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What are n-supertiles?

Traditional view: σn(t) = σ(σn−1(t)) is what you get when
you apply the substitution to every tile in an n − 1-supertile.

Fusion perspective: σn(t) = σn−1(σ(t)) is what you get when
you assemble several n − 1-supertiles according to the pattern
of σ(t).
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Counting chairs

How many ways are there to extend a chair tile to a tiling?

4 ways to make a 1-supertile including the base tile.

4× 4 ways to make a 2-supertile.

4n ways to make an n−supertile.

Uncountably many ways to make a tiling.

Only countably many of those are translates of a given tiling,
so there are uncountably many chair tilings, up to translation.
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How different are different chair tilings?

Let T1 and T2 be different chair tilings.

Every patch P of T1 lives in an n-supertile Sn.

T2 contains lots of n-supertiles, in the same orientation as Sn.

T2 contains lots of copies of P, separated by bounded gaps, so

T1 and T2 have exactly the same local patterns. Same “LI
class’.
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Live is easier without shape

In 1D, the geometry takes care of itself.

Only need to specify the combinatorics.

E.g., Fibonacci: σ(a) = ab, σ(b) = a.

Up to overall scale, tile lengths are determined by substitution
matrix.
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The substitution matrix

Mij counts the number of ti tiles in σ(tj).

For Fibonacci, M =

(
1 1
1 0

)
.

For period-doubling, σ(a) = ab, σ(b) = aa, M =

(
1 2
1 0

)
.

Don’t confuse M with MT !
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Populations and eigenvectors

j-th column of M gives population of 1-supertile σ(tj).

j-th column of Mn gives population of σn(tj).

Population scales as λn, where λ is Perron-Frobenius
eigenvalue of M

Relative density of different tiles is given by right-eigenvector.
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Lengths and eigenvectors

Let L = (L1, L2, . . . , Lm) be the length of the tiles.

LMnej is the length of an n-supertile of type j .

LMn is the row vector of n-supertile lengths.

LM = λL.

Relative length of tiles is given by leading left-eigenvector of
M.
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Example: Fibonacci

σ(a) = ab, σ(b) = a

M =

(
1 1
1 0

)
, eigenvalues λ1 = φ, λ2 = 1− φ.

Leading right-eigenvector

(
φ
1

)
. “a” tiles outnumber “b” tiles

φ : 1.

Leading left-eigenvector (φ, 1). “a” tiles are φ times longer
than “b” tiles.
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Example: Period-doubling

σ(a) = ab, σ(b) = aa.

M =

(
1 2
1 0

)
. Eigenvalues 2 and −1.

Leading right-eigenvector

(
2
1

)
. “a” tiles outnumber “b” tiles

2:1.

Leading left-eigenvector (1, 1). Both tiles have the same
length.
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Non-periodicity

Fibonacci is non-periodic since φ is irrational.

Period-doubling is non-periodic because it has structures at all
scales 2n

. . . abaaabababaaabaa . . .

. . .XbXaXbXbXbXaXbXa . . .

. . .XYXaXYXbXYXaYXYa . . .

. . .XYXZXYXbXYXZXYXa . . .
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Tiling metric

Define metric on set of all tilings with given tile set.

d(T ,T ′) ≤ ε if T and T ′ agree on B1/ε(0), up to
ε-translation.

(d(T ,T ′) = min(1, inf{ε|T and T ′ agree . . .}).)

Metric depends on choice of origin, but topology doesn’t.

lim d(Ti ,T∞) = 0 means Ti ∩ K ⇒ T∞ ∩ K for all compact
K ⊂ Rn.
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Group action

G = Rn acts on tilings. T − x is what you get by translating all
the tiles in T by −x . (Equivalently, moving the origin in T by +x .)
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Tiling spaces

Definition

A tiling space is a set Ω of tilings on a fixed tile set with fixed
adjacency rules such that

Ω is translation invariant. (If T ∈ Ω and x ∈ Rn, then
T − x ∈ Ω.)

Ω is closed in the tiling metric.
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Continuous Hulls

Simplest way to build a tiling space:

Start with an FLC tiling T .

Consider the set {T − x} of translates of T .

ΩT = {T − x}.
Orbit closure of T = Tiling space of T = Continuous hull of
T .

Lorenzo Sadun Substitution Tilings and Substitution Tiling Spaces



The chair tiling
1D, where a word is worth 1000 pictures

Tiling spaces
Inverse limits

Example calculations

Continuous Hulls

Simplest way to build a tiling space:

Start with an FLC tiling T .

Consider the set {T − x} of translates of T .

ΩT = {T − x}.
Orbit closure of T = Tiling space of T = Continuous hull of
T .

Lorenzo Sadun Substitution Tilings and Substitution Tiling Spaces



The chair tiling
1D, where a word is worth 1000 pictures

Tiling spaces
Inverse limits

Example calculations

Continuous Hulls

Simplest way to build a tiling space:

Start with an FLC tiling T .

Consider the set {T − x} of translates of T .

ΩT = {T − x}.
Orbit closure of T = Tiling space of T = Continuous hull of
T .

Lorenzo Sadun Substitution Tilings and Substitution Tiling Spaces



The chair tiling
1D, where a word is worth 1000 pictures

Tiling spaces
Inverse limits

Example calculations

Hulls of periodic tilings

What is ΩT ?

A torus!
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Hulls of periodic tilings

What is ΩT ?

A torus!
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A non-periodic example

T = . . .AAAA.BBBB . . . “=” A∞.B∞.

What is ΩT ?

Orbit of T is copy of R.

As x → −∞, T − x approaches periodic . . .AAAAA . . . tiling.
Limiting circle.

As x →∞, T − x approaches periodic . . .BBBBB . . . tiling.
Limiting circle.

Hull = slinky! Connected but not path-connected.
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Local topology

If T is a tiling, what does an ε-neighborhood of T in ΩT look like?

Restrict T to B1/ε.

Move T by up to ε: continuous degrees of freedom.

Fill out near ∞. Discrete choices.

Neighborhood ∼ Bε × C .
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Description of ΩT

Theorem

A tiling T ′ is in ΩT if and only if every patch of T ′ is found
somewhere in T .
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Dynamical vs. combinatorial properties

If T has FLC, ΩT is compact.

If T has uniform patch frequencies, ΩT is uniquely ergodic.

If T is repetitive, ΩT is minimal.

Path components of ΩT are orbits. Typically uncountably
many.
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Recognizability

Theorem (Mossé, Solomyak)

Let σ be a primitive substitution, and let T be a tiling build from
σ. The substitution induces a surjective map σ : ΩT → ΩT . This
map is injective if and only if T is non-periodic.

If σ is invertible, we say that the substitution is recognizable, or
that it has the unique decomposition property.
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Inverse limits in general

If X0,X1, . . . are spaces and ρn : Xn → Xn−1 are continuous maps,

X = lim←−Xi := {(x0, x1, . . .) ∈
∏

Xn|ρn(xn) = xn−1∀n}.

Xn is called n-th approximant to X , since xn determines
(x0, . . . , xn).

X has the product topology. (x0, x1, . . .) is close to (y0, y1, . . .) if
xi ≈ yi for all i ≤ N. I.e. if xN ≈ yN .
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Dyadic Solenoid

Example of inverse limit space. Take

Xn = R/(2nZ) ' S1.

ρn induced by identity on R. Winds Xn twice around Xn−1.

Lorenzo Sadun Substitution Tilings and Substitution Tiling Spaces



The chair tiling
1D, where a word is worth 1000 pictures

Tiling spaces
Inverse limits

Example calculations

Dyadic Solenoid

Example of inverse limit space. Take

Xn = R/(2nZ) ' S1.

ρn induced by identity on R. Winds Xn twice around Xn−1.

Lorenzo Sadun Substitution Tilings and Substitution Tiling Spaces



The chair tiling
1D, where a word is worth 1000 pictures

Tiling spaces
Inverse limits

Example calculations

Dyadic Solenoid

Example of inverse limit space. Take

Xn = R/(2nZ) ' S1.

ρn induced by identity on R. Winds Xn twice around Xn−1.

Lorenzo Sadun Substitution Tilings and Substitution Tiling Spaces



The chair tiling
1D, where a word is worth 1000 pictures

Tiling spaces
Inverse limits

Example calculations

Tiling spaces are inverse limits

CW complex Γn describes tiling out to distance that grows
with n.

ρn is forgetful map.

Many different schemes: different details, same strategy.

lim←− Γn = consistent instructions for tiling bigger and bigger
regions, i.e. instructions for a complete tiling.

So how do instructions for partial tilings turn into a CW
complex?!
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Anderson-Putnam Complex

To place a tile at the origin, need:

Choice of tile type ti .

Choice of point in ti to associate with origin.

What if origin is on boundary of 2 (or more tiles)? Identify!

Γ0 =
∐

ti/ ∼ is the Anderson-Putnam complex.
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Anderson-Putnam Complex II

To place an n-supertile at the origin, need:

Choice of tile type ti .

Choice of point in σn(ti ) to associate with origin.

What if origin is on boundary of 2 (or more) supertiles?
Identify!

Γn =
∐

σn(ti )/ ∼ is the Anderson-Putnam complex.

Γn looks just like Γ0, only a factor of λn bigger.
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Anderson-Putnam Theorem

Theorem

If σ is a primitive and recognizable substitution that “forces the
border”, then

Ωσ is homeomorphic to lim←−(Γ0, σ).

Ȟk(Ωσ) = lim−→(Hk(Γ0), σ∗).
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Living without border forcing

Theorem (Anderson-Putnam)

If σ doesn’t force the border, then we can get an equivalen
substitution that does force the border by “collaring”.

Theorem (Barge-Diamond)

If a 1D substitution meets some conditions that are a lot weaker
than forcing the border, then Ωσ has the same cohomology as
lim←−(Γ0, σ), even though they aren’t homeomorphic.

The BD theorem applies to Fibonacci and period-doubling.
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Dyadic solenoid

H1(S1) = Z. Substitution map induces multiplication by 2.
Ȟ1(S) = Z[1/2]
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Fibonacci
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Fibonacci results

Γ0 is the wedge of 2 circles, obtained by identifying all of the
endpoints of the a and b tiles.

H1(Γ0) = Z2

σ∗ expressed by invertible matrix MT =

(
1 1
1 0

)
.

Ȟ1(ΩFib) = Z2.
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