Introduction

A directed graph E consists of

- E^0 – countable set of vertices,
- E^1 – countable set of edges.
- maps $r, s : E^1 \rightarrow E^0$ giving direction.

For convenience we’ll assume that E^0, E^1 are finite and that E is essential, i.e. every vertex receives and emits at least one edge.

$C^*(E)$ is the universal C^*-algebra generated by operators $\{S_e : e \in E^1\}$ subject to relations which encode the connectivity of E.

The edge shift associated to E is defined by

$$X_E = \{x \in (E^1)^\mathbb{Z} : s(x_{i+1}) = r(x_i) \text{ all } i\}.$$

The shift map $\sigma_E : X_E \rightarrow X_E$ is given by $(\sigma_E x)_i = x_{i+1}$. We may also describe one-sided versions in a similar way.
We have lots of good results for essential graphs with E^0, E^1 infinite which are locally finite, i.e. every vertex emits and receives finitely many edges. In fact all $C^*(E)$ are equivalent to one of these.
The following graph does not satisfy condition (L):

\[
\begin{array}{c}
\bullet \\
\end{array}
\]

The following graph satisfies condition (L) but not condition (K)

\[
\begin{array}{c}
\bullet \\
\end{array}
\]

The following graph satisfies condition (K)

\[
\begin{array}{c}
\bullet \\
\end{array}
\]

The following graph is irreducible and satisfies condition (K)

\[
\begin{array}{c}
\bullet \\
\end{array}
\]

The following graph is irreducible but does not satisfy condition (L)

\[
\begin{array}{c}
\bullet \\
\end{array}
\]

Evidently if a graph is irreducible and satisfies condition (L) then it satisfies condition (K).
Higher dimensional graphs

There is a k-dimensional analogue of a directed graph, called a k-graph, which is denoted Λ. If $k = 1$ then Λ is a directed graph.

If Λ is essential then we can construct a zero-dimensional space Λ^Δ which carries an expansive \mathbb{Z}^k action with entropy zero.

To a k-graph Λ we associate a C^*-algebra $C^*(\Lambda)$. Unfortunately, we do not have a version of condition (K) which is easy to check. We propose to study a class of k-graphs which come from higher dimensional shift spaces and deduce our condition (K) from the aperiodic nature of the shift.

There is a procedure in Lind and Marcus’s book which shows us how to associate a directed graph to a shift of finite type, we propose to generalise this procedure on certain higher dimensional shift spaces to produce a higher dimensional graph.
Ledrappier shift

Recall the Ledrappier shift \(X \subset \{0, 1\}^{\mathbb{Z}^2} \) consists of those \(x = (x_{i,j})_{(i,j) \in \mathbb{Z}^2} \) with

\[
x_{i,j} + x_{i+1,j} + x_{i,j+1} = 0 \mod 2
\]

for all \(i, j \in \mathbb{Z}^2 \). Equivalently \(X = \hat{M} \) where

\[
M = \mathbb{Z}[s, t, s^{-1}, t^{-1}] / \langle 2, 1 + s + t \rangle.
\]

So \(X \) consists of those infinite configurations of 0’s and 1’s such that whenever we put down the pattern

the sum of the entries in the pattern adds to zero mod 2.
A 2-graph representing X

Our vertices are precisely the four allowed configurations in our pattern.

\[
\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
a & b & c & d
\end{array}
\]

For vertices u, v there is an x-edge from u to v if u overlaps v after translation by one unit in the x-direction, otherwise there is no x-edge.

\[
\begin{array}{ccc}
0 & 1 \\
1 & 1 & 0 \\
b & d
\end{array}
\]

There is an x-edge from b to d. These edges are drawn as solid lines.
For vertices u, v there is an y-edge from u to v if u overlaps v after translation by one unit in the y-direction, otherwise there is no y-edge.

There is an y-edge from b to c. These edges are drawn as dashed lines.

We complete this procedure to get the following the graph:
Note that for every x-edge followed by a y-edge there is precisely one y-edge followed by an x-edge between the same two vertices.

![Diagram]

Moreover, there is at most one x-edge followed by a y-edge between any two vertices. This property is a key feature of a 2-graph.

How do we recover the original shift space?

Consider any infinite configuration of edges in our graph of the form:
As our vertices are valid patterns of 0’s and 1’s, the x- and y-edges are defined by overlapping and there is at most one x-edge followed by a y-edge between any two vertices, any such configuration uniquely determines an element of X; and conversely.

Finishing thoughts

Things worked out well in one dimension as periodic points in X_E come from loops in E. Also, one may construct aperiodic points in X_E using loops. In higher dimensions this is no longer true, as there can be points with period $(1, -1)$ for instance.

Working with 0’s and 1’s but with different shapes, we have found that not every pattern gives us a 2-graph. Which patterns do? It seems that ”staircase” shaped patterns work.

The hope is that for those k-graphs which arise from higher dimensional shifts in this way, we can check our version of the aperiodicity condition (K). We have done this in one only example so far: $Y = \hat{M}$ where $M = \mathbb{Z}[s, t, s^{-1}, t^{-1}]/\langle 2, 1 + s + t + st \rangle$.