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Objective

To efficiently sample from joint eigenvalue PDFs for some classical

random matrix ensembles.

Examples of classical matrix ensembles

1. Gaussian orthogonal ensemble. Joint PDF of elements o

e~ Tr(H*)/2 [ veal symmetric.
2. Random unitary matrices with Haar (uniform) measure.

3. Wishart matrices
A=XTX

where X is an n X m Gaussian matrix with joint PDF of elements

x e~ Tr(XTX)/2




Random matrix hypotheses

1. The highly excited energy levels of heavy nuclei have the same
statistical properties as the eigenvalues of large GOE matrices.

2. The large Riemann zeros have the same statistical properties as the
eigenvalues of large random unitary matrices.

3. T = [a:,gj)]jzl,,_.’n, vector of price data for commodity k on days
1,2,...,n. For commodities k = 1,...,m the data is effectively
uncorrelated: the eigenvalues of the covariance matrix have the

same statistical properties as a random Wishart matrix.
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Testing the hypotheses

e Knowledge of the statistical properties of the random matrix

ensembles is required.
e Often the statistical properties are known in analytic form.

e To illustrate these analytic forms, Monte Carlo simulation of the
corresponding distributions are often undertaken.

e When an analytic form is not known, the distribution can be

estimated by Monte Carlo simulation.

Example 1. Let p5™(s) denote the probability distribution for the
smallest of the spacings between the left neighbour and right neighbour

of a given eigenvalue. It has been shown that
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Comparison of nn(t) := p4 ™ (s) for the matrix ensembles with unitary
symmetry in the bulk (continuous curve) and for 10° consecutive

Riemann zeros, starting near zero number 1 (open circles), 10°
(asterisks) and 102° (filled circles).
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Sampling from the GOE eigenvalue PDF
e Generate a member of the ensemble, compute its eigenvalues.

e (Possible) internal workings — tridiagonal form using Householder

transformations

U0 1 ogigir _ | Lixi 0jxN—j

On—jxj VN—jxN—j
e For X € GOE
[ N[0,1]  ¥n-1
Xnv—1 N[0,1] Xn—2
xn—2 NI[0,1] Xn-_3

2

where Y, = (I'[k/2,1])Y/2 ~ (2/T'(k/2))u*"te™™ , u > 0.
o Pn(A) for GOE therefore satisfies
Pr(A) = (A = ap)Pe—1(A) = b1 P2 (V), Bo(N) =1
where ay, ~ N[0, 1], b2 ~ T'[k/2,1].

e Hence can sample from the GOE by generating Py () from the

recurrence and computing its zeros.
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Sampling from the U(N) eigenvalue PDF

e Generate U € U(N): Gram-Schmidt orthogonalize {g1,...,gn}
where elements of g; are N[0, 1] 4+ iN][0, 1].

e Householder transformation to upper Hessenberg form
H = [H,j;]i j=o0,.. n—1. Diagonal elements H;, = —a;_1&; where
<1(G=0,....,N—=2), lany_1| =1.

a_; =—1, |aj
e Characteristic polynomial Py () satisfies coupled recurrences
Pi(A) = APu_1(N) — ap_1Pu_i(N)
P(A) = AP_1(\) —ap_1Pe_1(\)
where Py(A) = Py(N).

e For He U(N), any—j—1 ~ ©2j41 (j =0,...,N — 1) where O, has
p.d.f. Vg—_ﬁl(l - |Z‘2)(V_3)/2X|z|<1-
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Wishart matrices

e Introduce two sequences of Householder reflections {U@), U0} to

bidiagonalize the m x n matrix X7,

Ln

Ym—1 Ln—1

Y1 Lpn—m+1

e For X Gaussian, z; ~ xj, Yj ~ Xj-

e Form A= XTX,

BTB=| .. .. . ,
b2 az by
i by ar |
2 2 2
Am = L, a; = Y; + xn—m—i-ia bz =Yiln—m+i+1-

e Again a 3 term recurrence for Py (\),

Pr(N) = (A= ar)Pe_1(N) —bi _{ Pe_a(N), Py(N) = 1.




Strategies based on changing variables

Problem — From the given distribution of the elements of a tridiagonal
matrix, compute the corresponding distribution of its eigenvalues and

variables corresponding to eigenvectors.

e Need the Jacobian for change of variables
@:=(an,an_1,...,a1),  b:=(bp_1,...,b1)

to

—

A= (>\17"'7)‘n)7 q—):: (Q17"'7Qn—1)-

e Make use of the general formula

n

G

J=1

e Note the inter-relation




Theorem 1. The Jacobian is equal to

1 H?:_f bi
an 11y ai

Main features of the proof:

e Triangular system of equations

7j=1
n
an = ) @A
j=1
S W
j=1
ranmb = ) GN
j=1
# by _obn_y = quz)\;;
j=1
n
st an_obl obh = Y @A
j=1
n
*+abt-- by _oby = Z qu)\?n_l-
j=1
e Determinant evaluation
. ‘ i1 .
det [[Ai, — Al U ]%1:’1;5.2.%‘1} = I ="

1<j<k<N

o
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Consequence

Theorem 2. Consider the random symmetric tridiagonal matrix

N[071] X(N—l)ﬂ
X(v—1p  N[0,1]  X(n—2)8
X(v-2)8  N[0,1]  X(nv-3)8

9226 N[07 1] Xﬁ
xs  N[0,1]

The eigenvalues and first component of the eigenvectors (which form the

vector q) are independent, with the distribution of the former given by

1 2 .
— ] JI =174,
Gon 27 1<j<k<N

- 2

+ B/2) ’
and the distribution of the latter by

v (5/2)

d", ; >0, 2=1, where cgy = .
C,BNQNHq S ;q AN T 9N-IT(BN/2)

o /
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The circular case

Analogous results can be obtained for unitary Hessenberg matrices.

Theorem 3. The Jacobian for the change of variables from & to (X, q)
15 equal to

)
]._.[’i:() (1— |ai|2)
~ .
an [1;21 @
Theorem 4. Consider a random unitary Hessenberg matriz with

parameters {o;}j=1.. N distributed according to
ON—j—1 665j+1 (jZO,...,N—l).

The eigenvalues and first component of the eigenvectors (which form q)

are independent, with the distribution of the eigenvalues given by

1 . 0,18 17 [(BN/2+1)
— JI €% —€e%)Pds,  Can = (2m)N
CoN | itien L(5/2+1)

and the distribution of ¢ as in the Gaussian case.
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Perturbation viewpoint: Gaussian matrices

Border a real symmetric matrix by an extra row and column:

—

. [M wT]
w a .

Question. Suppose {\;} are the eigenvalues of M. What are the

eigenvalues of M?

. (A-M -t
det(A — M) = det (1)
L —wW  A—a
[ A—M —w’
= det ] (2)
L0 A—a—@O— M)
—  det(\ — M) ()\ —a— @b — M)—le) (3)
N
=A—a— .
pN(N) Z A=A\
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Suppose M € GOEy. Then with
w; ~N[0,1/v2],  a~ NJ[0,1]

we have .
M € GOEN_|_1, ’UJ? ~ F[§,1]

Thus for the GOE, ratios of successive characteristic polynomials satisfy

PN+1(A) w?
———t = A—a— E )
pN()\) i—1 A — )\z

On the other hand, it’s easy to see that

p 10\) q;
-~ (>\) _Z)\—Ai

where

Comparing gives
PN+1(A) = (A —a)pn(A) — bpn—1(X)
where

N
b~ > wi ~T[N/2,1]

=1
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Perturbation of unitary matrices

The relevant perturbation is multiplicative: multilpy the first row by ¢,
it| = 1.

Lemma 1. Let U be an n X n unitary matriz, distinct eigenvalues
ewl, cee ew", first component of corresponding eigenvectors vi;. Perturb

the matriz to obtain U. We have

BV =1+ (t-1))y — -

e To obtain random recurrences, work with projected variables

B 1+
1 —ix

A
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Changing variables gives

N
H |1 + ewl ‘Zb H ‘eiék . ewj ‘2Cd91 cdfy = 20N(N—1)+N(1+2b)
=1 1<j<k<N

N

) [T+ A2~ N=D=120 T A = %A - - dAw.

7j=1 1<j<k<N

Theorem 5. The characteristic polynomial for the Cauchy ensemble

satisfies the random recurrence

pun@) = (5 = 2 )pale) = (- = 1) 1+ 2)paao)

where vy, has distribution

1+ 32\ —(lctb+1)
(1 — zx)

and B; has distribution
B[2b+ lc+ 1, 1c].
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