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Topic of this talk:

0 Painlevé and discrete Painlevé equations
[ Affine Weyl group symmetries

[0 Formulations of discrete Painlevé equations:
Point configuration space and geometry of plane curves on P?

[1 Hypergeometric solutions:
beyond the Gauss hypergeometric function?




Painlev é and Discrete Painlev é Equations (1)

List of Painlevé Equations
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Painlev é and Discrete Painlev é Equations (2)

Painlevé Equations:

[J 2nd order nonlinear ODE with the “Painlevé property”
= No movavle branch points
(6(8) equations)

[J “Space of initial values” :
defining manifold (Okamoto, Takano) « blow-up of P?

[J Symmetries:
Affine Weyl group = reflection + translation

[1 Solutions:

[J Transcendental in general

(Nishioka, Umemura, Noumi, Okamoto,...)

[1 Particular solutions for special values of parameters
(1) Hypergeometric solutions
(classification finished: Okamoto, Umemura, Noumi, Watanabe)
(2) Algebraic solutiongmost cases rational solutions)

(classification finished except for Py;: Murata, Umemura, Kitaev,

Watanabe, Dubrovin-Mazocco)



Painlev é and Discrete Painlev é Equations (3)

List of Some Discrete Painlevé Equations:
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Painlev é and Discrete Painlev é Equations (4)

Discrete Painlevé Equations:

[1 2nd order nonlinear ordinary DIFFERENCE equations with
the “singularity confinement property”(MANY equations)

[1 Space of initial values” :
defining manifold (Sakai) «+ blow-up of P?

[J Symmetries:
Affine Weyl group = reflection + translation

[1 Solutions:

[1 Transcendence?

[ Particular solutions for special values of parameters

(1) Hypergeometric solutions

(2) Algebraic solutions: almost nothing has been done



Particular solutions: hypergeometric solutions
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Affine Weyl group symmetry:

Prv

“symmetric form” of P
o

/

Y1

/

P2

rv (Noumi-Yamada, 1998)

o1 — p2) + ap
p1(p2 — o) + a1
2o — 1) + az

y = @1, hormalization: ag+ a1 +as =1, g+ 1 + o =t

Backlund transformations  sg, sy, So, 7

~
so() = —ap so(a) = a1 + o sp(a2) = as + ag
81<Oé()> = () + 03] 81(051) = —O1 S1 042) = 09 — (1
sa(ag) = g+ g sa(on) = a1 +az sa() = —a
/
I
(7)) (07}
s0(0) = %o sop1) = o1 — — so(w2) = @2+ —
¥o ©o
aq o)
s1(¢o) = o+ — s1(e1) = @1 s1(p2) = o2 — —
P1 ¥0
Qa9 0%
s2(p0) = 0o — — s1(p1) = o1 + — s2(p2) = 2
P2 ©1
J
(i) = vir1, 7(ow) =g, 1€ ZL/3L



—_

0 Affine Weyl group: (s, s1, 5o, 7) = W(AM)
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[ Translations in the parameter space:
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Sakai’s Theory (2001):
Algebro-geometric theory of Painlev & and discrete Painlev é
equations:

[0 Defining manifold of discrete Painlevé equations:
Family of rational surfaces obtained by blow-up of P? at 9
points.

[1 Action of affine Weyl group:
interchange of points and Cremona transformations

[1 Classification of surfaces:
22 cases obtained by degeneration of points

[J 8 cases admit continuous flows — Painlevé equations
Continuous flows come from continous limit of discrete evo-
lutions on “higher” surfaces.

Degeneration diagram of surfaces:
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Type of time evolution (action of Weyl group):

[ Elliptic: Eél) (1) — |Elliptic Painlevé equation

0 Multiplicative: £{" - .- ALY (10) — [¢-Painlevé equations

0 Additive: £\, BV, E{" + inside the box (11)
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Hypergeometric Solutions:

Coalescence cascade

(1) (1)

Pvi Py P PD7 PD8
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Series of ¢-Painlevé equations:

Eél) — Eél) — Eél) - Dél) - Az(Ll) = (A +AYY — (A1+|04124=114)(1)

[J What kind of hypergeometric functions appear for ¢g-Painlevé
equations, in particular for £\, B, E{V?

(beyond the Gauss hypergeometric function!)

Basic hypergeometric series:
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[ balanced: qaias---a,.1 =biby---b., z=g¢q

[ well-poised: qa; = asby = -+ = a,1b,

[ very-well-poised: well-poised + ay = qa%, a3 = —qa
Very-well-poised basic hypergeometric series .1 W,.
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Formulation of discrete Painlev €& equations (1)
“Configuration space of points” on P?:
(z : y : 2): homogeneous coordinate of P*
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Msn=GLBN\] | 91 2 ys = ya | ¢ /(C)".
i 21 R9 k3 - Znp |

Birational transformations on Mj ,;:

1.s;,(¢=1,...,n—1): interchanging P, and P,

2. sp. standard Cremona transformation with base points
P(1:0:0), P,(0:1:0), P3(0:0:1)

1 11
So T — =, —).
i wiyia) ()
(S0, 51,---,5,) = W(E,): (A. Coble, 1922)
E,: T0
R e
1 2 3 4 5 6 7 - n-—1
1o of io—oj
2 _ e _
sy = 1, Si8; = S;Si, SiS;Si = $;SiS;,

n=10 |Z8 C (s0,51,...,89) = W(Ey) = W(EY) c W(E)

action of translation subgroup Z® = Elliptic Painlevé equation
9 points P, ..., Py parameters
10th point P = dependent variable
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Formulation with the pencil of cubic curves (1)

Translation = Addtion on moving cubic curve

Example: Ty, Cy: Cubic curve passing P, ... Py
[0 Determine new points Pg, Py by using the addition on Cj:
P;=P, (i#38,9), P+ --+P+Py=0, P+Py= Ps+Py
(] Let Cy : F = 0 and let the cubic pencil be A\F' + uG = 0.

Choose A, 1 so that the pencil passes Py. Denote this new
cubic curve passing through P, ..., Ps;, Py and P;, as C.

[0 Determine new point P, by using the addition on C' as

P+ P = Flo —I-Fg

12



Comments:

[0 Generic nine points : Elliptic Painlevé equation(KMNQOY, 2003).
Varrious degenerate configurations: other discrete Painlevé
equations

[0 9 points on nodal cubic curve: ¢-Painlevé of type Eél)

[J The same procedure for the stationary cubic gives QRT sys-
tem (Tsuda)

[J The procedure for statinary cubic was first discussed by Manin
and shown that it is equivalent to translation.
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Description of hypergeometric solution (1)
[1 Reduction to Riccati Equation:

[1 Three points among the nine points in the cubic are colinear.

[1 A point is infinitesimally near to another point

(The second case is essential only for much degenerate cases)

Example: Ps, P, P; are colinear

Cubic C' is decomposed into a line ¢(P;, Ps, P;) and a conic
C/(PQ, e ooy P4, Pg,ﬁg).

P A Pt Py =0, Pst+Pst+Pr =0 — P+ +P+ PPy = 0.

4

Py et — Py e ¢ (is an “invariant divisor”

[ In this case, discrete time evolution of f can be described in
terms of linear equation.
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Description of hypergeometric solution (2)

]_C=;)10 f=P10

Choose coordinate such that
Pi(1:0:0), P,(0:1:0), P5(0:0:1), and denote:

0. (a,f)=afitarfotasfs =0, (a,f)= @171+a272+a3?3 =0

Linear equation for f:

A =(a,5)Df —(a,Df)y,

pf =(a,2)D7'f = (a,D~" f)a,
X2y T3Xx1 T1X9
YoUs Yshr U1Yo

D—diag( ) A=(a,z), p=/(a7)

G L(3)-invariant linear equation: d;;; = det|P;, P;, P]

da39d95d563318 (d31§
d1g9 d318
N da3gd128d569d319 (d31§

d139

dy3 15 | — d2310)

y daz1o |—| da310 >_d562d389d123
319

da3 10
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Description of hypergeometric solution (3): Case of gy

( (Gf —tt)(gf —t°)  (f —but)(f — bat)(f — bst)(f — bat)

£)(
(gf —=1)(gf = 1) (f =bs)(f =) (f —br)(f —Dbs)

(9f =) gf —tt)  (g—1t/br1)(g —t/b2)(g — t/b3)(g — t/bs)

L (of =) (gf —1)  (g—1/bs)(g—1/bs)(g — 1/b7)(g — 1/bs)’

t = qt, blbgbgb4 = q, b5b@b7bg = 1.

1 —bs/by sWr(a;gb,c,d,e, f;q,qa®/bedef) __ 9=t/
1 - b3/b5t 8W7(a; b: C, d7 €, f7 q, q2a2/bcdef) ’ B g — 1/b5

z =

where
a = bibg/bsbs, b=0bg/bs, c=by/b3,

d = byt /bs, e=0b1/bst, f =by/bs,

gives a solution of the ¢-Painlevé equation of type Eél) with

blbg = b5b7 (b2b4 = qbﬁbg).

Comments:

[J In the terminating case, i.e. f = by/bs = ¢~ ", n € Z-, the solution is
expressed by terminating balanced ,p3 (Askey-Wilson Polynomials)

[J In the elliptic case, the solution is expressible in terms of the terminating
balanced very-well-poised elliptic hypergeometric series
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Summary

[J Addition on moving cubic curve: discrete Painlevé equations

[1 Diagram of hypergeometric functions:

B (e.)
!

BV — B — B - DO - Al (At AND (A )0

|2=14

balanced
10F9

l

a
balanced balanced 1¢1<0;q72> 0
alance alance
— Wy — — 9201 — 1P — — 101 iq, 2
10Wo 302 (O )
191 14,z

[1 Things to be done: Many things! Only the formulations and
simplest solutions have been presented.
[] Lax pair
[ Particular solutions
[1 Asymptotics
[ 7 functions

[] Relation to other fields (random matrices, geometry, .....)
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