Substitution Tilings and Substitution Tiling Spaces

Lorenzo Sadun

University of Texas

August 12, 2019
Outline

1. The chair tiling
Outline

1. The chair tiling

2. 1D, where a word is worth 1000 pictures
Outline

1. The chair tiling
2. 1D, where a word is worth 1000 pictures
3. Tiling spaces
Outline

1. The chair tiling
2. 1D, where a word is worth 1000 pictures
3. Tiling spaces
4. Inverse limits
Outline

1. The chair tiling
2. 1D, where a word is worth 1000 pictures
3. Tiling spaces
4. Inverse limits
5. Example calculations
Table of Contents

1 The chair tiling
2 1D, where a word is worth 1000 pictures
3 Tiling spaces
4 Inverse limits
5 Example calculations
A big patch
Musical chairs
A smaller patch

The chair tiling
1D, where a word is worth 1000 pictures
Tiling spaces
Inverse limits
Example calculations
What are n-supertiles?

- Traditional view: $\sigma^n(t) = \sigma(\sigma^{n-1}(t))$ is what you get when you apply the substitution to every tile in an $n-1$-supertile.
What are n-supertiles?

- Traditional view: $\sigma^n(t) = \sigma(\sigma^{n-1}(t))$ is what you get when you apply the substitution to every tile in an $n-1$-supertile.
- Fusion perspective: $\sigma^n(t) = \sigma^{n-1}(\sigma(t))$ is what you get when you assemble several $n-1$-supertiles according to the pattern of $\sigma(t)$.
A smaller patch
Counting chairs

- How many ways are there to extend a chair tile to a tiling?
Counting chairs

- How many ways are there to extend a chair tile to a tiling?
- 4 ways to make a 1-supertile including the base tile.
Counting chairs

- How many ways are there to extend a chair tile to a tiling?
- 4 ways to make a 1-supertile including the base tile.
- 4×4 ways to make a 2-supertile.
- 4^n ways to make an n—supertile.
Counting chairs

- How many ways are there to extend a chair tile to a tiling?
- 4 ways to make a 1-supertile including the base tile.
- 4×4 ways to make a 2-supertile.
- 4^n ways to make an n—supertile.
- Uncountably many ways to make a tiling.
- Only countably many of those are translates of a given tiling, so there are uncountably many chair tilings, up to translation.
How different are different chair tilings?

Let T_1 and T_2 be different chair tilings.

- Every patch P of T_1 lives in an n-supertile S_n.
How different are different chair tilings?

Let T_1 and T_2 be different chair tilings.

- Every patch P of T_1 lives in an n-supertile S_n.
- T_2 contains lots of n-supertiles, in the same orientation as S_n.
Let T_1 and T_2 be different chair tilings.

- Every patch P of T_1 lives in an n-supertile S_n.
- T_2 contains lots of n-supertiles, in the same orientation as S_n.
- T_2 contains lots of copies of P, separated by bounded gaps, so
How different are different chair tilings?

Let T_1 and T_2 be different chair tilings.

- Every patch P of T_1 lives in an n-supertile S_n.
- T_2 contains lots of n-supertiles, in the same orientation as S_n.
- T_2 contains lots of copies of P, separated by bounded gaps, so
- T_1 and T_2 have exactly the same local patterns. Same “LI class’.”
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The chair tiling</td>
</tr>
<tr>
<td>2</td>
<td>1D, where a word is worth 1000 pictures</td>
</tr>
<tr>
<td>3</td>
<td>Tiling spaces</td>
</tr>
<tr>
<td>4</td>
<td>Inverse limits</td>
</tr>
<tr>
<td>5</td>
<td>Example calculations</td>
</tr>
</tbody>
</table>
Live is easier without shape

- In 1D, the geometry takes care of itself.
- Only need to specify the combinatorics.
- E.g., Fibonacci: $\sigma(a) = ab$, $\sigma(b) = a$.
- Up to overall scale, tile lengths are determined by substitution matrix.
The substitution matrix

- M_{ij} counts the number of t_i tiles in $\sigma(t_j)$.
- For Fibonacci, $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

Don't confuse M with M^T!
The substitution matrix

- M_{ij} counts the number of t_i tiles in $\sigma(t_j)$.
- For Fibonacci, $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.
- For period-doubling, $\sigma(a) = ab$, $\sigma(b) = aa$, $M = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$.
- Don’t confuse M with M^T!
Populations and eigenvectors

- j-th column of M gives population of 1-supertile $\sigma(t_j)$.
- j-th column of M^n gives population of $\sigma^n(t_j)$.
Populations and eigenvectors

- j-th column of M gives population of 1-supertile $\sigma(t_j)$.
- j-th column of M^n gives population of $\sigma^n(t_j)$.
- Population scales as λ^n, where λ is Perron-Frobenius eigenvalue of M.
- Relative density of different tiles is given by right-eigenvector.
Let $L = (L_1, L_2, \ldots, L_m)$ be the length of the tiles.
Let $L = (L_1, L_2, \ldots, L_m)$ be the length of the tiles.

- $LM^n e_j$ is the length of an n-supertile of type j.
- LM^n is the row vector of n-supertile lengths.
Let $L = (L_1, L_2, \ldots, L_m)$ be the length of the tiles.

- $LM^n e_j$ is the length of an n-supertile of type j.
- LM^n is the row vector of n-supertile lengths.
- $LM = \lambda L$.

Relative length of tiles is given by leading left-eigenvector of M.
Example: Fibonacci

- $\sigma(a) = ab$, $\sigma(b) = a$
- $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, eigenvalues $\lambda_1 = \phi$, $\lambda_2 = 1 - \phi$.
Example: Fibonacci

- $\sigma(a) = ab$, $\sigma(b) = a$
- $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, eigenvalues $\lambda_1 = \phi$, $\lambda_2 = 1 - \phi$.
- Leading right-eigenvector $\begin{pmatrix} \phi \\ 1 \end{pmatrix}$. “a” tiles outnumber “b” tiles $\phi : 1$.
The chair tiling
1D, where a word is worth 1000 pictures
Tiling spaces
Inverse limits
Example calculations

Example: Fibonacci

- $\sigma(a) = ab$, $\sigma(b) = a$
- $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, eigenvalues $\lambda_1 = \phi$, $\lambda_2 = 1 - \phi$.
- Leading right-eigenvector $\begin{pmatrix} \phi \\ 1 \end{pmatrix}$. “a” tiles outnumber “b” tiles $\phi : 1$.
- Leading left-eigenvector $(\phi, 1)$. “a” tiles are ϕ times longer than “b” tiles.
Example: Period-doubling

- $\sigma(a) = ab$, $\sigma(b) = aa$.
- $M = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$. Eigenvalues 2 and -1.\[\text{Leading right-eigenvector} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \text{. "a" tiles outnumber "b" tiles 2:1.}\]

- Leading left-eigenvector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Both tiles have the same length.
Example: Period-doubling

- $\sigma(a) = ab$, $\sigma(b) = aa$.
- $M = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$. Eigenvalues 2 and -1.
- Leading right-eigenvector $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$. “a” tiles outnumber “b” tiles $2:1$.
Example: Period-doubling

- $\sigma(a) = ab$, $\sigma(b) = aa$.
- $M = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$. Eigenvalues 2 and -1.
- Leading right-eigenvector $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$. “a” tiles outnumber “b” tiles 2:1.
- Leading left-eigenvector (1, 1). Both tiles have the same length.
Non-periodicity

- Fibonacci is non-periodic since ϕ is irrational.
Fibonacci is non-periodic since ϕ is irrational.

Period-doubling is non-periodic because it has structures at all scales 2^n

... $abaabababaaabaa$...

... $XbXaXbXbXaXbXa$...

... $XYXaXYXbXYXaYXYa$...

... $XYZXYYbXYZXYYXa$...

... $XYXaXbXYXaYXYa$...
Define metric on set of all tilings with given tile set.

- \(d(T, T') \leq \epsilon \) if \(T \) and \(T' \) agree on \(B_{1/\epsilon}(0) \), up to \(\epsilon \)-translation.
Define metric on set of all tilings with given tile set.

- \(d(T, T') \leq \epsilon \) if \(T \) and \(T' \) agree on \(B_{1/\epsilon}(0) \), up to \(\epsilon \)-translation.
- \((d(T, T') = \min(1, \inf\{\epsilon | T \text{ and } T' \text{ agree} \ldots\})\).)

Metric depends on choice of origin, but topology doesn't.

\[\lim_{i \to \infty} d(T_i, T_\infty) = 0 \] means \(T_i \cap K \Rightarrow T_\infty \cap K \) for all compact \(K \subset \mathbb{R}^n \).
Define metric on set of all tilings with given tile set.

- $d(T, T') \leq \epsilon$ if T and T' agree on $B_{1/\epsilon}(0)$, up to ϵ-translation.
- $(d(T, T') = \min(1, \inf\{\epsilon | T \text{ and } T' \text{ agree ...}\}))$.
- Metric depends on choice of origin, but topology doesn’t.
Tiling metric

Define metric on set of all tilings with given tile set.

- $d(T, T') \leq \epsilon$ if T and T' agree on $B_{1/\epsilon}(0)$, up to ϵ-translation.
- $(d(T, T') = \min(1, \inf\{\epsilon | T \text{ and } T' \text{ agree } \ldots \}))$.
- Metric depends on choice of origin, but topology doesn’t.
- $\lim d(T_i, T_\infty) = 0$ means $T_i \cap K \Rightarrow T_\infty \cap K$ for all compact $K \subset \mathbb{R}^n$.
Group action

$G = \mathbb{R}^n$ acts on tilings. $T - x$ is what you get by translating all the tiles in T by $-x$. (Equivalently, moving the origin in T by $+x$.)
A tiling space is a set Ω of tilings on a fixed tile set with fixed adjacency rules such that

- Ω is translation invariant. (If $T \in \Omega$ and $x \in \mathbb{R}^n$, then $T - x \in \Omega$.)
- Ω is closed in the tiling metric.
Definition

A tiling space is a set \(\Omega \) of tilings on a fixed tile set with fixed adjacency rules such that

- \(\Omega \) is translation invariant. (If \(T \in \Omega \) and \(x \in \mathbb{R}^n \), then \(T - x \in \Omega \).)
- \(\Omega \) is closed in the tiling metric.
Continuous Hulls

Simplest way to build a tiling space:

1. Start with an FLC tiling T.

2. Consider the set \(\Omega_T = \{ T - x \} \) of translates of T.

Orbit closure of T = Tiling space of T = Continuous hull of T.

Lorenzo Sadun

Substitution Tilings and Substitution Tiling Spaces
Continuous Hulls

Simplest way to build a tiling space:

- Start with an FLC tiling T.
- Consider the set $\{ T - x \}$ of translates of T.

Lorenzo Sadun
Substitution Tilings and Substitution Tiling Spaces
Continuous Hulls

Simplest way to build a tiling space:

1. Start with an FLC tiling T.
2. Consider the set $\{T - x\}$ of translates of T.
3. $\Omega_T = \overline{\{T - x\}}$.
4. Orbit closure of $T = \text{Tiling space of } T = \text{Continuous hull of } T$.
Hulls of periodic tilings

What is Ω_T?
Hulls of periodic tilings

What is Ω_T?

A torus!
A non-periodic example

\[T = \ldots AAAAA.BBBB \ldots \triangleq A^\infty . B^\infty . \]

What is \(\Omega_T \)?
A non-periodic example

\[T = \ldots AAAAA.BBBB\ldots \overset{\equiv}{=} A^\infty.B^\infty. \]

What is \(\Omega_T \)?

- Orbit of \(T \) is copy of \(\mathbb{R} \).
A non-periodic example

\[T = \ldots AAAAA.BBBB \ldots _______\, = _______\, A^\infty.B^\infty. \]

What is \(\Omega_T \)?

- Orbit of \(T \) is copy of \(\mathbb{R} \).
- As \(x \to -\infty \), \(T - x \) approaches periodic \(\ldots AAAAA \ldots \) tiling.
 Limiting circle.
A non-periodic example

\[
T = \ldots AAAA.BBBB \ldots "=\" A^\infty.B^\infty.
\]

What is \(\Omega_T \)?

- Orbit of \(T \) is copy of \(\mathbb{R} \).
- As \(x \to -\infty \), \(T - x \) approaches periodic \(\ldots AAAAA \ldots \) tiling. Limiting circle.
- As \(x \to \infty \), \(T - x \) approaches periodic \(\ldots BBBBB \ldots \) tiling. Limiting circle.
The chair tiling 1D, where a word is worth 1000 pictures
Tiling spaces
Inverse limits
Example calculations

A non-periodic example

\[T = \ldots AAAAA.BBBB \ldots = \ldots A^\infty.B^\infty. \]

What is \(\Omega_T \)?

- Orbit of \(T \) is copy of \(\mathbb{R} \).
- As \(x \to -\infty \), \(T - x \) approaches periodic \(\ldots AAAAA \ldots \) tiling. Limiting circle.
- As \(x \to \infty \), \(T - x \) approaches periodic \(\ldots BBBBB \ldots \) tiling. Limiting circle.
- Hull = slinky! Connected but not path-connected.
If T is a tiling, what does an ϵ-neighborhood of T in Ω_T look like?
Local topology

If T is a tiling, what does an ϵ-neighborhood of T in Ω_T look like?

- Restrict T to $B_{1/\epsilon}$.
- Move T by up to ϵ: continuous degrees of freedom.
- Fill out near ∞. Discrete choices.
- Neighborhood $\sim B_\epsilon \times C$.
Theorem

A tiling T' is in Ω_T if and only if every patch of T' is found somewhere in T.
If T is a tiling, what does an ϵ-neighborhood of T in Ω_T look like?
If T is a tiling, what does an ϵ-neighborhood of T in Ω_T look like?

- Restrict T to $B_{1/\epsilon}$.
- Move T by up to ϵ: continuous degrees of freedom.
- Fill out near ∞. Discrete choices.
- Neighborhood $\sim B_\epsilon \times C$.
Dynamical vs. combinatorial properties

- If T has FLC, Ω_T is compact.
- If T has uniform patch frequencies, Ω_T is uniquely ergodic.
- If T is repetitive, Ω_T is minimal.
- Path components of Ω_T are orbits. Typically uncountably many.
Theorem (Mossé, Solomyak)

Let σ be a primitive substitution, and let T be a tiling built from σ. The substitution induces a surjective map $\sigma : \Omega_T \to \Omega_T$. This map is injective if and only if T is non-periodic.

If σ is invertible, we say that the substitution is recognizable, or that it has the unique decomposition property.
The chair tiling

1D, where a word is worth 1000 pictures

Tiling spaces

Inverse limits

Example calculations
Inverse limits in general

If X_0, X_1, \ldots are spaces and $\rho_n : X_n \rightarrow X_{n-1}$ are continuous maps,

$$X = \lim \leftarrow X_i := \{(x_0, x_1, \ldots) \in \prod X_n | \rho_n(x_n) = x_{n-1} \forall n \}.$$
Inverse limits in general

If X_0, X_1, \ldots are spaces and $\rho_n : X_n \to X_{n-1}$ are continuous maps,

$$X = \lim \downarrow X_i := \{(x_0, x_1, \ldots) \in \prod X_n | \rho_n(x_n) = x_{n-1} \forall n\}.$$

X_n is called n-th approximant to X, since x_n determines (x_0, \ldots, x_n).
Inverse limits in general

If X_0, X_1, \ldots are spaces and $\rho_n : X_n \to X_{n-1}$ are continuous maps,

$$X = \varprojlim X_i := \{ (x_0, x_1, \ldots) \in \prod X_n | \rho_n(x_n) = x_{n-1} \forall n \}.$$

X_n is called the n-th approximant to X, since x_n determines (x_0, \ldots, x_n).

X has the product topology. (x_0, x_1, \ldots) is close to (y_0, y_1, \ldots) if $x_i \approx y_i$ for all $i \leq N$. I.e. if $x_N \approx y_N$.
Dyadic Solenoid

Example of inverse limit space. Take

$$X_n = \mathbb{R}/(2^n \mathbb{Z}) \simeq S^1.$$
Dyadic Solenoid

Example of inverse limit space. Take

- $X_n = \mathbb{R}/(2^n \mathbb{Z}) \cong S^1$.
- ρ_n induced by identity on \mathbb{R}. Winds X_n twice around X_{n-1}.
Dyadic Solenoid

Example of inverse limit space. Take

- \(X_n = \mathbb{R}/(2^n \mathbb{Z}) \cong S^1 \).
- \(\rho_n \) induced by identity on \(\mathbb{R} \). Winds \(X_n \) twice around \(X_{n-1} \).
Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
- Many different schemes: different details, same strategy.
Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
- Many different schemes: different details, same strategy.
- $\lim \leftarrow \Gamma_n =$ consistent instructions for tiling bigger and bigger regions, i.e. instructions for a complete tiling.
Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
- Many different schemes: different details, same strategy.
- $\lim \Gamma_n = \text{consistent instructions for tiling bigger and bigger regions, i.e. instructions for a complete tiling.}$
- So how do instructions for partial tilings turn into a CW complex?!
To place a tile at the origin, need:
To place a tile at the origin, need:

- Choice of tile type t_i.

Anderson-Putnam Complex

The chair tiling

1D, where a word is worth 1000 pictures

Tiling spaces

Inverse limits

Example calculations

Lorenzo Sadun

Substitution Tilings and Substitution Tiling Spaces
Anderson-Putnam Complex

To place a tile at the origin, need:

- Choice of tile type \(t_i \).
- Choice of point in \(t_i \) to associate with origin.
To place a tile at the origin, need:

- Choice of tile type t_i.
- Choice of point in t_i to associate with origin.
- What if origin is on boundary of 2 (or more tiles)? Identify!
To place a tile at the origin, need:

- Choice of tile type \(t_i \).
- Choice of point in \(t_i \) to associate with origin.
- What if origin is on boundary of 2 (or more tiles)? Identify!
- \(\Gamma_0 = \coprod t_i / \sim \) is the Anderson-Putnam complex.
To place an n-supertile at the origin, need:
To place an n-supertile at the origin, need:

- Choice of tile type t_i.
To place an n-supertile at the origin, need:

- Choice of tile type t_i.
- Choice of point in $\sigma^n(t_i)$ to associate with origin.
To place an n-supertile at the origin, need:

- Choice of tile type t_i.
- Choice of point in $\sigma^n(t_i)$ to associate with origin.
- What if origin is on boundary of 2 (or more) supertiles? Identify!
To place an n-supertile at the origin, need:

- Choice of tile type t_i.
- Choice of point in $\sigma^n(t_i)$ to associate with origin.
- What if origin is on boundary of 2 (or more) supertiles? Identify!

$$\Gamma_n = \bigsqcup \sigma^n(t_i) / \sim$$ is the Anderson-Putnam complex.
To place an n-supertile at the origin, need:
- Choice of tile type t_i.
- Choice of point in $\sigma^n(t_i)$ to associate with origin.
- What if origin is on boundary of 2 (or more) supertiles? Identify!
- $\Gamma_n = \bigsqcup \sigma^n(t_i)/\sim$ is the Anderson-Putnam complex.
- Γ_n looks just like Γ_0, only a factor of λ^n bigger.
Theorem

If σ is a primitive and recognizable substitution that “forces the border”, then

- Ω_σ is homeomorphic to $\lim_{\leftarrow}(\Gamma_0, \sigma)$.
- $\tilde{H}^k(\Omega_\sigma) = \lim_{\to}(H^k(\Gamma_0), \sigma^*)$.
Living without border forcing

Theorem (Anderson-Putnam)

If \(\sigma \) *doesn’t force the border, then we can get an equivalent substitution that does force the border by “collaring”.*

Theorem (Barge-Diamond)

If a 1D substitution meets some conditions that are a lot weaker than forcing the border, then \(\Omega_\sigma \) *has the same cohomology as* \(\lim_{\leftarrow} (\Gamma_0, \sigma) \), *even though they aren’t homeomorphic.*

The BD theorem applies to Fibonacci and period-doubling.
Table of Contents

1. The chair tiling
2. 1D, where a word is worth 1000 pictures
3. Tiling spaces
4. Inverse limits
5. Example calculations
Dyadic solenoid

\[H^1(S^1) = \mathbb{Z}. \] Substitution map induces multiplication by 2.

\[\tilde{H}^1(S) = \mathbb{Z}[1/2] \]
Fibonacci

[Switch to doc-cam]
Fibonacci results

- Γ_0 is the wedge of 2 circles, obtained by identifying all of the endpoints of the a and b tiles.
- $H^1(\Gamma_0) = \mathbb{Z}^2$
- σ^* expressed by invertible matrix $M^T = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.
- $\check{H}^1(\Omega_{Fib}) = \mathbb{Z}^2$.