
Structure of totally

disconnected groups via

compact open subgroups;

an overview of the theory and its

applications.
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Locally compact groups

Consider connected and totally disconnected case separately.

1−−−→G0−−−→G−−−→G/G0−−−→1

Methods:

1. G0 is a projective limit of Lie groups.

(; Approximation by Lie groups.)

2. G/G0 has a basis at e consisting of compact open subgroups.

(; analysis of action on {V : V is a compact, open subgroup}.)
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Totally Disconnected Case; single automorphism

Analogues of Lie techniques for analyzing α ∈ Aut(G):

Definition 1 The scale of α is the positive integer

s(α) := min {|α(V ): α(V ) ∩ V | : V 6 G is compact and open} .

The compact open subgroup O of G is tidy for α if

|α(O): α(O) ∩O| = s(α),

i.e. if the minimum is attained at O.

Identifying subgroups tidy for α corresponds to finding a trian-
gularising basis for a linear transformation.

The scale of α plays a role corresponding to that of the eigen-
values of a linear transformation.
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Totally Disconnected Case; groups of automorphisms

H a finitely generated abelian group of automorphisms of G.

Theorem 1 There is O 6 G, tidy for every α ∈ H such that

O = O0 ·O1 · · ·Oq,

where each Oj is a closed subgroup of O such that:

1. α(Oj) > Oj or α(Oj) 6 Oj and α(O0) = O0; α ∈ H, 1 ≤ j ≤ q

2. s(α) =
∏

α(Oj)>Oj

|α(Oj): Oj|; α ∈ H

3.
⋃

α∈H
α(Oj) is a closed H-invariant subgroup of G for each j.

4



(1) The numbers

sj(α) :=

|α(Oj): Oj| if α(Oj) ≥ Oj

|Oj : α(Oj)|−1 if α(Oj) ≤ Oj

are analogues of eigenvalues for α and the subgroups

Õj :=
⋃

α∈H
α(Oj)

are analogues of eigenspaces for the automorphisms in H.

(2) For each j there is αj ∈ H such that sj(αj) =: tj is a minimum
and then sj(α) is a power of tj for every α.

(3) The subgroups Oj might not commute and they might not
be able to be reordered, e.g. if G = SLn(Qp) and H is the group
of inner automorhisms induced by diagonal matrices, then O is
the Iwahori subgroup and the Oj’s are root subgroups.
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Application 1: ergodic Zd-actions by automorphisms

Theorem 2 G a locally compact group. Suppose H is a finitely
generated abelian group of automorphisms of G with a dense
orbit. Then there is K C6 G, compact and H-invariant such that:

1. G/K ∼= V × F1 × · · · × Fq, where V is a finite-dimensional
real vector space and F1, . . . , Fq are locally compact totally
disconnected fields of characteristic 0;

2. V and F1, . . . , Fq are invariant under the factor action of H
on G/K; and

3. the factor action of H is by linear maps on V and by charac-
ters (with values in (Fi \ {0},×)) on the Fi.
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History of the Theorem

(1) If H is generated by a single automorphism then G must be

compact. This was conjectured by P. Halmos and proved: for

connected G in the 1960’s by R. Kaufman and M. Rajagopalan

and by T.-S. Wu; and for totally disconnected G in the 1980’s

by N. Aoki, M. Dateyama and T. Kasuga.

(2) The case of Theorem 1 where G is connected was proved

previously by S.G. Dani.

(3) If G is finite-dimensional and ‘locally finitely generated’, then

K belongs to the centre, so that G is nilpotent.
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History of the Proofs

(1) Approximation by Lie groups is used to prove the connected

case.

(2) Aoki, Dateyama and Kasuga used (long) topological dynam-

ics arguments to prove the totally disconnected case of Halmos’

conjecture. Recently W. Previts and T.-S. Wu gave a much

shorter proof that uses new structure theorems for totally dis-

connected groups.

(3) The proof of Theorem 1 also uses these structure theorems,

which contain analogues of Lie techniques.
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Application 2: Dissipation of random walks

Definition 2 Let µ be a regular Borel probability measure on a

locally compact group G. The sequence of functions

fn : {K : K is a compact subset of G} → [0; 1]

fn(K) := sup{µn(Kg): g ∈ G}

are called concentration functions of µ.

The pointwise behaviour of the concentration functions gives a

measure of the dissipation of the random walk of law µ on G.

Theorem 3 Suppose that G is not compact and supp(µ) gen-

erates G as a topological group.

Then fn(K)−−−→
n→∞

0 for all compact subsets of G.
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Geometric interpretation of Willis’ theory

G a totally disconnected locally compact group.

Aut(G) acts on the non-empty set

B(G) := {V : V is a compact, open subgroup of G} .

Define, for V and W in B(G)

d(V, W ) := log(|V : V ∩W | · |W : W ∩ V |) .

Lemma 4 The function d is a metric on B(G), and Aut(G) acts

on the discrete metric space (B(G), d) by isometries.

A compact, open subgroup O is tidy for α if and only if the

displacement d(α(O), O) is minimal.
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Definition 3 A group H of automorphisms of G is called flat if

there is an O tidy for every element of H.

1. A finitely generated abelian H is flat by Theorem 1.

2. Theorem 1 can be generalized to flat groups.

3. Let H be flat. Put H(1) := {η ∈ H : s(η) = 1 = s(η−1)}.
NH(O) := {η ∈ H : η(O) = O} = H(1) if O is tidy for H.

The group H/H(1) is free abelian.

Lemma 5 Let H be a flat group of automorphisms and let O be

tidy for H. Then p(γH(1)) := d(γ(O), O) is a norm on H/H(1).
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Application 3: Isometry groups of CAT(0) cell complexes

Definition 4 The flat rank of a flat group H is the Z-rank of
the group H/H(1).
The flat rank of a group of automorphisms A is the supremum
of the flat ranks of all flat subgroups of A.

Lemma 6 Suppose that G acts on a metric space X such that
the map X → B(G), x 7→ Gx is a quasi-isometric embedding.
Let H 6 G be a flat of finite flat rank n.
Then, for x ∈ X the map H.x ↪→ X defines a n-quasi-flat in X.

Corollary 7 Suppose that G acts on a complete cocompact
CAT(0)-space X such that x 7→ Gx is a quasi-isometric embed-
ding. Then flat-rk(G) ≤ rk(X); in particular flat-rk(G) < ∞.

The hypotheses of Corollary 7 apply to many isometry groups of
Davis-realizations of buildings.
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Relative position of flat groups; space of directions

Using the action of a group of automorphisms A on the set of

compact open subgroups, one can give sense to the direction of

automorphisms in A.

For a flat group H, the set of directions of elements in H corre-

spond to a cone of rays in the lattice H/H(1).

The set of directions ∂A, of a group of automorphisms A carries

a natural pseudo-metric. A acts by isometries on the completion

of this space.
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