
PERFECT COLOURINGS OF CYCLOTOMIC INTEGERS

E.P. BUGARIN, M.L.A.N. DE LAS PEÑAS, AND D. FRETTLÖH

Abstract. Perfect colourings of the rings of cyclotomic integers with class number one are
studied. It is shown that all colourings induced by ideals (q) are chirally perfect, and vice versa.
A necessary and sufficient condition for a colouring to be perfect is obtained, depending on the
factorisation of q. This result yields the colour symmetry group H in general. Furthermore,
the colour preserving group K is determined in all but finitely many cases. An application to
colourings of quasicrystals is given.

1. Introduction

The study of colour symmetries of periodic patterns or point lattices in two or three dimensions
is a classical topic, see [7] or [12]. A colour symmetry is a symmetry of a coloured pattern up to
permutation of colours; and the study of colour symmetry groups is dedicated to the relation of
the colour symmetries of a coloured pattern to the symmetries of the uncoloured pattern. During
the last century, the classification of colour symmetry groups of periodic patterns has been carried
out to a great extent. The discovery of quasiperiodic patterns [14] like the Penrose tiling raised the
question about colour symmetries of these patterns. Quasiperiodic patterns are not periodic, that
is, the only translation fixing the pattern is the trivial translation by 0. Nevertheless, quasiperiodic
patterns show a high degree of short and long range order. One early approach to generalise the
concept of colour symmetry to quasiperiodic patterns was given in [8]. It used the notion of
indistinguishability of coloured patterns and the fact that, for quasiperiodic patterns, it can be
described in Fourier space rather than in real space [6]. A more algebraic approach was used in
[11], making use of quadratic number fields. In this work, the problem of colour symmetries of both
periodic and non-periodic patterns, including the quasiperiodic cases, is addressed by studying the
sets of cyclotomic integers following the setting introduced in [1, 2, 3]. Cyclotomic integers turned
out to be very useful in describing symmetries of quasiperiodic patterns.

This article can be seen as a complement to [2], which concentrates on the combinatorial aspects
of perfect or chirally perfect colourings (there called ‘Bravais colourings’) of Mn, where Mn =
Z[e2πi/n] denotes a Z-module of cyclotomic integers. In particular, the results in [2] yield the
numbers ℓ for which a (chirally) perfect colouring of Mn with ℓ colours exists, given that Mn has
class number one. In contrast, this paper studies the algebraic properties of the colour symmetry
groups of perfect colourings of Mn, again for the case that Mn has class number one.

2. Preliminaries

Let Mn denote the cyclotomic integers. That is, Mn = Z[ξn] is the ring of polynomials in ξn,
where ξn = e2πi/n always be a primitive complex root of unity. If it is clear from the context, we
may write just ξ instead of ξn. Since M2n = Mn for n odd, we omit the case n ≡ 2 mod 4, for
the sake of uniqueness. As mentioned above, our approach requires that Mn has class number
one. Then we can use the fact that Mn is a principal ideal domain, and therefore also a unique
factorisation domain. This is only true for the following values of n.
(1)

n = 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84.

Let us emphasise that Mn always denotes the ring of cyclotomic integers for the values in Equation
(1) only.
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Figure 1. Four examples of colourings of Z2. For clarity, each element of Z2 is
replaced by a unit square. From left to right: An arbitrary 2-colouring with two
colours, neither ideal nor perfect; a 2-colouring induced by a coset colouring, but
neither ideal nor perfect; a perfect 4-colouring induced by the ideal (2); a chirally
perfect 5-colouring induced by the ideal (2 + i).

Notation: Throughout the text, Dn (resp. Cn) denotes the dihedral (resp. cyclic) group of order
2n (resp. n). The symmetric group of order n! is denoted by Sn. Let ξn = e2πi/n, a primitive n-th
root of unity. The set of cyclotomic integers Z[ξn] is denoted by Mn. The point group of Mn

(the set of linear isometries fixing Mn) is the dihedral group DN , where N = n if n is even, and
N = 2n if n is odd. The entire symmetry group G(Mn) of Mn is symmorphic, that is, it equals
the semidirect product of its translation subgroup with its point group: G(Mn) = Mn ⋊ DN ,
where N = n if n is even, and N = 2n if n is odd. If H is a subgroup of some group G, the index
of H in G is denoted by [G : H ]. Throughout the text we will identify the Euclidean plane with
the complex plane. The complex norm of z ∈ C is always denoted by |z|, while the algebraic norm
of z ∈ Mn is denoted by Nn(z).

The symmetry group of some set X ⊂ R2 is always denoted by G in the sequel. The following
definitions are mainly taken from [7]. A colouring of X is a surjective map c : X → {1, . . . , ℓ}.
Whenever we want to emphasise that a colouring uses ℓ colours, we will also call it an ℓ-colouring.
The objects of interest are colourings where an element of G acts as a global permutation of the
colours. Thus, for given X ⊂ R2 and a colouring c of X , we consider the following group.

(2) H = {h ∈ G | ∃π ∈ Sℓ ∀x ∈ X : c(h(x)) = π(c(x))}.

The elements of H are called colour symmetries of X . H is the colour symmetry group of the
coloured pattern (X, c).

Definition 2.1. A colouring c of a point set X is called perfect, if H = G. It is called chirally
perfect, if H = G′, where G′ is the index 2 subgroup of G containing the orientation preserving
isometries in G.

See Figure 1 for some examples. By the requirement πc = ch, each h determines a unique
permutation π = πh. This also defines a map

(3) P : H → Sℓ, P (h) := πh.

Let g, h ∈ H . Because of c(hg(x)) = ch(g(x)) = πhc(g(x)) = πh(πg(c(x))) = πhπg(c(x)), we
obtain the following result.

Lemma 2.2. P is a group homomorphism. �

A further object of interest is the subgroup K of H which fixes the colours. For a given X ⊂ R2

and a colouring c of X , we consider the colour preserving group K (in [4] called colour fixing
group):

(4) K := {k ∈ H | c(k(x)) = c(x), x ∈ X}.

In other words, K is the kernel of P . The aim of this paper is to deduce the nature of the groups
H and K for (chirally) perfect colourings of Mn.
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3. Coset colourings and ideal colourings of planar modules

A colouring of a point set X with a group structure (like a lattice or a Z-module) can be constructed
by choosing a subgroup of X and assigning to each coset a different colour ([15], see also [5]). Thus
we will generate colourings of Mn by suitable subgroups of Mn. Since Mn is in fact a principal
ideal domain, we will choose principal ideals (q) as these subgroups. Each element q ∈ Mn thus
generates a colouring in the following way.

Definition 3.1. An ideal colouring of Mn with ℓ colours is defined as follows: For each z ∈ (q) =
qMn, let c(z) = 1. Let the other cosets of (q) be (q) + t2, . . . , (q) + tℓ. For each z ∈ (q) + ti, let
c(z) = i.

If (q) is given explicitly, we will also call such an ideal colouring a colouring induced by (q). We will
see that all chirally perfect colourings of Mn, where n is of class number one, arise from principal
ideals (q) = qMn, where q ∈ Mn. Consequently, there exists a chirally perfect colouring of Mn

with ℓ colours, if and only if there is q such that Nn(q) = [Mn : (q)] = ℓ. (Note that the index of
(q) in Mn is just the algebraic norm of q.)

In [2], the number of Bravais colourings of Mn was obtained for all n as in (1). Let us shortly
explain, why in this context Bravais colourings are chirally perfect colourings, and vice versa. A
Bravais colouring of Mn is a colouring where each one-coloured subset is in the same Bravais
class as Mn. In plain words, this means that each one-coloured subset is similar to Mn. More
precisely: there is q ∈ C such that for each i, c−1(i) is a translate of qMn. For a general definition
of Bravais class, see for instance [10].

Theorem 3.2. Let Mn = Z[ξn] be a principal ideal domain. A colouring of Mn is a Bravais
colouring, if and only if it is a chirally perfect colouring, if and only if it is an ideal colouring.

Proof. Let c be an ideal colouring induced by (q). Trivially, (q) = qMn is similar to Mn, and the
cosets are translates of qMn. Thus c is a Bravais colouring.

Let c be a Bravais colouring of Mn. Without loss of generality, let 0 ∈ c−1(1). The set c−1(1) of
points of colour 1 is similar to Mn, that is, it equals qMn for some q ∈ C. Since c−1(1) ⊂ Mn,
we have qMn ⊂ Mn, which implies q ∈ Mn. Thus c−1(1) = (q). All other preimages c−1(i) are
translates of (q), thus cosets of (q) in Mn. Therefore c is an ideal colouring.

For the equivalence of chirally perfect colouring and ideal colouring, see Theorem 4.4 below. �

4. The structure of H

Recall that P : H → Sℓ maps a colour symmetry to the permutation it induces on the colours,
see (3).

Lemma 4.1. H acts transitively on the coloured subsets of any perfect colouring of Mn, and
H/K ∼= P (H).

Proof. The proof of the first statement follows from the proof of Theorem 4.4 below, see the
remark there. Since K = ker(P ), the second claim is clear. �

This yields the short exact sequence

(5) 0 −→ K −→ H −→ H/K −→ 0.

Therefore, H is always a group extension of K. In general, H is neither a direct nor a semidirect
product of K and H/K, see Theorem 4.7 below.

We proceed by examining how the factorisation of q in Mn affects the structure of the colour
symmetry group H of the colouring induced by (q). The unique factorisation of q over Mn reads

(6) q = ε
∏

pi∈P

pαi

i

∏

pj∈C

ωβj

pj
ωpj

γj

∏

pk∈R

pδk

k ,
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where ε is a unit in Mn. Here, P (resp. C, resp. R) denotes the set of inert (resp. complex splitting,
resp. ramified) primes over Mn. The generator q is called balanced if βj = γj for all j. In other
words: q is balanced if it is of the form

(7) q = εxp,

where ε is a unit in Mn, x is a real number in Mn (i.e., x ∈ Z[ξ+ξ]), and p is a product of ramified
primes. By the definition of a ramified prime p (see [16]), p ∈ (p) holds in Mn. (Equivalently, p/p
is a unit in Mn.) The following lemma is well-known, it is stated here for the convenience of the
reader.

Lemma 4.2. All units ε in Z[ξn] are of the form ε = ±λξk
n, where λ ∈ Z[ξ + ξ].

Proof. (Essentially [16], Prop. 1.5:) Let ε be a unit, and let α = ε/ε. Since ε, ε, 1/ε ∈ Mn, α is
an algebraic integer. Since complex conjugation commutes with any element of the Galois group,
for all algebraic conjugates αi of α holds |αi| = 1.

From Lemma 1.6 of [16] then follows: If for all algebraic conjugates αi of α holds |αi| = 1, and α is
an algebraic integer, then α is some root of unity, say, ξq

r . Since α ∈ Mn, it is either an n-th root of
unity, or a 2n-th root of unity, if n is odd. In each case, α = ±ξj

n for some j. Then ε2 = εεα = |ε|ξj
n,

where |ε| is a real number, thus |ε| ∈ Z[ξn + ξn]. It follows ε =
√

|ε|ξ
j/2
n = ±

√

|ε|ξj
2n = ±λξj

2n,

where λ ∈ Z[ξn + ξn]. However, since ε ∈ Z[ξn], it can’t be a proper 2n-th complex root of unity.

Thus ±λξj
2n = ±λξk

n for some k. �

In particular, if ε is a unit in Z[ξn] with |ε| = 1, then it is (up to sign) an n-th complex root of
unity: ε = ±ξk

n.

Lemma 4.3. q ∈ (q) if and only if q is balanced.

Proof. Let q be as in (6). Consider q/q. The inert primes in numerator and denominator cancel
each other. The unit ε, as well as the factors of the ramified primes, contribute a unit ε′ ∈ Mn.
Thus

r := q/q = ε′
∏

pj∈C

ωβj−γj

pj
ωpj

γj−βj .

If q is balanced, then βj = γj , thus q = (ε′)−1q ∈ (q), since ε′ is a unit. If q is not balanced, then
βj − γj 6= 0 for some j. Then, by Lemma 4.2, the right hand side r is not a unit, thus r−1 /∈ Mn,
and consequently q = r−1q /∈ (q). �

Theorem 4.4. Let Mn = Z[ξn] be a principal ideal domain.

(1) Each chirally perfect colouring of Mn is an ideal colouring.
(2) Each ideal colouring of Mn is chirally perfect.
(3) The colouring c induced by (q) is perfect, if and only if q is balanced.

Consequently, H = Mn ⋊ DN in the latter case, and H = Mn ⋊ CN otherwise. (N = 2n if n is
odd, N = n else.)

Proof. Let (q) be the ideal inducing the colouring of Mn. Let ℓ = [Mn : (q)], and denote the
cosets of (q) by (q) + t1, . . . , (q) + tℓ, where t1 = 0 for convenience. (The notation (q) + g rather
than g(q) or (q)g is justified as follows: all rotations and reflections in G fix (q). Only maps with
some translational part map (q) to a coset different from (q).)

We proceed by studying whether an element g ∈ G maps an entire coset (q)+ ti to an entire coset
(q)+ tj or not. If yes, then g induces a global permutation of the colours, and g ∈ H . Three cases
have to be considered.

1. Let g ∈ G be a translation. Then g is of the form g(x) = x + t for some t. Hence g((q) + ti) =
(q) + ti + t trivially is a coset of (q).
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2. Let g ∈ G be a rotation. Then g((q)) = (q), thus g((q) + tj) = (q) + g(ti), which is again a
coset of (q).

So, the first two cases are not critical, whether q is balanced or not. In particular, all orientation
preserving isometries map entire cosets to entire cosets, which proves part (2) of Theorem 4.4.

3. Let g ∈ G be the reflection x 7→ x. If q is balanced, then, by Lemma 4.3, g(q) = q ∈ (q),
hence g((q)) = (q). Thus g((q) + tj) = (q) + g(tj), which is a coset of (q). Any element of G is a
composition of the three symmetries above, hence the ‘if’-part of Theorem 4.4 (3) follows.

If q is not balanced, then g(0) = 0 ∈ (q), but g(q) /∈ (q) by Lemma 4.3. Thus g does not map
entire cosets to entire cosets. Consequently, no reflection in G maps entire cosets to entire cosets.
The reflections in G are the only elements which fail to do so. This (again) shows Theorem 4.4
(2), and the ‘only-if’ part of Theorem 4.4 (3).

Regarding Theorem 4.4 (1): Let c be a chirally perfect colouring. Let 0 ∈ c−1(1). Then c−1(1) is
invariant and closed under rotations in CN , and under translations by t ∈ c−1(1). It follows that
c−1(1) is invariant under multiplication by elements of Mn, and under translations by elements
of c−1(1). Thus c−1(1) is an ideal in Mn. �

This proves Lemma 4.1 as well: H contains all translations z 7→ z + t, t ∈ Mn. Clearly, these
translations act transitively on the cosets.

Corollary 4.5. If there exists only one ideal colouring of Mn with ℓ colours, the colouring is
perfect.

Proof. If an ideal colouring induced by (q) is not perfect, then q is not balanced by Theorem 4.4.
Thus, q /∈ (q) by Lemma 4.3, hence (q) 6= (q). So (q) and (q) define two different colourings with
ℓ colours. �

Now we get immediately a result on colourings of Z2. This is Theorem 8.7.1 in [7], see also [13].
Note that the number of colours ℓ is the norm N4(q) of q, which is just qq.

Corollary 4.6. Let c be an ℓ–colouring of the square lattice Z[i] generated by (q), q ∈ Z[i].

(1) If the factorisation of ℓ over Z contains no primes p ≡ 1 mod 4, then the colouring is
perfect.

(2) If q = m, or q = im, or q = (1 ± i)km for some m, k ∈ Z \ {0}, then the colouring is
perfect.

(3) Otherwise the colouring is not perfect but chirally perfect, and so H = Mn ⋊ CN .

Proof. The inert primes in M4 = Z[i] are exactly the ones of the form p ≡ 3 mod 4; and the
splitting primes are exactly those of the form p ≡ 1 mod 4. The only ramified prime in M4 is
2 = (1 + i)(1− i). So (1) and (2) of Corollary 4.6 cover exactly the cases where q is balanced, and
the claim follows from Theorem 4.4. �

Corollary 4.6 tells us that all ideal colourings of the square lattice with 1, 2, 4, 8, 9, 16 or 18 colours
are perfect, and all those with 5, 10, 13, 17, 20 colours are not. (These are all possible values for
ℓ < 25, see [2]). The first ambiguity occurs at the value ℓ = 25: the three possible generators are
q = 5, q = 3 + 4i, q = 3 − 4i. The first one induces a perfect colouring, whereas the other two
induce non-perfect but chirally perfect colourings.

Theorem 4.7. If ℓ = 2, then H is a semidirect product: H = K ⋊ H/K. If ℓ > N , then
H 6= K ⋊ H/K. (N = 2n, if n odd, N = n else.)

Proof. Consider Equation (5). By the splitting lemma, H = K ⋊ H/K, if and only if there is a
homomorphism Q : H/K → H such that PQ = id on H/K. If ℓ = 2, then H/K ∼= C2 = {id, x}.
Let Q(id) = id and Q(x) = ϕ, where ϕ is the reflection in the vertical line through 1

2 . Certainly,
ϕ ∈ G holds: ϕ : a + bi 7→ 1 − a + bi is a composition of z 7→ z, z 7→ iz, z 7→ z + 1. By Lemma
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5.2 (see below), the colouring is perfect, thus f ∈ H , and c(0) 6= c(1), thus f interchanges the two
colours. This makes Q a homomorphism.

In general, there is no such homomorphism Q: All elements π ∈ H/K are of finite order. If Q(π)
contains a translational part, it is of infinite order in H . Thus there is k = ord(π) such that
id = Q(id) = Q(πk) 6= Q(π)k, hence Q is not a homomorphism.

The elements z ∈ Mn with |z| = 1 are exactly the N elements of the form ±ξi
n (see Lemma 4.2).

Thus they can carry at most N colours. They can be mapped to each other by rotations about
0, or by reflection z 7→ z. H acts transitively on the colours. Thus in any colouring with more
than N colours there has to be a map g ∈ H which is neither a rotation about 0, nor a reflection
z 7→ z. Thus the colouring requires a map h with some translational part, which is of infinite
order. Consequently, Q(h) is of infinite order. �

The results in this section yield H in general — that is, whether a colouring of Mn is perfect or
not — depending on the factorisation of the generator of the underlying ideal. In the next section
we obtain results yielding K, depending only on the number ℓ of colours. As a byproduct, we also
obtain partial results on H , depending on ℓ only.

5. The structure of K

It follows a series of lemmas which determine the structure of K in all but finitely many cases.
Recall that ℓ denotes the number of colours and c(x) denotes the colour of x. We denote the group
of translations by elements in (q) by T(q). Note that T(q) is always contained in K.

Lemma 5.1. ℓ ≥ 2 if and only if c(0) 6= c(±ξi) for all i ≤ n.

Proof. ℓ = 1 ⇔ (q) = (1) ⇔ (q) = (±ξi) for some i ⇔ 0, ξi ∈ (q) ⇔ c(0) = c(ξi). �

Let φ denote Euler’s totient function.

Lemma 5.2. Each 2-colouring of Mn induced by (q) is perfect. Moreover, ℓ = 2, if and only if
c(±ξi) = c(ξj) for all i, j ≤ n, if and only if K = T(q) ⋊ DN .

Proof. Since ℓ = 2, we consider two cosets of (q), namely, (q) and (q) + 1. Note that 2 ∈ (q) and
±ξi ∈ (q) + 1 for any i ∈ Z. Consequently ±ξi ± ξj ∈ (q), while ±ξi ± ξj ± ξk ∈ (q) + 1 for any

i, j, k ∈ Z, and in general: If z =
∑φ(n)−1

i=0 αiξ
i ∈ Mn, with αi ∈ Z, then z ∈ (q) if and only if

∑φ(n)−1
i=0 αi ≡ 0 mod 2, otherwise z ∈ (q) + 1. Now, z =

∑φ(n)−1
i=1 αiξ

n−i, and by conjugation of

z, the sum
∑φ(n)−1

i=0 αi does not change. This implies that z ∈ (q) if and only if z ∈ (q). Similarly,
z ∈ (q) + 1 if and only if z ∈ (q) + 1. Thus the reflection z 7→ z maps (q) to itself and (q) + 1
to (q) + 1. Hence the reflection is in H , and so the colouring is perfect. Furthermore it fixes the
coloured pattern, and so is also in K.

From Lemma 5.1 follows that c(±ξi) 6= c(0) 6= c(ξj) for all i, j. Since ℓ = 2, that is, there are two
colours only, it follows c(±ξi) = c(ξj).

Vice versa, if c(±ξi) = c(ξj) for all i, j, then ±ξi − ξj , 2 ∈ (q). This means, analogous to the

reasoning above, (q) =
{

∑φ(n)−1
i=0 αiξ

i |
∑φ(n)−1

i=0 αi ≡ 0 mod 2, αi ∈ Z
}

, and thus (q) has only

one other coset, say (q) + 1. This settles the first equivalence. Since ±ξi(q) = (q), ±ξi((q) + 1) =
(q) ± ξi = (q) + 1, it follows that both the cosets are invariant under N -fold rotations, and so
K = T(q) ⋊ DN , since the reflection is also in K as noted above. Vice versa, if K = T(q) ⋊ DN ,

then c(±ξi) = c(ξj). �

Lemma 5.3. For all ℓ-colourings of Mn holds: If ℓ > 2φ(n) then K = T(q).

Proof. Recall that K is a subgroup of T(q) ⋊ DN . If some id 6= g ∈ DN is an element of K, then

g maps some ±ξi to some ξj 6= ±ξi, with c(ξi) = c(±ξj). Thus it suffices to show c(ξi) 6= c(±ξj)
for all i 6= j.
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Assume c(ξi) = c(±ξj). Then ξi ± ξj ∈ (q). Hence

Nn(ξi ± ξj) =

∣

∣

∣

∣

φ(n)
∏

k=1

σk(ξi ± ξj)

∣

∣

∣

∣

=

φ(n)
∏

k=1

|ξik ± ξjk | ≤ 2φ(n), where σk ∈ Gal(Q(ξn), Q).

It follows ℓ = [Mn : (q)] ≤ Nn(ξi ± ξj) ≤ 2φ(n), which contradicts ℓ > 2φ(n). �

Lemma 5.4. If (q) = (2), then H = G. Furthermore, for all n 6= 4 in (1): K = T(q) ⋊ C2; and
for n = 4: K = T(q) ⋊ D2.

Proof. q = 2 is balanced. Thus, H = G.

Now for K, compare the last proof: Note that Nn(2) = 2φ(n), and c(1) = c(−1). But not more,
because then we would have a factor of modulus strictly less than 2 in the equation above, and
the ≤ becomes <. Consequently, c(ξi) = c(−ξi), and so the only rotation in K is the rotation by
π about 0.

The reflection z 7→ z maps ξ to ξn−1. For all n 6= 4 in (1), Nn(ξ − ξn−1) < 2φ(n) and so
c(ξ) 6= c(ξn−1). Thus the reflection is not contained in K, and so K = T(q) ⋊ C2. Only for the

case n = 4 we get Nn(ξ− ξn−1) = 2φ(n), and so the reflection is in K and thus K = T(q) ⋊D2. �

Why is the case n = 4, ℓ = 2φ(4) = 4 different? By inspection of this case (see Figure 1) we find
that K = T(2) ⋊ D2. This is because c(1) = c(−1) and c(i) = c(−i); and only in this case does the
reflection z 7→ z also belong in K.

Lemma 5.5. If ℓ = 2φ(n) but (q) 6= (2), then K = T(q)

Proof. From the proof of the previous lemma, there can be no more symmetries than the rotation
by π that can fix the colours. If this rotation by π indeed fixes the colours, then in particular
c(1) = c(−1). Thus 2 ∈ (q), and so (2) ⊆ (q). But since (q) and (2) have equal algebraic norms,
then it follows that (q) = (2), which is a contradiction. Therefore, K = T(q). �

The case ℓ = 2φ(n) but (q) 6= (2) first occurs when n = 7, see Table 1.

Lemma 5.6. If 2 < ℓ = n, where n is prime in Z, then H = G and K = T(q) ⋊ Dn.

Proof. Note that in the case when n is an odd prime, the symmetry group of (q) contains DN =
D2n.

Let 2 < ℓ = n and n prime in Z. Then the unique factorisation of ℓ = n in Mn is ℓ =
∏n−1

i=1 (1−ξi)
[16]. Thus ℓ ramifies, and the possible generators of the ideal (q) are exactly the 1− ξi. Therefore,
by Theorem 4.7, each corresponding colouring is perfect. In fact, there is only one such colouring,
since for all 1 ≤ j ≤ n holds: 1 − ξj ∈ (1 − ξ). (This follows from ξk(1 − ξ) ∈ (q), thus
∑j−1

k=0 ξk(1 − ξ) = 1 − ξj ∈ (q).) Moreover, it follows that c(1) = c(ξj) for all j.

Since ℓ is prime in Z, we have Mn/(q) ∼= Cℓ, and so the ℓ distinct cosets can be expressed as
(q), (q) + 1, (q) + 2, . . . , (q) + ℓ − 1. Each coset is invariant under multiplication by ξj , but not
under multiplication by −ξ. Thus, K = T(q) ⋊ Dn. �

Lemma 5.7. If H = G and ℓ is prime in Z, then K contains a reflection. Thus, T(q) ⋊ C2 is a
subgroup of K.

Proof. Because ℓ is prime, the ℓ distinct cosets are (q), (q)+1, . . . , (q)+ ℓ−1. Clearly, these cosets
are invariant under conjugation, hence the reflection z 7→ z is contained in K. Consequently, K
contains T(q) ⋊ C2 as a subgroup. �

The previous lemma together with Lemma 5.3 yields the following result immediately.

Lemma 5.8. If ℓ is prime in Z and K = T(q), then H = G′. In particular, if ℓ > 2φ(n) is prime
in Z, then H = G′. �
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n ℓ j H K q
3 3 1 G T(q) ⋊ D3 1 − ξ3

4 1 G T(q) ⋊ C2 2
> 4 * * T(q) *

4 2 1 G T(q) ⋊ D4 1 − ξ4

4 1 G T(q) ⋊ D2 2
> 4 * * T(q) *

7 7 1 G T(q) ⋊ D7 1 − ξ7

8 2 {G′} {T(q) ⋊ C2} 1 − ξ7 − ξ3
7

29 6 G′ T(q) 1 − ξ7 − ξ2
7

43 6 G′ T(q) 1 − ξ7 − ξ2
7 − ξ3

7

49 1 G {T(q)} (1 − ξ7)
2

56 2 {G′} T(q) (1 − ξ7)(1 − ξ7 − ξ3
7)

64 1 G T(q) ⋊ C2, 2
2 {G′} T(q) (1 − ξ7 − ξ3

7)2

> 64 * * T(q) *
9 3 1 G {T(q) ⋊ D9} 1 − ξ9

9 1 G {T(q)} (1 − ξ9)
2

19 6 G′ T(q) 1 − ξ9 − ξ2
9

27 1 G {T(q)} 1 − ξ3
9

37 6 G′ T(q) 1 − ξ9 − ξ3
9

57 6 {G′} T(q) (1 − ξ9)(1 − ξ9 − ξ2
9)

64 1 G T(q) ⋊ C2 2
> 64 * * T(q) *

Table 1. The cases n = 3, 4, 7, 9. Here, j denotes the number of colourings
with ℓ colours. Non-bracketed entries in the columns labelled H and K follow
directly from results in this paper. Entries in brackets are computed by methods
from [4].

Lemma 5.9. If ℓ > n and ℓ is prime in Z, then H = G′.

Proof. If H = G, then by Lemma 5.7 the cosets must be fixed by taking conjugates. This would
mean that c(ξi) = c(ξn−i) and so ξi(1 − ξn−2i) ∈ (q). Thus ℓ = Nn(q) | Nn(1 − ξn−2i) =: α.
Now, α must be either 2φ(n) (when ξn−2i = −1) or a factor of nφ(n). For the latter case, recall

that
∏n−1

j=1 (1 − ξj) = n. Taking the algebraic norm of both sides, and noting that this norm is
completely multiplicative, gives us

(8)
n−1
∏

j=1

Nn(1 − ξj) = nφ(n).

This suggests that each factor Nn(1− ξj) on the left hand side of Equation (8) divides nφ(n). But
ℓ is not a prime factor of n, and so ℓ cannot divide α. Hence H = G′. �

Lemma 5.10. If ℓ ∤ 2φ(n) and ℓ ∤ nφ(n), then K = T(q).

Proof. Suppose there is id 6= g ∈ DN which fixes the cosets, so in particular g((q) + 1) = (q) + 1.
This implies that (q) ± ξi = (q) + 1 for some integer i, and hence 1 ± ξi ∈ (q). As in the proof of
the previous lemma, it follows then that ℓ | Nn(1 ± ξi) = β, where β is either 2φ(n) or a factor of
nφ(n). This is a contradiction, thus K = T(q). �

Table 1 illustrates applications of the results of the last two sections for the cases n = 3, 4, 7, 9.
(These are exactly the values of n where φ(n) ∈ {2, 6}. The cases n = 6, 14, 18 are covered
implicitly.) This table can be seen as a complement to Table 4 in [4], where values of n for which
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Figure 2. An 8-colouring of the vertices of the Ammann-Beenker tiling, arising
from the 8-colouring of the underlying set M8.

φ(n) = 4 are considered. The entries in the second and third column follow from [2]. Many
entries in the fourth and fifth column follow immediately from the results in this paper. Entries
in brackets require further computations (compare [4]), entries without brackets are immediate.
Entries with an asterisk mean that there are multiple different possibilities. The last column lists
one (out of possibly more than one) generator q of a corresponding colouring. Note that for n = 7,
there are three colourings with 64 colours. The colouring induced by (2) is perfect, while the other
two colourings are not.

6. Application to quasiperiodic structures

Consider a colouring c of M8 with eight colours. There exists exactly one such colouring [2]. By
Corollary 4.5, this colouring is perfect. Therefore H = M8⋊D8. Because of N8(1+ξ+ξ2+ξ3) = 8,
this colouring is defined by the ideal (q) = (1 + ξ + ξ2 + ξ3). Because of Theorem 4.4 and Lemma
4.3, q = 1+ξ7 +ξ6 +ξ5 ∈ (q). Thus, q+q = 2 ∈ (q). Hence the rotation by π about 0, which maps
1 to −1, is contained in K. The rotation by π/2 about 0 maps 1 to i. The norm of 1− i in M8 is
N8(1 − i) = 4 < 8, thus 1 − i /∈ (q). Therefore 1 and i have different colours, and the rotation by
π/2 and thus the rotation by π/4 are not contained in K. Finally, the reflection maps ξ8 to −ξ3

8 .
But N8(ξ8 + ξ3

8) = 4 implying that ξ8 and −ξ3
8 have different colours. This yields K = T(q) ⋊ C2

(where C2 represents the rotation by π).

Let us now describe how to illustrate this colouring c and its symmetries. Since M8 is dense in
the plane, we want a discrete subset of M8, which exhibits the colour symmetries of (M8, c). A
colouring of such a subset is shown in Figure 2. This set is well known from the theory of aperiodic
order: It is the vertex set of an Ammann Beenker tiling, see [7] or [14]. The symmetries discussed
above are visible in the image.

Further examples of perfect and chirally perfect colourings of quasiperiodic structures can be
found in [8] (a 5-colouring of the vertex set of the famous Penrose tiling, based on M5), in [3] (an
8-colouring of a quasiperiodic pattern based on M7), in [9] (several colourings based on Mn for
n = 4, 6, 8, 10, 12), and in [4] (a 4-colouring of the Ammann Beenker tiling, based on M8). All
these colourings arise from perfect or chirally perfect colourings of Mn.
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7. Conclusion

Two classical special cases of colour symmetries are covered by our approach, namely, the square
lattice (M4) and the hexagonal lattice (M3, resp. M6). These are discrete point sets. In par-
ticular, we obtain Theorem 8.7.1 in [7] as a corollary, see Corollary 4.6. All other cases (n = 5,
n ≥ 7) yield point sets Mn which are dense in the plane. In the case where Mn has class number
one, we obtained our main results. These are a necessary and sufficient condition for a colouring
to be perfect (Theorem 4.4). It allows the determination of the colour symmetry group H of Mn

in general. In particular, it yields all perfect colourings of Mn. Moreover, for all but finitely
many cases, we determine the subgroup K of H of symmetries which fix the coloured pattern:
the lemmas in Section 5 aid the derivation of K. A systematic way to determine K for a given
ideal ℓ-colouring would be to check the conditions of Lemma 5.2 (ℓ = 2), Lemma 5.3 (ℓ > 2φ(n)),
Lemma 5.4 and Lemma 5.5 (ℓ = 2φ(n)), Lemma 5.6 (ℓ = n prime), Lemma 5.10 (ℓ ∤ 2φ(n) and
ℓ ∤ nφ(n)). The remaining cases have to be handled individually. This allows — in principle — to
obtain all colour preserving groups of (chirally) perfect colourings of Mn.

For large n, the value 2φ(n) tends to be large, and it might be tedious to handle the remaining
cases individually. Nevertheless, Lemma 5.10 seems to cover many of the remaining cases of ℓ,
compare Table 5 in [2]. For instance, for n = 15, there are 11 cases for which ℓ ≤ 2φ(15) = 256. Our
results cover 8 out of 11 cases, only three cases require further effort in order to derive the colour
preserving group K. To give another example, for n = 16, there are 23 cases for ℓ ≤ 2φ(16) = 256,
but 17 of them are covered by our results, and only six cases have to be checked individually in
order to determine the group K.
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[6] J. Dräger and N.D. Mermin: Superspace Groups without the Embedding: The Link between Superspace
and Fourier-Space Crystallography, Phys. Rev. Lett. 76 (1996) 1489-1492.
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