Substitution Tilings and Substitution Tiling Spaces

Lorenzo Sadun

University of Texas

August 12, 2019

Lorenzo Sadun Substitution Tilings and Substitution Tiling Spaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

1 The chair tiling

2 1D, where a word is worth 1000 pictures

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1 The chair tiling

2 1D, where a word is worth 1000 pictures

3 Tiling spaces

The chair tiling

2 1D, where a word is worth 1000 pictures

3 Tiling spaces

Inverse limits

・ 同 ト ・ ヨ ト ・ ヨ

The chair tiling

2 1D, where a word is worth 1000 pictures

3 Tiling spaces

Inverse limits

Table of Contents

The chair tiling

2 1D, where a word is worth 1000 pictures

3 Tiling spaces

- Inverse limits
- 5 Example calculations

The chair tiling 1D, where a word is worth 1000 pictures

A big patch

Substitution Tilings and Substitution Tiling Spaces

Musical chairs

Lorenzo Sadun Substitution Tilings and Substitution Tiling Spaces

э

A smaller patch

▲ 同 ▶ → 三 ▶

What are *n*-supertiles?

• Traditional view: $\sigma^n(t) = \sigma(\sigma^{n-1}(t))$ is what you get when you apply the substitution to every tile in an n-1-supertile.

・ 同 ト ・ ヨ ト ・ ヨ

What are *n*-supertiles?

- Traditional view: $\sigma^n(t) = \sigma(\sigma^{n-1}(t))$ is what you get when you apply the substitution to every tile in an n-1-supertile.
- Fusion perspective: σⁿ(t) = σⁿ⁻¹(σ(t)) is what you get when you assemble several n - 1-supertiles according to the pattern of σ(t).

- 4 同 6 4 日 6 4 日 6

A smaller patch

▲ 同 ▶ → 三 ▶

• How many ways are there to extend a chair tile to a tiling?

- 4 同 🕨 - 4 目 🕨 - 4 目

Counting chairs

- How many ways are there to extend a chair tile to a tiling?
- 4 ways to make a 1-supertile including the base tile.

- 4 同 ト 4 ヨ ト 4 ヨ

Counting chairs

- How many ways are there to extend a chair tile to a tiling?
- 4 ways to make a 1-supertile including the base tile.
- 4×4 ways to make a 2-supertile.
- 4^n ways to make an *n*-supertile.

・ 同 ト ・ ヨ ト ・ ヨ

Counting chairs

- How many ways are there to extend a chair tile to a tiling?
- 4 ways to make a 1-supertile including the base tile.
- 4×4 ways to make a 2-supertile.
- 4^n ways to make an *n*-supertile.
- Uncountably many ways to make a tiling.
- Only countably many of those are translates of a given tiling, so there are uncountably many chair tilings, up to translation.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 戸

How different are different chair tilings?

Let T_1 and T_2 be different chair tilings.

• Every patch P of T_1 lives in an *n*-supertile S_n .

伺 ト イ ヨ ト イ ヨ

How different are different chair tilings?

Let T_1 and T_2 be different chair tilings.

- Every patch P of T_1 lives in an *n*-supertile S_n .
- T_2 contains lots of *n*-supertiles, in the same orientation as S_n .

伺 ト イ ヨ ト イ ヨ

How different are different chair tilings?

Let T_1 and T_2 be different chair tilings.

- Every patch P of T_1 lives in an *n*-supertile S_n .
- T_2 contains lots of *n*-supertiles, in the same orientation as S_n .
- T_2 contains lots of copies of P, separated by bounded gaps, so

How different are different chair tilings?

Let T_1 and T_2 be different chair tilings.

- Every patch P of T_1 lives in an *n*-supertile S_n .
- T_2 contains lots of *n*-supertiles, in the same orientation as S_n .
- T_2 contains lots of copies of P, separated by bounded gaps, so
- *T*₁ and *T*₂ have exactly the same local patterns. Same "LI class'.

・ 戸 ト ・ ヨ ト ・ ヨ

Table of Contents

The chair tiling

2 1D, where a word is worth 1000 pictures

3 Tiling spaces

- Inverse limits
- 5 Example calculations

Live is easier without shape

- In 1D, the geometry takes care of itself.
- Only need to specify the combinatorics.
- E.g., Fibonacci: $\sigma(a) = ab$, $\sigma(b) = a$.
- Up to overall scale, tile lengths are determined by substitution matrix.

The substitution matrix

• M_{ij} counts the number of t_i tiles in $\sigma(t_j)$.

• For Fibonacci,
$$M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
.

・ 同 ト ・ ヨ ト ・ ヨ

The substitution matrix

• M_{ij} counts the number of t_i tiles in $\sigma(t_j)$.

• For Fibonacci,
$$M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

- For period-doubling, $\sigma(a) = ab$, $\sigma(b) = aa$, $M = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$.
- Don't confuse M with M^T !

伺 ト く ヨ ト く ヨ ト

Populations and eigenvectors

- *j*-th column of *M* gives population of 1-supertile $\sigma(t_j)$.
- *j*-th column of M^n gives population of $\sigma^n(t_j)$.

・ 同 ト ・ ヨ ト ・ ヨ

Populations and eigenvectors

- *j*-th column of *M* gives population of 1-supertile $\sigma(t_j)$.
- *j*-th column of M^n gives population of $\sigma^n(t_j)$.
- Population scales as λ^n , where λ is Perron-Frobenius eigenvalue of M
- Relative density of different tiles is given by right-eigenvector.

・ 戸 ト ・ ヨ ト ・ ヨ

Lengths and eigenvectors

• Let $L = (L_1, L_2, \dots, L_m)$ be the length of the tiles.

□ > < = > <

Lengths and eigenvectors

- Let $L = (L_1, L_2, \dots, L_m)$ be the length of the tiles.
- $LM^n e_j$ is the length of an *n*-supertile of type *j*.
- *LMⁿ* is the row vector of *n*-supertile lengths.

Lengths and eigenvectors

- Let $L = (L_1, L_2, \dots, L_m)$ be the length of the tiles.
- $LM^n e_j$ is the length of an *n*-supertile of type *j*.
- *LMⁿ* is the row vector of *n*-supertile lengths.
- $LM = \lambda L$.
- Relative length of tiles is given by leading left-eigenvector of *M*.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example: Fibonacci

•
$$\sigma(a) = ab, \ \sigma(b) = a$$

• $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, eigenvalues $\lambda_1 = \phi, \ \lambda_2 = 1 - \phi$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Example: Fibonacci

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Example: Fibonacci

•
$$\sigma(a) = ab, \ \sigma(b) = a$$

• $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, eigenvalues $\lambda_1 = \phi, \ \lambda_2 = 1 - \phi$.

- Leading right-eigenvector $\begin{pmatrix} \phi \\ 1 \end{pmatrix}$. "a" tiles outnumber "b" tiles $\phi: 1.$
- Leading left-eigenvector (ϕ , 1). "a" tiles are ϕ times longer than "b" tiles.

・ロト ・同ト ・ヨト ・ヨト

Example: Period-doubling

•
$$\sigma(a) = ab, \ \sigma(b) = aa.$$

• $M = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$. Eigenvalues 2 and -1.

▲ □ ▶ ▲ □ ▶ ▲

э

э

Example: Period-doubling

▲ □ ▶ ▲ □ ▶ ▲

э

э

Example: Period-doubling

•
$$\sigma(a) = ab, \ \sigma(b) = aa.$$

• $M = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$. Eigenvalues 2 and -1.

- Leading right-eigenvector $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$. "a" tiles outnumber "b" tiles 2:1.
- Leading left-eigenvector (1,1). Both tiles have the same length.

< ロ > < 同 > < 回 > < 回 >

• Fibonacci is non-periodic since ϕ is irrational.

- 4 同 🕨 - 4 目 🕨 - 4 目

Non-periodicity

- Fibonacci is non-periodic since ϕ is irrational.
- Period-doubling is non-periodic because it has structures at all scales 2ⁿ
- ... abaaabababaaabaa ...
- ... XbXaXbXbXbXaXbXa...
-XYXaXYXbXYXaYXYa....
-XYXZXYXbXYXZXYXa....

3 N

Table of Contents

The chair tiling

2 1D, where a word is worth 1000 pictures

3 Tiling spaces

- Inverse limits
- 5 Example calculations

- **→** → **→**

Define metric on set of all tilings with given tile set.

• $d(T, T') \leq \epsilon$ if T and T' agree on $B_{1/\epsilon}(0)$, up to ϵ -translation.

- 4 同 ト 4 ヨ ト 4 ヨ

Define metric on set of all tilings with given tile set.

- $d(T, T') \leq \epsilon$ if T and T' agree on $B_{1/\epsilon}(0)$, up to ϵ -translation.
- $(d(T, T') = \min(1, \inf\{\epsilon | T \text{ and } T' \text{ agree } \ldots\})))$

(人間) とうり くうり

Define metric on set of all tilings with given tile set.

- $d(T, T') \leq \epsilon$ if T and T' agree on $B_{1/\epsilon}(0)$, up to ϵ -translation.
- $(d(T, T') = \min(1, \inf\{\epsilon | T \text{ and } T' \text{ agree } \ldots\})))$
- Metric depends on choice of origin, but topology doesn't.

- 4 周 ト 4 戸 ト 4 戸 ト

Define metric on set of all tilings with given tile set.

- $d(T, T') \leq \epsilon$ if T and T' agree on $B_{1/\epsilon}(0)$, up to ϵ -translation.
- $(d(T, T') = \min(1, \inf\{\epsilon | T \text{ and } T' \text{ agree } \ldots\})))$
- Metric depends on choice of origin, but topology doesn't.
- $\lim d(T_i, T_\infty) = 0$ means $T_i \cap K \Rightarrow T_\infty \cap K$ for all compact $K \subset \mathbb{R}^n$.

イロト イポト イラト イラト

-

 $G = \mathbb{R}^n$ acts on tilings. T - x is what you get by translating all the tiles in T by -x. (Equivalently, moving the origin in T by +x.)

- 4 同 🕨 - 4 目 🕨 - 4 目

Definition

A tiling space is a set Ω of tilings on a fixed tile set with fixed adjacency rules such that

- 4 同 🕨 - 4 目 🕨 - 4 目

Definition

A tiling space is a set Ω of tilings on a fixed tile set with fixed adjacency rules such that

- Ω is translation invariant. (If $T \in \Omega$ and $x \in \mathbb{R}^n$, then $T x \in \Omega$.)
- Ω is closed in the tiling metric.

Continuous Hulls

Simplest way to build a tiling space:

• Start with an FLC tiling *T*.

- ● ● ●

Continuous Hulls

Simplest way to build a tiling space:

- Start with an FLC tiling T.
- Consider the set $\{T x\}$ of translates of T.

□ > < = > <

Continuous Hulls

Simplest way to build a tiling space:

- Start with an FLC tiling T.
- Consider the set $\{T x\}$ of translates of T.
- $\Omega_T = \overline{\{T-x\}}.$
- Orbit closure of T = Tiling space of T = Continuous hull of T.

- 同 ト - ヨ ト - - ヨ ト

Hulls of periodic tilings

What is Ω_T ?

Lorenzo Sadun Substitution Tilings and Substitution Tiling Spaces

- ● ● ●

Hulls of periodic tilings

What is Ω_T ?

A torus!

< 🗇 > < 🖃 >

э

A non-periodic example

$T = \ldots AAAA.BBBB \ldots$ "=" $A^{\infty}.B^{\infty}$.

What is Ω_T ?

A non-periodic example

$T = \ldots AAAA.BBBB \ldots$ "=" $A^{\infty}.B^{\infty}$.

What is Ω_T ?

• Orbit of T is copy of \mathbb{R} .

・ 同 ト ・ ヨ ト ・ ヨ

A non-periodic example

 $T = \ldots AAAA.BBBB \ldots$ "=" $A^{\infty}.B^{\infty}$.

What is Ω_T ?

- Orbit of T is copy of \mathbb{R} .
- As x → -∞, T x approaches periodic ... AAAAA... tiling. Limiting circle.

- 4 周 ト 4 戸 ト 4 戸 ト

A non-periodic example

 $T = \ldots AAAA.BBBB \ldots$ "=" $A^{\infty}.B^{\infty}$.

What is Ω_T ?

- Orbit of T is copy of \mathbb{R} .
- As x → -∞, T x approaches periodic ... AAAAA... tiling. Limiting circle.
- As x → ∞, T − x approaches periodic ... BBBBB ... tiling. Limiting circle.

- 4 同 6 4 日 6 4 日 6

A non-periodic example

 $T = \ldots AAAA.BBBB \ldots$ "=" $A^{\infty}.B^{\infty}$.

What is Ω_T ?

- Orbit of T is copy of \mathbb{R} .
- As x → -∞, T x approaches periodic ... AAAAA... tiling. Limiting circle.
- As x → ∞, T − x approaches periodic ... BBBBB ... tiling. Limiting circle.
- Hull = slinky! Connected but not path-connected.

イロト イポト イラト イラト

If T is a tiling, what does an ϵ -neighborhood of T in Ω_T look like?

Lorenzo Sadun Substitution Tilings and Substitution Tiling Spaces

▲ □ ▶ ▲ □ ▶ ▲

If T is a tiling, what does an ϵ -neighborhood of T in Ω_T look like?

- Restrict T to $B_{1/\epsilon}$.
- Move T by up to ϵ : continuous degrees of freedom.
- Fill out near ∞ . Discrete choices.
- Neighborhood $\sim B_{\epsilon} \times C$.

- 4 回 ト 4 ヨト 4 ヨト

Description of Ω_T

Theorem

A tiling T' is in Ω_T if and only if every patch of T' is found somewhere in T.

If T is a tiling, what does an ϵ -neighborhood of T in Ω_T look like?

Lorenzo Sadun Substitution Tilings and Substitution Tiling Spaces

▲ □ ▶ ▲ □ ▶ ▲

If T is a tiling, what does an ϵ -neighborhood of T in Ω_T look like?

- Restrict T to $B_{1/\epsilon}$.
- Move T by up to ϵ : continuous degrees of freedom.
- Fill out near ∞ . Discrete choices.
- Neighborhood $\sim B_{\epsilon} \times C$.

- 4 回 ト 4 ヨト 4 ヨト

Dynamical vs. combinatorial properties

- If T has FLC, Ω_T is compact.
- If T has uniform patch frequencies, Ω_T is uniquely ergodic.
- If T is repetitive, Ω_T is minimal.
- Path components of $\Omega_{\mathcal{T}}$ are orbits. Typically uncountably many.

・吊 ・ ・ ラ ト ・ ラ

Theorem (Mossé, Solomyak)

Let σ be a primitive substitution, and let T be a tiling build from σ . The substitution induces a surjective map $\sigma : \Omega_T \to \Omega_T$. This map is injective if and only if T is non-periodic.

If σ is invertible, we say that the substitution is *recognizable*, or that it has the *unique decomposition property*.

Table of Contents

The chair tiling

2 1D, where a word is worth 1000 pictures

3 Tiling spaces

Inverse limits

・ 同 ト ・ ヨ ト ・ ヨ

Inverse limits in general

If X_0, X_1, \ldots are spaces and $\rho_n : X_n \to X_{n-1}$ are continuous maps,

$$X = \varprojlim X_i := \{(x_0, x_1, \ldots) \in \prod X_n | \rho_n(x_n) = x_{n-1} \forall n \}.$$

・ 同 ト ・ ヨ ト ・ ヨ

Inverse limits in general

If X_0, X_1, \ldots are spaces and $\rho_n : X_n \to X_{n-1}$ are continuous maps,

$$X = \varprojlim X_i := \{(x_0, x_1, \ldots) \in \prod X_n | \rho_n(x_n) = x_{n-1} \forall n \}.$$

 X_n is called *n*-th approximant to X, since x_n determines (x_0, \ldots, x_n) .

伺 ト イ ヨ ト イ ヨ

Inverse limits in general

If X_0, X_1, \ldots are spaces and $\rho_n : X_n \to X_{n-1}$ are continuous maps,

$$X = \varprojlim X_i := \{(x_0, x_1, \ldots) \in \prod X_n | \rho_n(x_n) = x_{n-1} \forall n \}.$$

 X_n is called *n*-th approximant to X, since x_n determines (x_0, \ldots, x_n) .

X has the product topology. $(x_0, x_1, ...)$ is close to $(y_0, y_1, ...)$ if $x_i \approx y_i$ for all $i \leq N$. I.e. if $x_N \approx y_N$.

伺 ト イ ヨ ト イ ヨ ト

Dyadic Solenoid

Example of inverse limit space. Take

•
$$X_n = \mathbb{R}/(2^n\mathbb{Z}) \simeq S^1$$
.

Dyadic Solenoid

Example of inverse limit space. Take

•
$$X_n = \mathbb{R}/(2^n\mathbb{Z}) \simeq S^1$$
.

• ρ_n induced by identity on \mathbb{R} . Winds X_n twice around X_{n-1} .

Dyadic Solenoid

Example of inverse limit space. Take

•
$$X_n = \mathbb{R}/(2^n\mathbb{Z}) \simeq S^1$$
.

• ρ_n induced by identity on \mathbb{R} . Winds X_n twice around X_{n-1} .

▲ 同 ▶ → 三 ▶

Tiling spaces are inverse limits

 CW complex Γ_n describes tiling out to distance that grows with n.

- 4 同 🕨 - 4 目 🕨 - 4 目

Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.

- 4 同 🕨 - 4 目 🕨 - 4 目
Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
- Many different schemes: different details, same strategy.

- 4 同 🕨 - 4 目 🕨 - 4 目

Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
- Many different schemes: different details, same strategy.
- $\lim_{n \to \infty} \Gamma_n = \text{consistent instructions for tiling bigger and bigger regions, i.e. instructions for a complete tiling.$

- 4 回 ト 4 ヨト 4 ヨト

Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
- Many different schemes: different details, same strategy.
- $\lim_{n \to \infty} \Gamma_n = \text{consistent instructions for tiling bigger and bigger regions, i.e. instructions for a complete tiling.$
- So how do instructions for partial tilings turn into a CW complex?!

- 4 回 ト 4 ヨト 4 ヨト

Anderson-Putnam Complex

To place a tile at the origin, need:

- ● ● ●

-

Anderson-Putnam Complex

To place a tile at the origin, need:

• Choice of tile type t_i .

A 10

Anderson-Putnam Complex

To place a tile at the origin, need:

- Choice of tile type t_i .
- Choice of point in t_i to associate with origin.

Anderson-Putnam Complex

To place a tile at the origin, need:

- Choice of tile type t_i .
- Choice of point in t_i to associate with origin.
- What if origin is on boundary of 2 (or more tiles)? Identify!

30.00

A D

Anderson-Putnam Complex

To place a tile at the origin, need:

- Choice of tile type t_i .
- Choice of point in t_i to associate with origin.
- What if origin is on boundary of 2 (or more tiles)? Identify!
- $\Gamma_0 = \prod t_i / \sim$ is the Anderson-Putnam complex.

・ 同 ト ・ ヨ ト ・ ヨ

Anderson-Putnam Complex II

To place an *n*-supertile at the origin, need:

/⊒ > < ∃ >

Anderson-Putnam Complex II

To place an *n*-supertile at the origin, need:

• Choice of tile type t_i .

Anderson-Putnam Complex II

To place an *n*-supertile at the origin, need:

- Choice of tile type t_i .
- Choice of point in $\sigma^n(t_i)$ to associate with origin.

Anderson-Putnam Complex II

To place an *n*-supertile at the origin, need:

- Choice of tile type t_i .
- Choice of point in $\sigma^n(t_i)$ to associate with origin.
- What if origin is on boundary of 2 (or more) supertiles? Identify!

A (1) > (1) = (1)

Anderson-Putnam Complex II

To place an *n*-supertile at the origin, need:

- Choice of tile type t_i .
- Choice of point in $\sigma^n(t_i)$ to associate with origin.
- What if origin is on boundary of 2 (or more) supertiles? Identify!
- $\Gamma_n = \prod \sigma^n(t_i) / \sim$ is the Anderson-Putnam complex.

- 同 ト - ヨ ト - - ヨ ト

Anderson-Putnam Complex II

To place an *n*-supertile at the origin, need:

- Choice of tile type t_i .
- Choice of point in $\sigma^n(t_i)$ to associate with origin.
- What if origin is on boundary of 2 (or more) supertiles? Identify!
- $\Gamma_n = \prod \sigma^n(t_i) / \sim$ is the Anderson-Putnam complex.
- Γ_n looks just like Γ_0 , only a factor of λ^n bigger.

- 同 ト - ヨ ト - - ヨ ト

Anderson-Putnam Theorem

Theorem

If σ is a primitive and recognizable substitution that "forces the border", then

• Ω_{σ} is homeomorphic to $\varprojlim(\Gamma_0, \sigma)$.

•
$$\check{H}^k(\Omega_{\sigma}) = \varinjlim(H^k(\Gamma_0), \sigma^*).$$

・ 同 ト ・ ヨ ト ・ ヨ

Living without border forcing

Theorem (Anderson-Putnam)

If σ doesn't force the border, then we can get an equivalen substitution that does force the border by "collaring".

Theorem (Barge-Diamond)

If a 1D substitution meets some conditions that are a lot weaker than forcing the border, then Ω_{σ} has the same cohomology as $\lim_{\sigma} (\Gamma_0, \sigma)$, even though they aren't homeomorphic.

The BD theorem applies to Fibonacci and period-doubling.

Table of Contents

The chair tiling

2 1D, where a word is worth 1000 pictures

3 Tiling spaces

Inverse limits

- **→** → **→**

Dyadic solenoid

$H^1(S^1) = \mathbb{Z}$. Substitution map induces multiplication by 2. $\check{H}^1(S) = \mathbb{Z}[1/2]$

< 日 > < 同 > < 三 > < 三 >

[Switch to doc-cam]

Lorenzo Sadun Substitution Tilings and Substitution Tiling Spaces

<ロト < 同ト < 三ト

э

э

Fibonacci results

 Γ₀ is the wedge of 2 circles, obtained by identifying all of the endpoints of the *a* and *b* tiles.

•
$$H^1(\Gamma_0) = \mathbb{Z}^2$$

• σ^* expressed by invertible matrix $M^T = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

•
$$\check{H}^1(\Omega_{Fib}) = \mathbb{Z}^2$$
.

<日本
