Renormalisation in Spectral Theory: Introduction and Diffraction

Uwe Grimm

School of Mathematics & Statistics The Open University Milton Keynes, UK

(based on joint work with Michael Baake, Natalie Priebe Frank, Franz Gähler, Neil Mañibo, E. Arthur Robinson jr)

Engineering and Physical Sciences Research Council

(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Substitution:
$$\varrho: \quad \frac{1 \mapsto 1\overline{1}}{\overline{1} \mapsto \overline{1}1} \qquad (\overline{1} \stackrel{\circ}{=} -1)$$

Note that ρ maps $a \in \{1, \overline{1}\}$ to $a\overline{a}$ (where $\overline{\overline{a}} = a$)

Iteration and fixed point:

Starting from $\overline{1}$ results in the fixed point \overline{v} .

(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Fixed point $v = v_0 v_1 v_2 v_3 \dots v_i \dots = \varrho(v)$, so

$$\varrho(v) = \underbrace{\varrho(v_0)}_{v_0v_1} \underbrace{\varrho(v_1)}_{v_2v_3} \underbrace{\varrho(v_2)}_{v_4v_5} \underbrace{\varrho(v_3)}_{v_6v_7} \dots \underbrace{\varrho(v_i)}_{v_{2i}v_{2i+1}} \dots$$

which implies (noting that $\varrho(v_i) = v_i \overline{v_i}$)

$$v_{2i} = v_i$$
 and $v_{2i+1} = \overline{v_i}$

for all $i \ge 0$.

Given v_0 , this determines v recursively.

(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Autocorrelation coefficients

$$\eta(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} v_i v_{i+m}$$

Consider $\eta(2m)$ and split the sum into two parts:

$$\begin{split} &i = 2j \text{ even:} \quad v_i v_{i+2m} = v_{2j} v_{2j+2m} = v_j v_{j+m} \\ &i = 2j+1 \text{ odd:} \quad v_i v_{i+2m} = v_{2j+1} v_{2j+2m+1} = \overline{v_j} \, \overline{v_{j+m}} = v_j v_{j+m} \end{split}$$

This shows that

$$\eta(2m) = \eta(m)$$

for all $m \ge 0$.

(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Autocorrelation coefficients

$$\eta(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} v_i v_{i+m}$$

Consider $\eta(2m+1)$ and split the sum into two parts:

$$\begin{split} i &= 2j \text{ even:} \quad v_i v_{i+2m+1} = v_{2j} v_{2j+2m+1} = v_j \overline{v_{j+m}} = -v_j v_{j+m} \\ i &= 2j+1 \text{ odd:} \quad v_i v_{i+2m+1} = v_{2j+1} v_{2j+2m+2} = \overline{v_j} v_{j+m+1} \\ &= -v_j v_{j+m+1} \end{split}$$

This shows that

$$\eta(2m+1) = -\frac{1}{2} \Big(\eta(m) + \eta(m+1) \Big)$$

for all $m \ge 0$.

(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Autocorrelation coefficients

$$\eta(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} v_i v_{i+m}$$

satisfy

$$\label{eq:gamma} \boxed{\eta(2m) = \eta(m)} \quad \text{and} \quad \boxed{\eta(2m+1) = -\frac{1}{2}\Bigl(\eta(m) + \eta(m+1)\Bigr)}$$

for all $m \ge 0$. Given $\eta(0) = 1$, all coefficients $\eta(m)$ for m > 0 are uniquely determined. In particular,

$$\eta(1) = -\frac{1}{2} \Big(\eta(0) + \eta(1) \Big)$$

which implies $\eta(1) = -\frac{1}{3}$.

(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Autocorrelation coefficients

$$\eta(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} v_i v_{i+m}$$

satisfy

$$\label{eq:gamma} \boxed{\eta(2m) = \eta(m)} \quad \text{and} \quad \boxed{\eta(2m+1) = -\frac{1}{2} \bigl(\eta(m) + \eta(m+1)\bigr)}$$

for all $m \ge 0$.

Renormalisation relations

Equations contain a self-consistent part (here $m \in \{0, 1\}$) plus recursions (determining coefficients for m > 1).

(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

Autocorrelation coefficients

$$\eta(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} v_i v_{i+m}$$

Thue–Morse measure

 η positive definite, Herglotz–Bochner theorem implies

$$\eta(m) = \int_0^1 e^{2\pi i m y} d\mu(y)$$

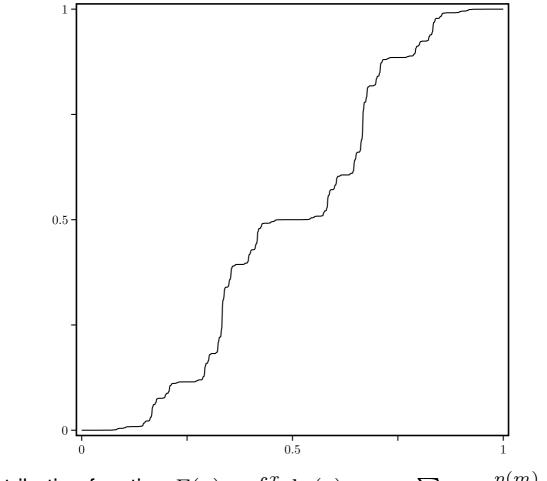
with positive measure μ on [0, 1).

Renormalisation relations for η

 $\implies \mu \text{ purely singular continuous measure} \\ \implies \text{Riesz product } \prod_{\ell > 1} (1 - \cos(2^{\ell} \pi y))$

(Wiener 1927, Mahler 1927, Kakutani 1972, Baake & G 2008)

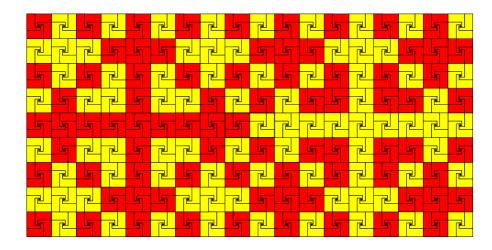
Thue–Morse measure



Plot of distribution function $F(x) = \int_0^x d\mu(y) = x + \sum_{m \ge 1} \frac{\eta(m)}{mx} \sin(2\pi mx)$

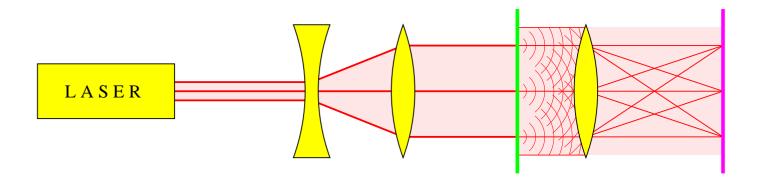
Renormalisation approach

This approach was generalised to show purely singular continuous spectrum for generalised Thue–Morse sequence (Baake, Gähler & G 2012) and higher-dimensional binary bijective block substitution tilings (Baake & G 2014), such as the 'squiral' tiling

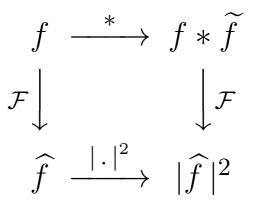


More generally, rather than working with autocorrelation coefficients directly, renormalisation relations can be derived using the **pair correlation coefficients** (Baake & Gähler 2015).

Connection with diffraction



Wiener's diagram obstacle f(x), with $\tilde{f}(x) := \overline{f(-x)}$



Connection with diffraction

Structuretranslation bounded measure ω assumed'self-amenable'(Hof 1995)(here, $\omega = \delta_A := \sum_{x \in A} \delta_x$ for point set $A \subset \mathbb{R}^d$)

Autocorrelation $\gamma = \gamma_{\omega} = \omega \circledast \widetilde{\omega} := \lim_{R \to \infty} \frac{\omega|_R \ast \omega|_R}{\operatorname{vol}(B_R)}$

Diffraction

$$\widehat{\gamma} = (\widehat{\gamma})_{\rm pp} + (\widehat{\gamma})_{\rm sc} + (\widehat{\gamma})_{\rm ac}$$
 (rel

(relative to λ_{Leb})

pp: Bragg peaks
 ac: diffuse scattering with density
 sc: whatever remains ...

Fibonacci inflation

Substitution rule and substitution matrix

$$\varrho \colon \begin{array}{cc} \ell \mapsto \ell s \\ s \mapsto \ell \end{array} \qquad M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Fibonacci numbers

 $|w^{(n)}| = f_{n+2}$ with $\operatorname{card}_{\ell}(w^{(n)}) = f_{n+1}$ and $\operatorname{card}_{s}(w^{(n)}) = f_{n}$ where $f_0 = 0$, $f_1 = 1$ and $f_{n+1} = f_n + f_{n-1}$

Golden ratio

$$\lim_{n \to \pm \infty} \frac{f_{n+1}}{f_n} = \frac{1 \pm \sqrt{5}}{2} = \begin{cases} \tau \\ \tau' \end{cases}$$

Fibonacci inflation

Recursion: $w^{(n+1)} = w^{(n)}w^{(n-1)}$

Two-sided Fibonacci sequence

limiting 2-cycle \longrightarrow two fixed points under ϱ^2

Geometric realisation

as an inflation rule on one-dimensional tiles (intervals)

Displacement matrix

Inflation rule

Choose **natural tile lengths** according to left Perron–Frobenius eigenvector $(\tau, 1)$ of M

Displacement matrix

$$T = \begin{pmatrix} \{0\} & \{0\} \\ \{\tau\} & \varnothing \end{pmatrix}$$

with $\operatorname{card}(T_{ab}) = M_{ab}$.

Control point sets $\Lambda_a \subset \mathbb{Z}[\tau]$: sets of left endpoints of intervals of type $a \in \{\ell, s\}$, and $\Lambda = \Lambda_\ell \cup \Lambda_s \subset \mathbb{Z}[\tau]$.

Displacement matrix

Squared inflation rule

Displacement matrix

$$T = \begin{pmatrix} \{0, \tau+1\} & \{0\} \\ \{\tau\} & \{\tau\} \end{pmatrix}$$

with $\operatorname{card}(T_{ab}) = M_{ab}^2$.

Fixed point equations for point sets $A_{\ell,s}$

$$\Lambda_{\ell} = \tau^2 \Lambda_{\ell} \cup \left(\tau^2 \Lambda_{\ell} + \tau^2\right) \cup \tau^2 \Lambda_s \\ \Lambda_s = \left(\tau^2 \Lambda_{\ell} + \tau\right) \cup \left(\tau^2 \Lambda_s + \tau\right) \right\} \quad \Lambda_a = \bigcup_b \tau^2 \Lambda_b + T_{ab}$$

Pair correlations

Pair correlation coefficients

$$\nu_{ab}(z) := \frac{\operatorname{dens}(\Lambda_a \cap (\Lambda_b - z))}{\operatorname{dens}(\Lambda)}$$

satisfying $\nu_{ab}(z) > 0$ for $z \in \Lambda_b - \Lambda_a$ (and $\nu_{ab}(z) = 0$ otherwise)

Autocorrelation coefficients

$$\eta(z) := \operatorname{dens}(\Lambda \cap (\Lambda - z)) = \operatorname{dens}(\Lambda) \sum_{a,b} \nu_{ab}(z)$$

Strategy

- derive renormalisation relations for $\nu_{ab}(z)$
- take the Fourier transform
- obtain conditions on spectral components

Pair correlations

From the fixed point equation we get

$$\nu_{ab}(z) = \frac{\operatorname{dens}(\Lambda_{a} \cap (\Lambda_{b} - z))}{\operatorname{dens}(\Lambda)}$$

$$= \frac{\operatorname{dens}((\bigcup_{a'} \tau^{2} \Lambda_{a'} + T_{aa'}) \cap (\bigcup_{b'} \tau^{2} \Lambda_{b'} + T_{bb'} - z))}{\operatorname{dens}(\Lambda)}$$

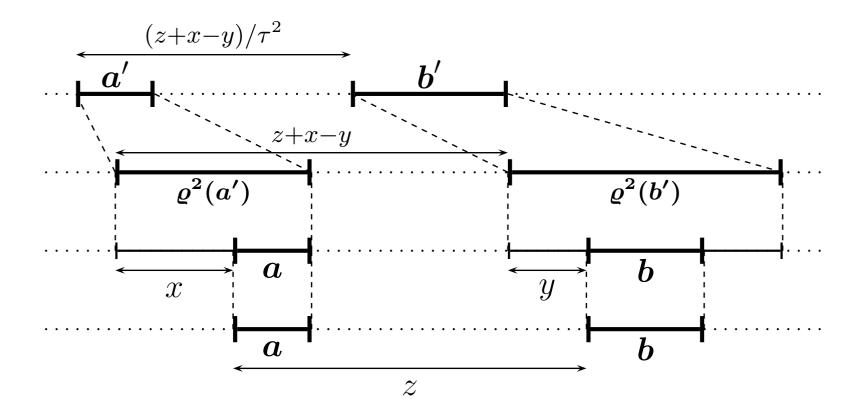
$$= \sum_{a',b'} \sum_{x \in T_{aa'}} \sum_{y \in T_{bb'}} \frac{\operatorname{dens}((\tau^{2} \Lambda_{a'} + x) \cap (\tau^{2} \Lambda_{b'} + y - z)))}{\operatorname{dens}(\Lambda)}$$

$$= \frac{1}{\tau^{2}} \sum_{a',b'} \sum_{x \in T_{aa'}} \sum_{y \in T_{bb'}} \frac{\operatorname{dens}((\Lambda_{a'} + \frac{x}{\tau^{2}}) \cap (\Lambda_{b'} + \frac{y - z}{\tau^{2}})))}{\operatorname{dens}(\Lambda)}$$

$$= \frac{1}{\tau^{2}} \sum_{a',b'} \sum_{x \in T_{aa'}} \sum_{y \in T_{bb'}} \frac{\operatorname{dens}((\Lambda_{a'} + \frac{x}{\tau^{2}}) \cap (\Lambda_{b'} + \frac{y - z}{\tau^{2}}))}{\operatorname{dens}(\Lambda)}$$

Pair correlations

$$\nu_{ab}(z) = \frac{1}{\tau^2} \sum_{a',b'} \sum_{x \in T_{aa'}} \sum_{y \in T_{bb'}} \nu_{a'b'} \left(\frac{z + x - y}{\tau^2}\right)$$



Pair correlation measures

Define pair correlation measures

$$\Upsilon_{ab} := \sum_{z \in \Lambda_b - \Lambda_a} \nu_{ab}(z) \, \delta_z$$

The **autocorrelation measure** γ and the **diffraction measure** $\hat{\gamma}$ are given by

$$\gamma = \sum_{z \in \Lambda - \Lambda} \eta(z) \, \delta_z = \operatorname{dens}(\Lambda) \sum_{a, b} \Upsilon_{ab}$$
$$\widehat{\gamma} = \operatorname{dens}(\Lambda) \sum_{a, b} \widehat{\Upsilon_{ab}}$$

Pair correlation measures

Define pair correlation measures

$$\Upsilon_{ab} := \sum_{z \in \Lambda_b - \Lambda_a} \nu_{ab}(z) \, \delta_z$$

and set
$$\widehat{\Upsilon} = (\widehat{\Upsilon_{\ell\ell}}, \widehat{\Upsilon_{\ell s}}, \widehat{\Upsilon_{s\ell}}, \widehat{\Upsilon_{ss}})$$
. Then (with $\lambda = \tau^2$)
 $\widehat{\Upsilon} = \frac{1}{\lambda^2} \mathbf{A}(.) (f^{-1}.\widehat{\Upsilon})$

with $f(x) = \lambda x$ and $A(k) = B(k) \otimes \overline{B(k)}$

B(.) is the **Fourier matrix**

$$B(k) = \widecheck{\delta_T}(k) = \widehat{\delta_T}(-k)$$

Fourier matrix

For the Fibonacci inflation

$$T = \begin{pmatrix} \{0, \tau+1\} & \{0\} \\ \{\tau\} & \{\tau\} \end{pmatrix} \implies B(k) = \begin{pmatrix} 1 + e^{2\pi i(\tau+1)k} & 1 \\ e^{2\pi i\tau k} & e^{2\pi i\tau k} \end{pmatrix}$$

For *N*-fold inflation, the Fourier matrix is $(\lambda = \tau^2)$

$$B^{(N)}(k) = B(k) B^{(N-1)}(\lambda k)$$

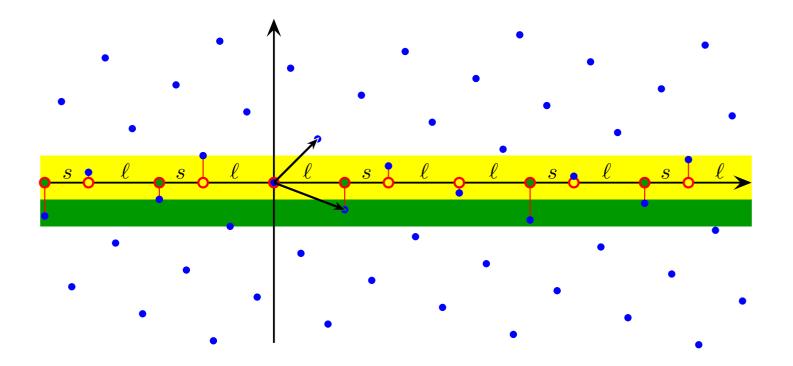
= $B(k) B(\lambda k) B(\lambda^2 k) \cdots B(\lambda^{N-1} k)$

This cocycle, and in particular its Lyapunov exponents, provides information about the spectral components

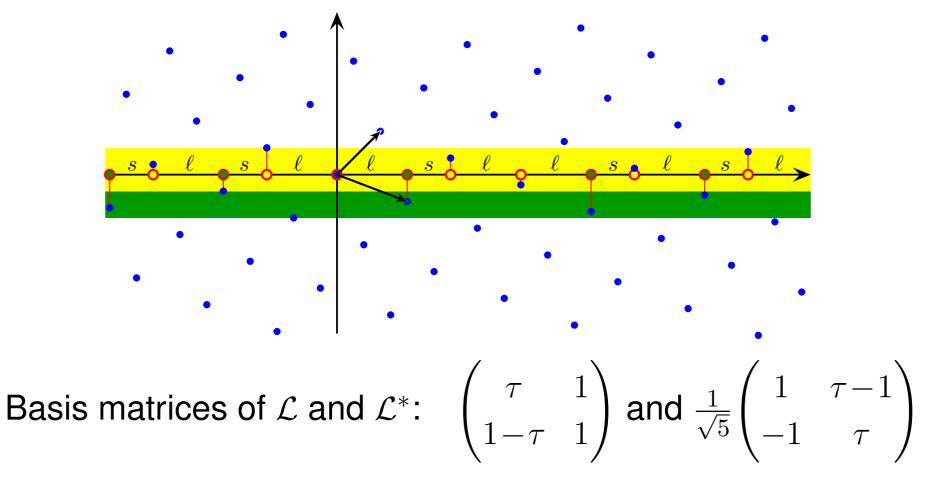
→ more on this in Neil's talk tomorrow

Fibonacci model set

Substitution $\ell \mapsto \ell s, s \mapsto \ell$ (inflation factor $\tau = \frac{1+\sqrt{5}}{2}$) Point set $\Lambda = \{x \in \mathbb{Z}[\tau] : x^* \in W\}$ with $W = (-1, \tau - 1]$ *-map $\sqrt{5} \mapsto -\sqrt{5}$ which means $\tau \mapsto \tau^* = 1 - \tau$ Minkowski embedding $\mathcal{L} = \{(x, x^*) : x \in \mathbb{Z}[\tau]\}$ lattice



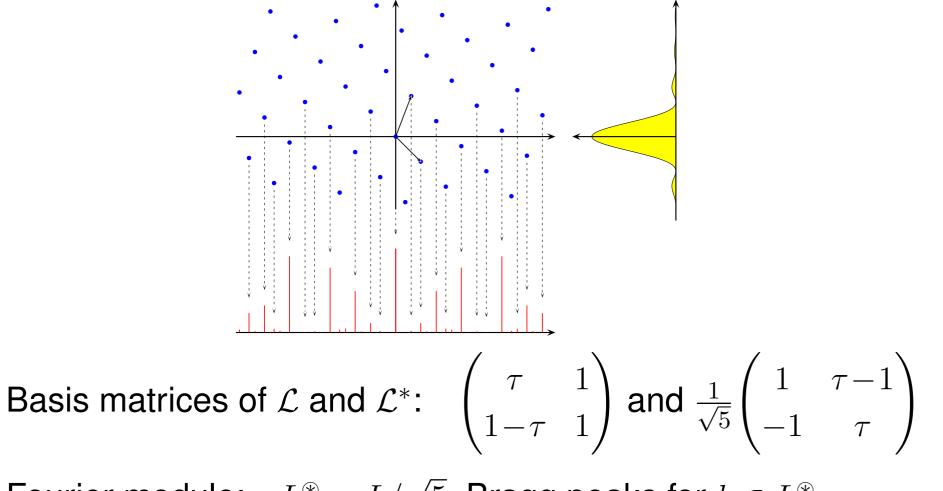
Diffraction of Fibonacci chain



Fourier module: $L^{\circledast} = L/\sqrt{5}$, Bragg peaks for $k \in L^{\circledast}$

Intensity:
$$I(k) = \left| \frac{\operatorname{dens}(\Lambda)}{\operatorname{vol}(W)} \widetilde{1}_W(k^\star) \right|^2 = \left(\frac{\tau}{\sqrt{5}} \operatorname{sinc}(\pi \tau k^\star) \right)^2$$

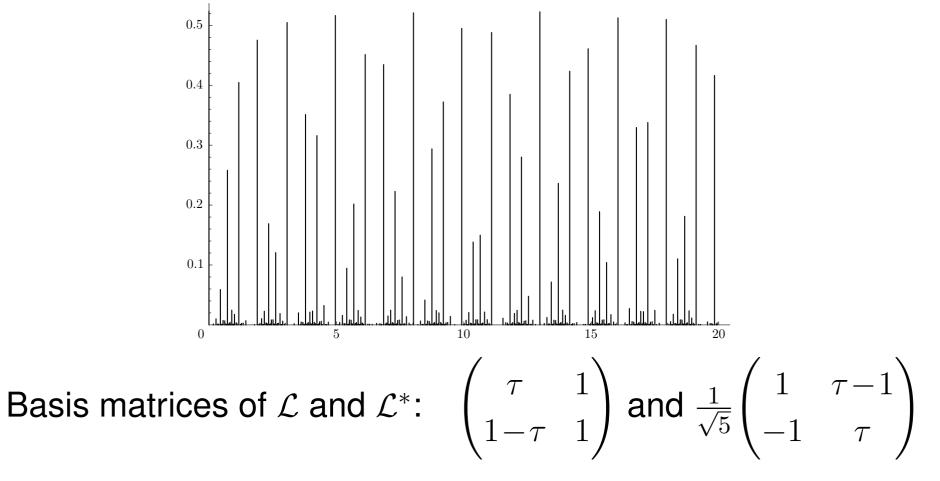
Diffraction of Fibonacci chain



Fourier module: $L^{\circledast} = L/\sqrt{5}$, Bragg peaks for $k \in L^{\circledast}$

Intensity:
$$I(k) = \left| \frac{\operatorname{dens}(\Lambda)}{\operatorname{vol}(W)} \widetilde{1}_W(k^\star) \right|^2 = \left(\frac{\tau}{\sqrt{5}} \operatorname{sinc}(\pi \tau k^\star) \right)^2$$

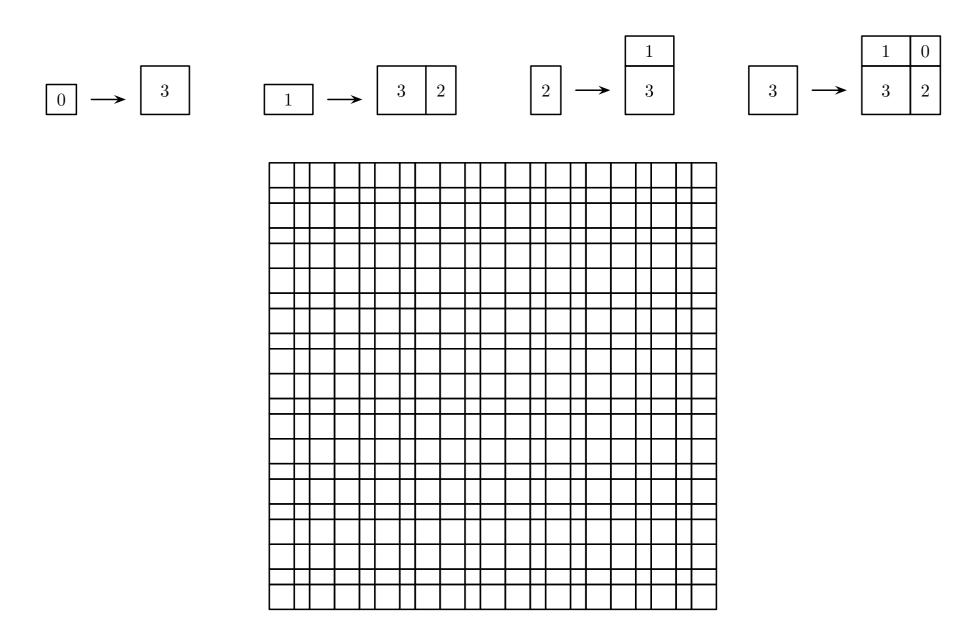
Diffraction of Fibonacci chain



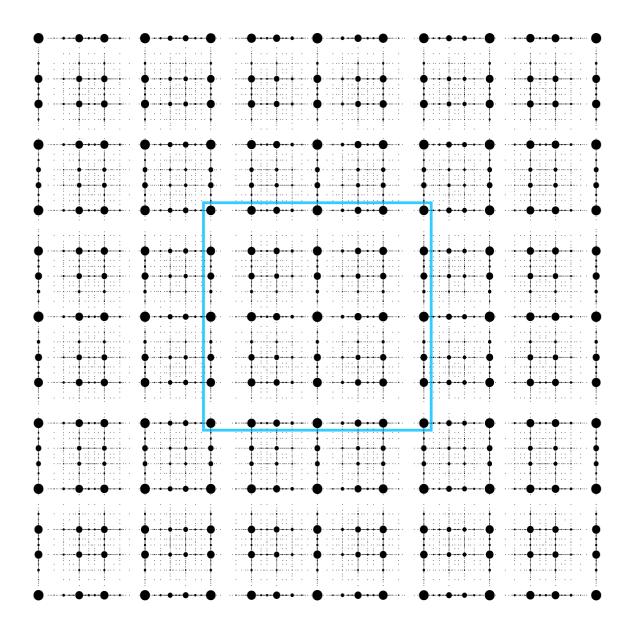
Fourier module: $L^{\circledast} = L/\sqrt{5}$, Bragg peaks for $k \in L^{\circledast}$

Intensity:
$$I(k) = \left| \frac{\operatorname{dens}(\Lambda)}{\operatorname{vol}(W)} \widetilde{1}_W(k^\star) \right|^2 = \left(\frac{\tau}{\sqrt{5}} \operatorname{sinc}(\pi \tau k^\star) \right)^2$$

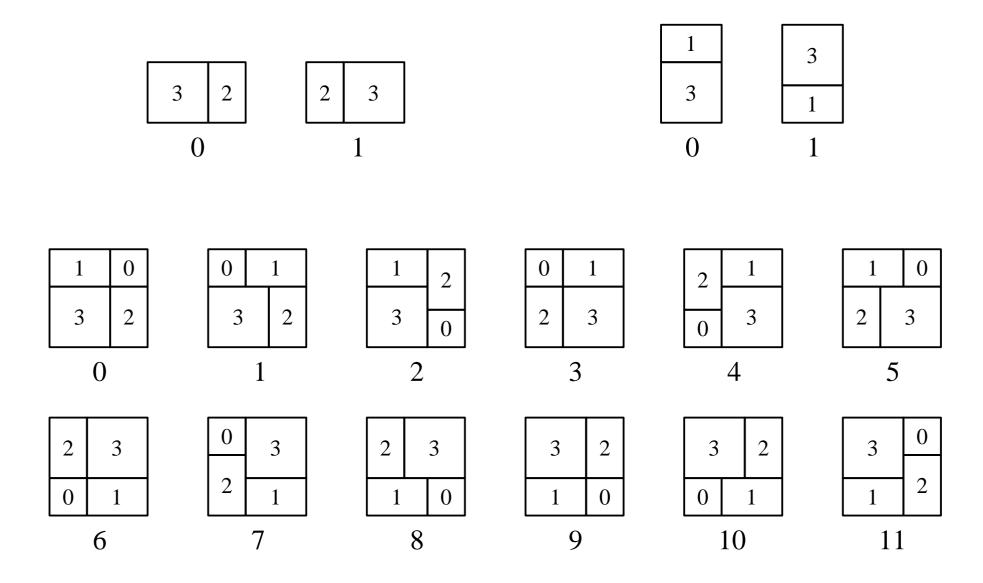
Square Fibonacci model set

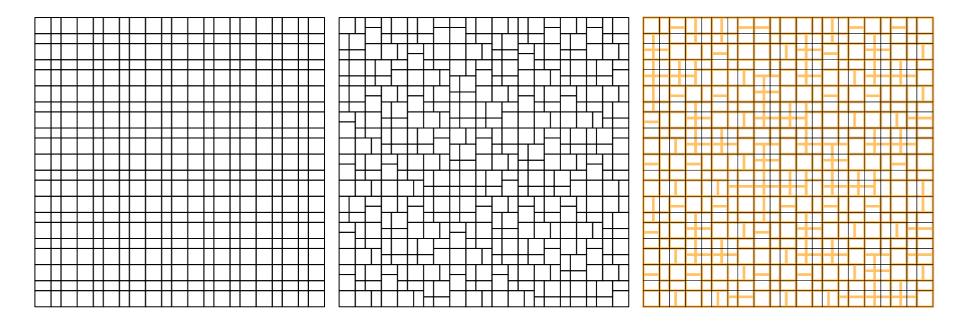


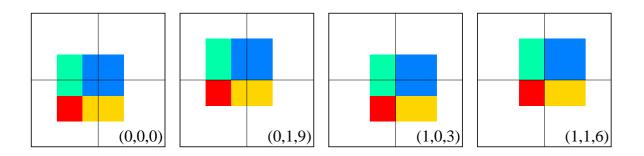
Square Fibonacci model set

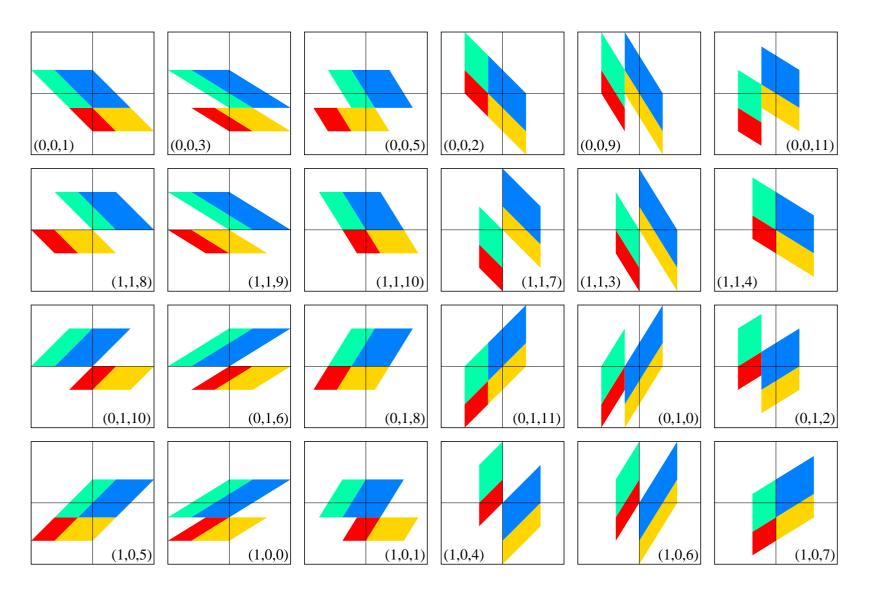


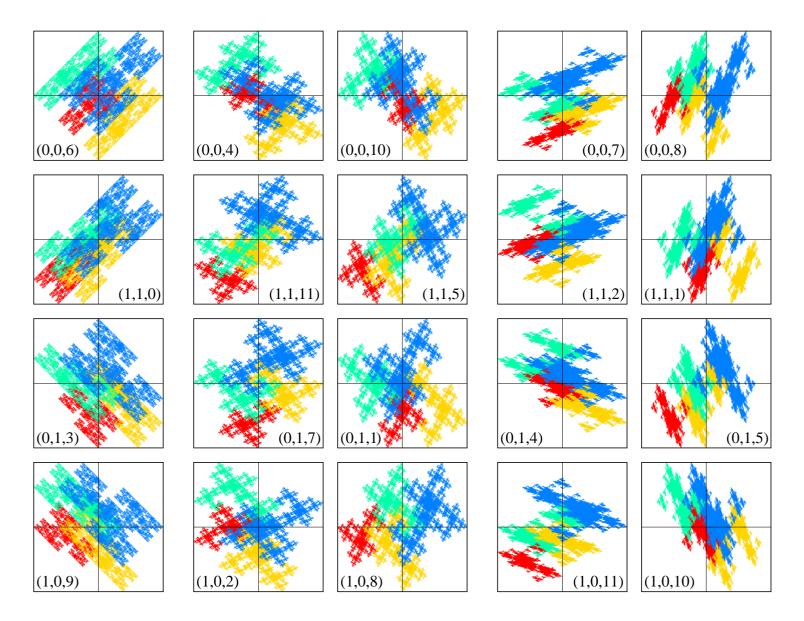
Informal summer school on substitutions and aperiodic order, 12-13 August 2020











Diffraction for this case

Diffraction

- --> cut and project set, pure point diffractive
- → general diffraction formula applies
- -> Fourier module stays the same
- but how to calculate $\widetilde{1}_{W_i}(y)$ for such windows?
- → integration not feasible

Approach

- exploit substitution structure: renormalisation
- --> renormalisation in **internal** space
- can be calculated efficiently

Internal Fourier matrix

Fibonacci square substitution and displacement matrix

$$\varrho^2: \begin{array}{ccc} \ell \mapsto \ell s \ell \\ s \mapsto \ell s \end{array} \qquad T = \begin{pmatrix} \{0, \tau+1\} & \{0\} \\ \{\tau\} & \{\tau\} \end{pmatrix}$$

Fixed-point equations ($\sigma = \tau^{\star} = 1 - \tau$)

$$\Lambda_a = \bigcup_b \tau^2 \Lambda_b + T_{ab} \quad \stackrel{\star}{\Longrightarrow} \quad W_a = \bigcup_b \sigma^2 W_b + T_{ab}^{\star}$$

implying relations for the (inverse) Fourier transforms of the characteristic functions

$$\widetilde{\mathbf{1}_{W_a}}(y) = \sum_{b} \sum_{x \in T_{ab}} \widetilde{\mathbf{1}_{\sigma^2 W_b + x^\star}}(y) = \sum_{b} \sum_{x \in T_{ab}} \sigma^2 e^{2\pi i x^\star y} \widetilde{\mathbf{1}_{W_b}}(\sigma^2 y)$$

Internal Fourier matrix

$$\widetilde{\mathbf{1}_{W_a}}(y) = \sum_b \sum_{x \in T_{ab}} \widetilde{\mathbf{1}_{\sigma^2 W_b + x^\star}}(y) = \sum_b \sum_{x \in T_{ab}} \sigma^2 e^{2\pi i x^\star y} \widetilde{\mathbf{1}_{W_b}}(\sigma^2 y)$$

Defining $h = (\widetilde{1}_{W_a}, \widetilde{1}_{W_b})^t$ this becomes a matrix equation $h(y) = \sigma^2 \underline{B}(y) h(\sigma^2 y)$

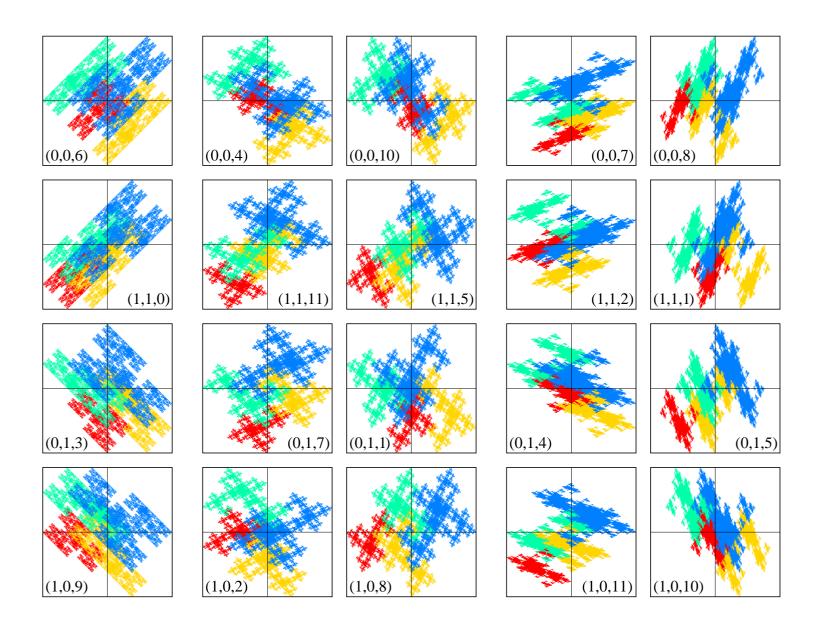
with internal Fourier matrix

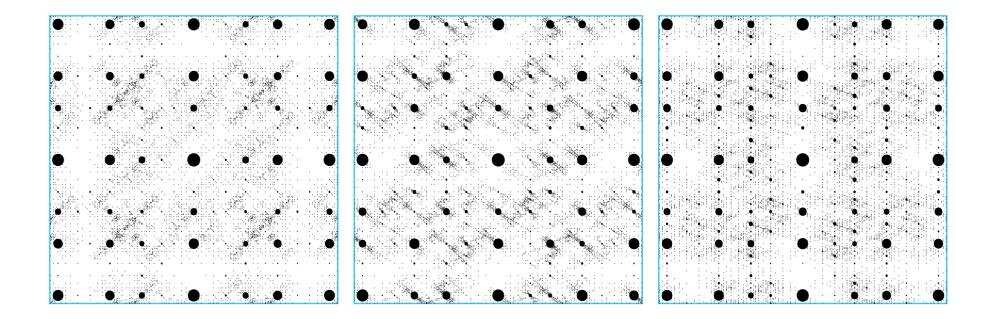
$$\underline{B}(y) = \widecheck{\delta_{T^{\star}}}(y) = \begin{pmatrix} 1 + e^{2\pi i(\sigma+1)y} & 1\\ e^{2\pi i\sigma y} & e^{2\pi i\sigma y} \end{pmatrix}$$

Internal cocycle

$$\underline{B}^{(N)}(y) = \underline{B}(y) \underline{B}(\sigma^2 y) \underline{B}(\sigma^4 y) \cdots \underline{B}(\sigma^{2(N-1)} y)$$

h(y) encoded in $C(y) := \lim_{N \to \infty} \sigma^{2N} \underline{B}^{(N)}(y).$





Summary

- substitution/inflation
- natural renormalisation structure
- pair correlation measures
- Fourier matrix cocycle
- information on spectral components
 - —> Neil's talk tomorrow
- model set —> internal Fourier matrix cocycle
 - → diffraction for complex windows