Introduction

A directed graph E consists of

e £V — countable set of vertices,

e 1 — countable set of edges.

e maps r,s : E1 — EY giving direction.

o € o
s(e) r(e)
For convenience we'll assume that E°, E! are

finite and that E' is essential, i.e. every vertex
receives and emits at least one edge.

C*(FE) is the universal C*-algebra generated
by operators {Se : e € El} subject to relations
which encode the connectivity of E.

The edge shift associated to E is defined by
Xp = {x e (ENZ: s(xipr1) = r(z;) all i}.

The shift map op | Xg — Xpg is given by
(cgx); = x;41. We may also describe one-
sided versions in a similar way.



Relationship between C*(F) and Xg

Xg C*(E)
OF Canonical endomorphism
g C*(F) — C*(E)
h(og) Voiculescu entropy h(¢g)
irreducible simple
components ideals
outsplitting Isomorphism
insplitting Morita equivalence 17
Parry-Sullivan move Morita equivalence
Krieger condition (I) (L): every loop has exit
no isolated points uniqueness theorem
? purely infinite
Bowen-Franks groups K-groups
Lots of aperiodic (K): no vertex lies on
points exactly one simple loop
? C*(FE) real rank zero
Components give all ideals
mixing AF core of C*(FE) simple

We have lots of good results for essential
graphs with E9, E1 infinite which are locally
finite, i.e. every vertex emits and receives

finitely many edges. In fact all C*(FE) are
equivalent to one of these.




The following graph does not satisfy condi-
tion (L):
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The following graph satisfies condition (L)
but not condition (K)
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The following graph satisfies condition (K)
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The following graph is irreducible and satis-
fies condition (K
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The following graph is irreducible but does
not satisfy condition (L)

S

Evidently if a graph is irreducible and satisfies
condition (L) then it satisfies condition (K).
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Higher dimensional graphs

There is a k-dimensional analogue of a di-
rected graph, called a k-graph, which is de-
noted A. It £k = 1 then A is a directed graph.

If A\ is essential then we can construct a zero-
dimensional space AL which carries an ex-
pansive ZF action with entropy zero.

To a k-graph A we associate a C*-algebra
C*(N). Unfortunately, we do not have a ver-
sion of condition (K) which is easy to check.
We propose to study a class of k-graphs which
come from higher dimensional shift spaces
and deduce our condition (K) from the ape-
riodic nature of the shift.

There is a procedure in Lind and Marcus’s
book which shows us how to associate a di-
rected graph to a shift of finite type, we pro-
pose to generalise this procedure on certain
higher dimensional shift spaces to produce a
higher dimensional graph.



Ledrappier shift

Recall the Ledrappier shift X c {0, 1}Z2 con-
sists of those z = (wi,j)(ij)ezz with

Tij T Tit1lj T Tij41 = 0 mod 2

for all i,7 € Z2. Equivalently X = M where

M = Z][s, t, s_l,t_l]/<2, 14+ s+ t).

So X consists of those infinite configurations
of O's and 1's such that whenever we put
down the pattern

the sum of the entries in the pattern adds to
zero mod 2.



A 2-graph representing X

Our vertices are precisely the four allowed
configurations in our pattern.
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For vertices u,v there is an xz-edge from wu
to v if uw overlaps v after translation by one
unit in the xz-direction, otherwise there is no

r-edge.

There is an z-edge from b to d. These edges
are drawn as solid lines.



For vertices u,v there is an y-edge from wu
to v if uw overlaps v after translation by one
unit in the y-direction, otherwise there is no
y-edge.
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There is an y-edge from b to c. These edges
are drawn as dashed lines.

We complete this procedure to get the fol-
lowing the graph:




Note that for every x-edge followed by a y-
edge there is precisely one y-edge followed by
an z-edge between the same two vertices.

Moreover, there is at most one xz-edge fol-
lowed by a y-edge between any two vertices.
This property is a key feature of a 2-graph.

How do we recover the original shift space?

Consider any infinite configuration of edges
in our graph of the form:




As our vertices are valid patterns of 0O's and
1's, the - and y-edges are defined by over-
lapping and there is at most one x-edge fol-
lowed by a y-edge between any two vertices,
any such configuration uniquely determines
an element of X; and conversely.

Finishing thoughts

Things worked out well in one dimension as
periodic points in Xg come from loops in E.
AlsOo, one may construct aperiodic points in
X g using loops. In higher dimensions this is
no longer true, as there can be points with
period (1,—1) for instance.

Working with O's and 1's but with different
shapes, we have found that not every pattern
gives us a 2-graph. Which patterns do? It
seems that " staircase’” shaped patterns work.

The hope is that for those k-graphs which
arise from higher dimensional shifts in this
way, we can check our version of the ape-
riodicity condition (K). We have done this
in one only example so far: Y = M where
M = Z[s,t,s 1, t71]/(2,1 + s + t + st).



