# Sampling eigenvalue PDFs for matrix ensembles P.J. Forrester Australian Professorial Fellow Supported by the Australian Research Council and The University of Melbourne

# Objective

To efficiently sample from joint eigenvalue PDFs for some classical random matrix ensembles.

# Examples of classical matrix ensembles

- 1. Gaussian orthogonal ensemble. Joint PDF of elements  $\propto e^{-{\rm Tr}(H^2)/2}$ . H real symmetric.
- 2. Random unitary matrices with Haar (uniform) measure.
- 3. Wishart matrices

$$A = X^T X$$

where X is an  $n \times m$  Gaussian matrix with joint PDF of elements  $\propto e^{-\text{Tr}(X^TX)/2}$ .

# Random matrix hypotheses

- 1. The highly excited energy levels of heavy nuclei have the same statistical properties as the eigenvalues of large GOE matrices.
- 2. The large Riemann zeros have the same statistical properties as the eigenvalues of large random unitary matrices.
- 3.  $\vec{x}_k = [x_k^{(j)}]_{j=1,\dots,n}$ , vector of price data for commodity k on days  $1, 2, \dots, n$ . For commodities  $k = 1, \dots, m$  the data is effectively uncorrelated: the eigenvalues of the covariance matrix have the same statistical properties as a random Wishart matrix.

# Testing the hypotheses

- Knowledge of the statistical properties of the random matrix ensembles is required.
- Often the statistical properties are known in analytic form.
- To illustrate these analytic forms, Monte Carlo simulation of the corresponding distributions are often undertaken.
- When an analytic form is not known, the distribution can be estimated by Monte Carlo simulation.

**Example 1.** Let  $p_2^{\text{n.n.}}(s)$  denote the probability distribution for the smallest of the spacings between the left neighbour and right neighbour of a given eigenvalue. It has been shown that

$$p_2^{\text{n.n.}}(s) = -\frac{\sigma_a(2\pi s; \xi)}{2\pi s} \exp \int_0^{2\pi s} \frac{\sigma_a(t; \xi)}{t} dt \Big|_{a=\xi=1}$$

where

$$(s\sigma_a'')^2 + 4(-a^2 + s\sigma_a' - \sigma_a)\left((\sigma_a')^2 - \{a - (a^2 - s\sigma_a' + \sigma_a)^{1/2}\}^2\right) = 0$$

subject to the boundary condition

$$\sigma_a(s;\xi) \underset{s\to 0^+}{\sim} -\xi \frac{2(s/4)^{2a+1}}{\Gamma(1/2+a)\Gamma(3/2+a)}.$$



Comparison of  $nn(t) := p_2^{\text{n.n.}}(s)$  for the matrix ensembles with unitary symmetry in the bulk (continuous curve) and for  $10^6$  consecutive Riemann zeros, starting near zero number 1 (open circles),  $10^6$  (asterisks) and  $10^{20}$  (filled circles).

# Sampling from the GOE eigenvalue PDF

- Generate a member of the ensemble, compute its eigenvalues.
- (Possible) internal workings tridiagonal form using Householder transformations

$$U^{(j)} = 1 - 2\vec{u}^{(j)}\vec{u}^{(j)T} = \begin{bmatrix} 1_{j \times j} & 0_{j \times N - j} \\ 0_{N - j \times j} & V_{N - j \times N - j} \end{bmatrix}.$$

• For  $X \in GOE$ 

$$\begin{bmatrix} N[0,1] & \tilde{\chi}_{N-1} \\ \tilde{\chi}_{N-1} & N[0,1] & \tilde{\chi}_{N-2} \\ & \tilde{\chi}_{N-2} & N[0,1] & \tilde{\chi}_{N-3} \\ & \ddots & \ddots & \ddots \\ & & \tilde{\chi}_{2} & N[0,1] & \tilde{\chi}_{1} \\ & & \tilde{\chi}_{1} & N[0,1] \end{bmatrix}$$

where  $\tilde{\chi}_k = (\Gamma[k/2, 1])^{1/2} \sim (2/\Gamma(k/2))u^{k-1}e^{-u^2}, u > 0.$ 

•  $P_N(\lambda)$  for GOE therefore satisfies

$$P_k(\lambda) = (\lambda - a_k) P_{k-1}(\lambda) - b_{k-1}^2 P_{k-2}(\lambda), \quad P_0(\lambda) = 1$$
 where  $a_k \sim N[0, 1], \ b_k^2 \sim \Gamma[k/2, 1].$ 

• Hence can sample from the GOE by generating  $P_N(\lambda)$  from the recurrence and computing its zeros.

# Sampling from the U(N) eigenvalue PDF

- Generate  $U \in U(N)$ : Gram-Schmidt orthogonalize  $\{\vec{g}_1, \dots, \vec{g}_N\}$  where elements of  $\vec{g}_i$  are N[0, 1] + iN[0, 1].
- Householder transformation to upper Hessenberg form  $H = [H_{ij}]_{i,j=0,...,N-1}$ . Diagonal elements  $H_{ii} = -\alpha_{i-1}\bar{\alpha}_i$  where  $\alpha_{-1} = -1$ ,  $|\alpha_j| < 1$  (j = 0,...,N-2),  $|\alpha_{N-1}| = 1$ .
- Characteristic polynomial  $P_N(\lambda)$  satisfies coupled recurrences

$$P_k(\lambda) = \lambda P_{k-1}(\lambda) - \bar{\alpha}_{k-1} \tilde{P}_{k-1}(\lambda)$$

$$\tilde{P}_k(\lambda) = \lambda \tilde{P}_{k-1}(\lambda) - \alpha_{k-1} P_{k-1}(\lambda)$$

where  $P_0(\lambda) = \tilde{P}_0(\lambda)$ .

• For  $H \in U(N)$ ,  $\alpha_{N-j-1} \sim \Theta_{2j+1}$  (j = 0, ..., N-1) where  $\Theta_{\nu}$  has p.d.f.  $\frac{\nu-1}{2\pi} (1-|z|^2)^{(\nu-3)/2} \chi_{|z|<1}$ .

### Wishart matrices

• Introduce two sequences of Householder reflections  $\{U^{(j)}, \tilde{U}^{(j)}\}$  to bidiagonalize the  $m \times n$  matrix  $X^T$ ,

$$B^{T} = \begin{bmatrix} x_{n} \\ y_{m-1} & x_{n-1} \\ \vdots & \vdots \\ y_{1} & x_{n-m+1} \end{bmatrix},$$

- For X Gaussian,  $x_j \sim \chi_j$ ,  $y_j \sim \chi_j$ .
- Form  $A = X^T X$ ,

$$B^T B = \begin{bmatrix} a_m & b_{m-1} \\ b_{m-1} & a_{m-1} & b_{m-2} \\ \vdots & \vdots & \ddots & \vdots \\ b_2 & a_2 & b_1 \\ & b_1 & a_1 \end{bmatrix},$$

$$a_m = x_n^2$$
,  $a_i = y_i^2 + x_{n-m+i}^2$ ,  $b_i = y_i x_{n-m+i+1}$ .

• Again a 3 term recurrence for  $P_N(\lambda)$ ,

$$P_k(\lambda) = (\lambda - a_k)P_{k-1}(\lambda) - b_{k-1}^2 P_{k-2}(\lambda), \qquad P_0(\lambda) = 1.$$

# Strategies based on changing variables

Problem – From the given distribution of the elements of a tridiagonal matrix, compute the corresponding distribution of its eigenvalues and variables corresponding to eigenvectors.

• Need the Jacobian for change of variables

$$\vec{a} := (a_n, a_{n-1}, \dots, a_1), \qquad \vec{b} := (b_{n-1}, \dots, b_1)$$

to

$$\vec{\lambda} := (\lambda_1, \dots, \lambda_n), \qquad \vec{q} := (q_1, \dots, q_{n-1}).$$

• Make use of the general formula

$$\sum_{j=1}^{n} \frac{q_j^2}{\lambda_j - \lambda} = \left( (T - \lambda 1)^{-1} \right)_{11} = -\frac{P_{n-1}(\lambda)}{P_n(\lambda)}.$$

• Note the inter-relation

$$\prod_{1 \le j < k \le n} (\lambda_j - \lambda_k)^2 = \frac{\prod_{i=1}^{n-1} b_i^{2i}}{\prod_{i=1}^n q_i^2}.$$

Theorem 1. The Jacobian is equal to

$$\frac{1}{q_n} \frac{\prod_{i=1}^{n-1} b_i}{\prod_{i=1}^n q_i}.$$

Main features of the proof:

• Triangular system of equations

$$1 = \sum_{j=1}^{n} q_j^2$$

$$a_n = \sum_{j=1}^{n} q_j^2 \lambda_j$$

$$* + b_{n-1}^2 = \sum_{j=1}^{n} q_j^2 \lambda_j^2$$

$$* + a_{n-1}b_{n-1}^2 = \sum_{j=1}^{n} q_j^2 \lambda_j^3$$

$$* + b_{n-2}^2 b_{n-1}^2 = \sum_{j=1}^{n} q_j^2 \lambda_j^4$$

$$* + a_{n-2}b_{n-2}^2 b_{n-1}^2 = \sum_{j=1}^{n} q_j^2 \lambda_j^5$$

$$\vdots$$

$$* + a_1b_1^2 \cdots b_{n-2}^2 b_{n-1}^2 = \sum_{j=1}^{n} q_j^2 \lambda_j^{2n-1}.$$

• Determinant evaluation

$$\det \left[ \left[ \lambda_k^j - \lambda_N^j \right]_{\substack{j=1,\dots,2N-1\\k=1,\dots,N-1}} \left[ j \lambda_k^{j-1} \right]_{\substack{j=1,\dots,2N-1\\k=1,\dots,N}} \right] = \prod_{1 \le j \le k \le N} (\lambda_k - \lambda_j)^4.$$

## Consequence

**Theorem 2.** Consider the random symmetric tridiagonal matrix

$$\begin{bmatrix} N[0,1] & \tilde{\chi}_{(N-1)\beta} \\ \tilde{\chi}_{(N-1)\beta} & N[0,1] & \tilde{\chi}_{(N-2)\beta} \\ & \tilde{\chi}_{(N-2)\beta} & N[0,1] & \tilde{\chi}_{(N-3)\beta} \\ & \ddots & \ddots & \ddots \\ & & \tilde{\chi}_{2\beta} & N[0,1] & \tilde{\chi}_{\beta} \\ & & \tilde{\chi}_{\beta} & N[0,1] \end{bmatrix}$$

The eigenvalues and first component of the eigenvectors (which form the vector  $\vec{q}$ ) are independent, with the distribution of the former given by

$$\frac{1}{\tilde{G}_{\beta N}} \prod_{l=1}^{N} e^{-\lambda_l^2/2} \prod_{1 \le j < k \le N} |\lambda_k - \lambda_j|^{\beta} d\vec{\lambda},$$

$$\tilde{G}_{\beta N} = (2\pi)^{N/2} \prod_{j=0}^{N-1} \frac{\Gamma(1+(j+1)\beta/2)}{\Gamma(1+\beta/2)},$$

and the distribution of the latter by

$$\frac{1}{c_{\beta N}q_{N}} \prod_{i=1}^{N} q_{i}^{\beta-1} d\vec{q}, \qquad q_{i} > 0, \sum_{i=1}^{N} q_{i}^{2} = 1, \quad \text{where} \quad c_{\beta N} = \frac{\Gamma^{N}(\beta/2)}{2^{N-1}\Gamma(\beta N/2)}.$$

### The circular case

Analogous results can be obtained for unitary Hessenberg matrices.

**Theorem 3.** The Jacobian for the change of variables from  $\vec{\alpha}$  to  $(\vec{\lambda}, \vec{q})$  is equal to

$$\frac{\prod_{i=0}^{N-2} (1 - |\alpha_i|^2)}{q_N \prod_{i=1}^{N} q_i}.$$

**Theorem 4.** Consider a random unitary Hessenberg matrix with parameters  $\{\alpha_j\}_{j=1,...,N}$  distributed according to

$$\alpha_{N-j-1} \in \Theta_{\beta j+1} \qquad (j=0,\ldots,N-1).$$

The eigenvalues and first component of the eigenvectors (which form  $\vec{q}$ ) are independent, with the distribution of the eigenvalues given by

$$\frac{1}{C_{\beta N}} \prod_{1 \le j < k \le N} |e^{i\theta_k} - e^{i\theta_j}|^{\beta} d\vec{\theta}, \qquad C_{\beta N} = (2\pi)^N \frac{\Gamma(\beta N/2 + 1)}{\Gamma(\beta/2 + 1)}$$

and the distribution of  $\vec{q}$  as in the Gaussian case.

# Perturbation viewpoint: Gaussian matrices

Border a real symmetric matrix by an extra row and column:

$$\tilde{M} = \left[ \begin{array}{cc} M & \vec{w}^T \\ \vec{w} & a \end{array} \right].$$

**Question.** Suppose  $\{\lambda_i\}$  are the eigenvalues of M. What are the eigenvalues of  $\tilde{M}$ ?

$$\det(\lambda - \tilde{M}) = \det \begin{bmatrix} \lambda - M & -\vec{w}^T \\ -\vec{w} & \lambda - a \end{bmatrix}$$
 (1)

$$= \det \begin{bmatrix} \lambda - M & -\vec{w}^T \\ \vec{0} & \lambda - a - \vec{w}(\lambda - M)^{-1} \vec{w}^T \end{bmatrix}$$
 (2)

$$= \det(\lambda - M) \left(\lambda - a - \vec{w}(\lambda - M)^{-1} \vec{w}^T\right). \tag{3}$$

$$\frac{\tilde{p}_N(\lambda)}{p_N(\lambda)} = \lambda - a - \sum_{i=1}^N \frac{w_i^2}{\lambda - \lambda_i}.$$

Suppose  $M \in GOE_N$ . Then with

$$w_i \sim N[0, 1/\sqrt{2}], \quad a \sim N[0, 1]$$

we have

$$\tilde{M} \in \text{GOE}_{N+1}, \qquad w_i^2 \sim \Gamma[\frac{1}{2}, 1].$$

Thus for the GOE, ratios of successive characteristic polynomials satisfy

$$\frac{p_{N+1}(\lambda)}{p_N(\lambda)} = \lambda - a - \sum_{i=1}^{N} \frac{w_i^2}{\lambda - \lambda_i}.$$

On the other hand, it's easy to see that

$$\frac{p_{N-1}(\lambda)}{p_N(\lambda)} = \sum_{i=1}^{N} \frac{q_i^2}{\lambda - \lambda_i}$$

where

$$q_i^2 \sim \frac{w_i^2}{\sum_{i=1}^N w_i^2}.$$

Comparing gives

$$p_{N+1}(\lambda) = (\lambda - a)p_N(\lambda) - bp_{N-1}(\lambda)$$

where

$$b \sim \sum_{i=1}^{N} w_i^2 \sim \Gamma[N/2, 1]$$

# Perturbation of unitary matrices

The relevant perturbation is multiplicative: multiply the first row by t, |t| = 1.

**Lemma 1.** Let U be an  $n \times n$  unitary matrix, distinct eigenvalues  $e^{i\theta_1}, \ldots, e^{i\theta_n}$ , first component of corresponding eigenvectors  $v_{1j}$ . Perturb the matrix to obtain  $\tilde{U}$ . We have

$$\frac{\tilde{P}_n(\lambda)}{P_n(\lambda)} = 1 + (t-1) \sum_{j=1}^n \frac{e^{i\theta_j} |v_{1j}|^2}{e^{i\theta_j} - \lambda}.$$

• To obtain random recurrences, work with projected variables

$$\lambda = \frac{1 + ix}{1 - ix}.$$

Changing variables gives

$$\prod_{l=1}^{N} |1 + e^{i\theta_l}|^{2b} \prod_{1 \le j < k \le N} |e^{i\theta_k} - e^{i\theta_j}|^{2c} d\theta_1 \cdots d\theta_N = 2^{cN(N-1) + N(1+2b)}$$

$$\times \prod_{j=1}^{N} (1 + \lambda_j^2)^{-c(N-1) - 1 - b} \prod_{1 \le j < k \le N} |\lambda_k - \lambda_j|^{2c} d\lambda_1 \cdots d\lambda_N.$$

**Theorem 5.** The characteristic polynomial for the Cauchy ensemble satisfies the random recurrence

$$p_{n+1}(x) = \left(\frac{x}{\beta_n} - \frac{\gamma_n}{\beta_n}\right) p_n(x) - \left(\frac{1}{\beta_n} - 1\right) (1 + x^2) p_{n-1}(x)$$

where  $\gamma_l$  has distribution

$$\left(\frac{1+ix}{1-ix}\right)^{-(lc+b+1)}$$

and  $\beta_l$  has distribution

$$B[2b + lc + 1, lc].$$