ renormalisation in internal space

⊲ infinite matrix product expression for |1W(y)

⊲ can be calculated efficiently
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Internal Fourier matrix

Fibonacci square substitution and displacement matrix

̺2 :
ℓ 7→ ℓsℓ

s 7→ ℓs
T =

(
{0, τ+1} {0}

{τ} {τ}

)

Fixed-point equations (σ = τ⋆ = 1− τ )

Λa =
⋃

b

τ2Λb + Tab
⋆

=⇒ Wa =
⋃

b

σ2Wb + T ⋆
ab

implying relations for the (inverse) Fourier transforms of the
characteristic functions

}1Wa
(y) =

∑

b

∑

x∈Tab

1σ2Wb+x⋆(y) =
∑

b

∑

x∈Tab

σ2 e2πix
⋆y }1Wb

(σ2y)
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Internal Fourier matrix

}1Wa
(y) =

∑

b

∑

x∈Tab

1σ2Wb+x⋆(y) =
∑

b

∑

x∈Tab

σ2 e2πix
⋆y }1Wb

(σ2y)

Defining h =
(

}1Wa
, }1Wb

)t
this becomes a matrix equation

h(y) = σ2B(y)h(σ2y)

with internal Fourier matrix

B(y) = |δT ⋆(y) =

(
1 + e2πi(σ+1)y 1

e2πiσy e2πiσy

)

Internal cocycle

B(N)
(
y
)
= B

(
y
)
B
(
σ2y
)
B
(
σ4y
)
· · · B

(
σ2(N−1)y

)

h(y) encoded in C(y) := lim
N→∞

σ2NB(N)(y).
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Variations

(0,0,6) (0,0,4) (0,0,10) (0,0,7) (0,0,8)

(1,1,0) (1,1,11) (1,1,5) (1,1,2) (1,1,1)

(0,1,3) (0,1,7) (0,1,1) (0,1,4) (0,1,5)

(1,0,9) (1,0,2) (1,0,8) (1,0,11) (1,0,10)
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Variations
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Summary

substitution/inflation

natural renormalisation structure

pair correlation measures

Fourier matrix cocycle

information on spectral components

⊲ Neil’s talk tomorrow

model set ⊲ internal Fourier matrix cocycle

⊲ diffraction for complex windows
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